期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
The Influences of Boundary Layer Parameterization Schemes on Mesoscale Heavy Rain System 被引量:17
1
作者 许丽人 赵鸣 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2000年第3期458-465,467-472,共14页
The mesoscale numerical weather prediction model (MM4) in which the computations of the turbulent exchange coefficient in the boundary layer and surface fluxes are improved, is used to study the influences of boundary... The mesoscale numerical weather prediction model (MM4) in which the computations of the turbulent exchange coefficient in the boundary layer and surface fluxes are improved, is used to study the influences of boundary layer parameterization schemes on the predictive results of the mesoscale model. Seven different experiment schemes (including the original MM4 model) designed in this paper are tested by the observational data of several heavy rain cases so as to find an improved boundary layer parameterization scheme in the mesoscale meteorological model. The results show that all the seven different boundary layer parameterization schemes have some influences on the forecasts of precipitation intensity, distribution of rain area, vertical velocity, vorticity and divergence fields, and the improved schemes in this paper can improve the precipitation forecast. Key words Boundary layer parameterization - Mesoscale numerical weather prediction (MNWP) - Turbulent exchange coefficient - Surface fluxes - Heavy rain This paper was supported by the National Natural Science Foundation of China (Grant No. 49875005 and No. 49735180). 展开更多
关键词 Boundary layer parameterization mesoscale numerical weather prediction (MNWP) Turbulent exchange coefficient Surface fluxes Heavy rain
下载PDF
Experiments in Forecasting Mesoscale Convective Weather over Changjiang Delta 被引量:1
2
作者 党人庆 唐新章 张家澄 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 1992年第2期223-230,共8页
The real time operational severe convective weather forecast experiment carried out during May to July in 1990 over the Changjiang Delta is briefly described. The heavy rainfall and severe conveetive weather forecast ... The real time operational severe convective weather forecast experiment carried out during May to July in 1990 over the Changjiang Delta is briefly described. The heavy rainfall and severe conveetive weather forecast worksheets for the Changjiang Delta have been proposed and used in the daily forecasting. Results show that the ability of 0-12h convective weather prediction has been improved significantly after the development of the forecast methods and the establishment of a mesoscale forecast base at Shanghai Meteorological Center during 1986 to 1990.Three cases of convective weather systems (meso-alpha, meso-beta, meso-gamma) during the experiment period are described and discussed. 展开更多
关键词 OVER Experiments in Forecasting mesoscale Convective weather over Changjiang Delta GMT
下载PDF
Real-Time Mesoscale Forecast Support During the CLAMS Field Campaign 被引量:1
3
作者 王东海 P. MINNIS +5 位作者 T. P. CHARLOCK D. K. ZHOU F. G. ROSE W. L. SMITH W. L. SMITH Jr L. NGUYEN 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2007年第4期599-605,共7页
This paper reports the use of a specialized, mesoscale, numerical weather prediction (NWP) system and a satellite imaging and prediction system that were set up to support the CLAMS (Chesapeake Lighthouse and Aircr... This paper reports the use of a specialized, mesoscale, numerical weather prediction (NWP) system and a satellite imaging and prediction system that were set up to support the CLAMS (Chesapeake Lighthouse and Aircraft Measurements for Satellites) field campaign during the summer of 2001. The primary objective of CLAMS was to validate satellite-based retrievals of aerosol properties and vertical profiles of the radiative flux, temperature and water vapor. Six research aircraft were deployed to make detailed coincident measurements of the atmosphere and ocean surface with the research satellites that orbited overhead. The mesoscale weather modeling system runs in real-time to provide high spatial and temporal resolution for forecasts that are delivered via the World Wide Web along with a variety of satellite imagery and satellite location predictions. This system is a multi-purpose modeling system capable of both data analysis/assimilation and multi-scale NWP ranging from cloud-scale to larger than regional scale. This is a three-dimensional, non-hydrostatic compressible model in a terrain-following coordinate. The model employs advanced numerical techniques and contains detailed interactive physical processes. The utility of the forecasting system is illustrated throughout the discussion on the impact of the surface-wind forecast on BRDF (Bidirectional Reflectance Distribution Function) and the description of the cloud/moisture forecast versus the aircraft measurement. 展开更多
