The meso-dynamical behaviour of a high-speed rail ballast bed with under sleeper pads(USPs)was studied.The geometrically irregular refined discrete element model of the ballast particles was constructed using 3D scann...The meso-dynamical behaviour of a high-speed rail ballast bed with under sleeper pads(USPs)was studied.The geometrically irregular refined discrete element model of the ballast particles was constructed using 3D scanning techniques,and the 3D dynamic model of the rail-sleeper-ballast bed was constructed using the coupled discrete element method-multiflexible-body dynamics(DEM-MFBD)approach.We analyse the meso-mechanical dynamics of the ballast bed with USPs under dynamic load on a train and verify the correctness of the model in laboratory tests.It is shown that the deformation of the USPs increases the contact area between the sleeper and the ballast particles,and subsequently the number of contacts between them.As the depth of the granular ballast bed increases,the contact area becomes larger,and the contact force between the ballast particles gradually decreases.Under the action of the elastic USPs,the contact forces between ballast particles are reduced and the overall vibration level of the ballast bed can be reduced.The settlement of the granular ballast bed occurs mainly at the shallow position of the sleeper bottom,and the installation of the elastic USPs can be effective in reducing the stress on the ballast particles and the settlement of the ballast bed.展开更多
The compatibility of the blend systems for olyactic acid (PLA)/tributyl citrate (TBC) and PLA/glycerol has been studied by molecule and mesoscopic dynamics methods. The results from glass transition temperature si...The compatibility of the blend systems for olyactic acid (PLA)/tributyl citrate (TBC) and PLA/glycerol has been studied by molecule and mesoscopic dynamics methods. The results from glass transition temperature simulations showed that the compatibility of PLA/TBC system was better than that of PLA/glycerol, which were consistent with the conclusion obtained from the pair correlation functions. Besides, the behaviors of phase state distribution and evolution process were investigated by mesoscopic dynamics method as well. The results indicated that citrate ester was a better plasticizer than glycerol for PLA.展开更多
We investigate the behavior of dissipative particle dynamics (DPD) within different scaling regimes by numerical simulations. The paper extends earlier analytical findings of Ripoll, M., Ernst, M. H., and Espafiol, ...We investigate the behavior of dissipative particle dynamics (DPD) within different scaling regimes by numerical simulations. The paper extends earlier analytical findings of Ripoll, M., Ernst, M. H., and Espafiol, P. (Large scale and mesoscopic hy- drodynamics for dissipative particle dynamics. Journal of Chemical Physics, 115(15), 7271-7281 (2001)) by evaluation of numerical data for the particle and collective scaling regimes and the four different subregimes. DPD simulations are performed for a range of dynamic overlapping parameters. Based on analyses of the current auto-correlation functions (CACFs), we demonstrate that within the particle regime at scales smaller than its force cut-off radius, DPD follows Langevin dynamics. For the collective regime, we show that the small-scale behavior of DPD differs from Langevin dynamics. For the wavenumber-dependent effective shear viscosity, universal scaling regimes are observed in the microscopic and mesoscopic wavenumber ranges over the considered range of dynamic overlapping parameters.展开更多
This study presents the interaction between konjac glucanmannan(KGM) and cationic surfactant dodecyl trimethylammonium chloride(DTAC) to provide theoretical guidance and prediction for the experimental design and ...This study presents the interaction between konjac glucanmannan(KGM) and cationic surfactant dodecyl trimethylammonium chloride(DTAC) to provide theoretical guidance and prediction for the experimental design and application of this composite system. Dissipative particle dynamics(DPD) method was used to simulate the interaction between KGM and the cationic surfactant. Influences of concentration, temperature and shear process on the structure and properties of aggregates were mainly examined. The results revealed that the density peak increased with the increase of concentration of KGM. With increasing the temperature, density peak moved to the right and increased, and then decreased when the temperature rose to a certain value. The density peak moved to the right at the low shear rate while decreased at the high one. During simulation, the high viscosity related to the low diffusion rate, which made it difficult to form a large continuous phase.展开更多
基金supported by the National Natural Science Foundation of China under Grants Nos.52165013 and 51565021.
文摘The meso-dynamical behaviour of a high-speed rail ballast bed with under sleeper pads(USPs)was studied.The geometrically irregular refined discrete element model of the ballast particles was constructed using 3D scanning techniques,and the 3D dynamic model of the rail-sleeper-ballast bed was constructed using the coupled discrete element method-multiflexible-body dynamics(DEM-MFBD)approach.We analyse the meso-mechanical dynamics of the ballast bed with USPs under dynamic load on a train and verify the correctness of the model in laboratory tests.It is shown that the deformation of the USPs increases the contact area between the sleeper and the ballast particles,and subsequently the number of contacts between them.As the depth of the granular ballast bed increases,the contact area becomes larger,and the contact force between the ballast particles gradually decreases.Under the action of the elastic USPs,the contact forces between ballast particles are reduced and the overall vibration level of the ballast bed can be reduced.The settlement of the granular ballast bed occurs mainly at the shallow position of the sleeper bottom,and the installation of the elastic USPs can be effective in reducing the stress on the ballast particles and the settlement of the ballast bed.
基金This work was supported by the National Natural Scientific Foundation of China (Nos. 20603030, 10674114), 973 Project of the Ministry of Science and Technology of China (No. 2009CB930103) and the Shandong Provincial Natural Science Foundation of China (Nos. Q2008B07, Q2010BL023).
文摘The compatibility of the blend systems for olyactic acid (PLA)/tributyl citrate (TBC) and PLA/glycerol has been studied by molecule and mesoscopic dynamics methods. The results from glass transition temperature simulations showed that the compatibility of PLA/TBC system was better than that of PLA/glycerol, which were consistent with the conclusion obtained from the pair correlation functions. Besides, the behaviors of phase state distribution and evolution process were investigated by mesoscopic dynamics method as well. The results indicated that citrate ester was a better plasticizer than glycerol for PLA.
文摘We investigate the behavior of dissipative particle dynamics (DPD) within different scaling regimes by numerical simulations. The paper extends earlier analytical findings of Ripoll, M., Ernst, M. H., and Espafiol, P. (Large scale and mesoscopic hy- drodynamics for dissipative particle dynamics. Journal of Chemical Physics, 115(15), 7271-7281 (2001)) by evaluation of numerical data for the particle and collective scaling regimes and the four different subregimes. DPD simulations are performed for a range of dynamic overlapping parameters. Based on analyses of the current auto-correlation functions (CACFs), we demonstrate that within the particle regime at scales smaller than its force cut-off radius, DPD follows Langevin dynamics. For the collective regime, we show that the small-scale behavior of DPD differs from Langevin dynamics. For the wavenumber-dependent effective shear viscosity, universal scaling regimes are observed in the microscopic and mesoscopic wavenumber ranges over the considered range of dynamic overlapping parameters.
基金supported by the National Natural Science Foundation of China(31471704 and 31271837)
文摘This study presents the interaction between konjac glucanmannan(KGM) and cationic surfactant dodecyl trimethylammonium chloride(DTAC) to provide theoretical guidance and prediction for the experimental design and application of this composite system. Dissipative particle dynamics(DPD) method was used to simulate the interaction between KGM and the cationic surfactant. Influences of concentration, temperature and shear process on the structure and properties of aggregates were mainly examined. The results revealed that the density peak increased with the increase of concentration of KGM. With increasing the temperature, density peak moved to the right and increased, and then decreased when the temperature rose to a certain value. The density peak moved to the right at the low shear rate while decreased at the high one. During simulation, the high viscosity related to the low diffusion rate, which made it difficult to form a large continuous phase.