关键词 CLAMS field campaign mesoscale numerical weather prediction forecast support
下载PDF
Reliability of X-band Dual-polarization Phased Array Radars Through Comparison with an S-band Dual-polarization Doppler Radar 被引量:2
4
作者 ZHOU Xin-yu HU Dong-ming +2 位作者 ZHANG Yu LI Hao-wen TIAN Cong-cong 《Journal of Tropical Meteorology》 SCIE 2022年第2期218-236,共19页
Based on the observations of a squall line on 11 May 2020 and stratiform precipitation on 6 June 2020 from two X-band dual-polarization phased array weather radars(DP-PAWRs)and an S-band dual-polarization Doppler weat... Based on the observations of a squall line on 11 May 2020 and stratiform precipitation on 6 June 2020 from two X-band dual-polarization phased array weather radars(DP-PAWRs)and an S-band dual-polarization Doppler weather radar(CINRAD/SA-D),the data reliability of DP-PAWR and its ability to detect the fine structures of mesoscale weather systems were assessed.After location matching,the observations of DP-PAWR and CINRAD/SA-D were compared in terms of reflectivity(Z_(H)),radial velocity(V),differential reflectivity(Z_(DR)),and specific differential phase(K_(DP)).The results showed that:(1)DP-PAWR has better ability to detect mesoscale weather systems than CINRAD/SAD;the multi-elevation-angles scanning of the RHI mode enables DP-PAWR to obtain a wider detection range in the vertical direction.(2)DP-PAWR’s Z_(H)and V structures are acceptable,while its sensitivity is worse than that of CINRAD/SA-D.The Z H suffers from attenuation and the Z_(H)area distribution is distorted around strong rainfall regions.(3)DP-PAWR’s Z_(DR)is close to a normal distribution but slightly smaller than that of CINRAD/SA-D.The K_(DP)products of DP-PAWR have much higher sensitivity,showing a better indication of precipitation.(4)DP-PAWR is capable of revealing a detailed and complete structure of the evolution of the whole storm and the characteristics of particle phase variations during the process of triggering and enhancement of a small cell in the front of a squall line,as well as the merging of the cell with the squall line,which cannot be observed by CINRAD/SA-D.With its fast volume scan feature and dual-polarization detection capability,DP-PAWR shows great potential in further understanding the development and evolution mechanisms of meso-γ-scale and microscale weather systems. 展开更多
关键词 comparative observations mesoscale weather systems fine structure X-band dual-polarization phased array radar S-band dual-polarization Doppler radar
下载PDF
THE INFLUENCE OF STRATIFICATION ON FRONTOGENESIS CAUSED BY GEOSTROPHIC ADJUSTMENT 被引量:1
5
作者 王云峰 伍荣生 《Acta meteorologica Sinica》 SCIE 1998年第3期376-381,共6页
A uniform,inviscid,incompressible fluid in a two-dimensional plane(x,z)is considered. Three principles:conservation of potential vorticity,conservation of absolute momentum,and conservation of mass are used for this s... A uniform,inviscid,incompressible fluid in a two-dimensional plane(x,z)is considered. Three principles:conservation of potential vorticity,conservation of absolute momentum,and conservation of mass are used for this study.If the initial mass field and the initial wind field do not satisfy geostrophic balance,then through geostrophic adjustment under suitable conditions, the frontogenesis will finally occur.Our work points out that the initial density distribution greatly influences the frontal features.If the stratification in cold air is the same as that in warm air,two frontogeneses will occur at top and bottom boundaries respectively.If the stratification in cold air is larger than that in warm air,the frontogenesis at the bottom boundary still exists,but the other at the top boundary disappears.This result makes us further understand the mechanism of the frontogenesis in the real atmosphere. 展开更多
关键词 mesoscale weather geostrophic adjustment FRONTOGENESIS
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部