期刊文献+
共找到13篇文章
< 1 >
每页显示 20 50 100
Research progress in CALPHAD assisted metal additive manufacturing
1
作者 Ya-qing Hou Xiao-qun Li +5 位作者 Wei-dong Cai Qing Chen Wei-ce Gao Du-peng He Xue-hui Chen Hang Su 《China Foundry》 SCIE EI CAS CSCD 2024年第4期295-310,共16页
Metal additive manufacturing(MAM)technology has experienced rapid development in recent years.As both equipment and materials progress towards increased maturity and commercialization,material metallurgy technology ba... Metal additive manufacturing(MAM)technology has experienced rapid development in recent years.As both equipment and materials progress towards increased maturity and commercialization,material metallurgy technology based on high energy sources has become a key factor influencing the future development of MAM.The calculation of phase diagrams(CALPHAD)is an essential method and tool for constructing multi-component phase diagrams by employing experimental phase diagrams and Gibbs free energy models of simple systems.By combining with the element mobility data and non-equilibrium phase transition model,it has been widely used in the analysis of traditional metal materials.The development of CALPHAD application technology for MAM is focused on the compositional design of printable materials,the reduction of metallurgical imperfections,and the control of microstructural attributes.This endeavor carries considerable theoretical and practical significance.This paper summarizes the important achievements of CALPHAD in additive manufacturing(AM)technology in recent years,including material design,process parameter optimization,microstructure evolution simulation,and properties prediction.Finally,the limitations of applying CALPHAD technology to MAM technology are discussed,along with prospective research directions. 展开更多
关键词 metal additive manufacturing CALPHAD integrated computational material engineering powder bed fusion material design microstructure simulation
下载PDF
Aspects of the Powder in Metal Additive Manufacturing: A Review 被引量:1
2
作者 Gladius Lewis 《World Journal of Engineering and Technology》 2022年第2期363-409,共47页
The most widely used metal additive manufacturing processes utilize powder that is spread or fed onto a building platform. Although there are reviews of the literature on some aspects of the powder, many aspects have ... The most widely used metal additive manufacturing processes utilize powder that is spread or fed onto a building platform. Although there are reviews of the literature on some aspects of the powder, many aspects have been under-reviewed or unreviewed. The present work is a review of the literature on these aspects. Articles published in the open literature through the end of February 2022 were collected by consulting highly regarded relevant bibliographic databases, such as Google Scholar and Science Direct. The aspects reviewed were emerging methods of powder production, methods used to improve the quality of a powder after production by a well-established method, influence of variables of well-established powder production methods on powder properties, influence of powder production method on powder properties, and influence of powder reuse on properties of powders of a wide collection of alloys. One key finding was that with regard to powder reuse, the only consistent finding is that it leads to increase in the oxygen content of the powder. Another key finding was that the literature on the aspects of the literature reviewed herein contains many shortcomings and gaps, which suggest potential areas for future research, such as techniques for optimization of process variables for a given combination of metal powder and powder production method and development of methods for production of powders of new/emerging metallic materials. 展开更多
关键词 metal Powder Feedstock metal additive Manufacturing Particle Size Distribution Morphology FLOWABILITY Rheological Properties of metal Powder
下载PDF
A review on stress determination and control in metal-based additive manufacturing 被引量:3
3
作者 Haoyang Luo Xing Sun +2 位作者 Le Xu Wei He Xiaoyu Liang 《Theoretical & Applied Mechanics Letters》 CAS CSCD 2023年第1期14-25,共12页
Metal additive manufacturing(MAM)is an emerging and disruptive technology that builds three-dimensional(3D)components by adding layer-upon-layer of metallic materials.The complex cyclic thermal history and highly loca... Metal additive manufacturing(MAM)is an emerging and disruptive technology that builds three-dimensional(3D)components by adding layer-upon-layer of metallic materials.The complex cyclic thermal history and highly localized energy can produce large temperature gradients,which will,in turn,lead to compressive and tensile stress during the MAM process and eventually result in residual stress.Being an issue of great concern,residual stress,which can cause distortion,delamination,cracking,etc.,is considered a key mechanical quantity that affects the manufacturing quality and service performance of MAM parts.In this review paper,the ongoing work in the field of residual stress determination and control for MAM is described with a particular emphasis on the experimental measurement/control methods and numerical models.We also provide insight on what still requires to be achieved and the research opportunities and challenges. 展开更多
关键词 metal additive manufacturing Residual stress Measurement and control methods Numerical models
下载PDF
Microstructure transformations and improving wear resistance of austenitic stainless steel additively fabricated by arc-based DED process
4
作者 Ashish Yadav Manu Srivastava +1 位作者 Prashant K.Jain Sandeep Rathee 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第8期194-204,共11页
In this study, austenitic stainless steel(ASS) was additively fabricated by an arc-based direct energy deposition(DED) technique. Macrostructure, microstructure, mechanical characteristics at different spatial orienta... In this study, austenitic stainless steel(ASS) was additively fabricated by an arc-based direct energy deposition(DED) technique. Macrostructure, microstructure, mechanical characteristics at different spatial orientations(0°, 90°, and 45°), and wear characteristics were evaluated at the deposited structure top, middle, and bottom regions. Results show that austenite(γ) and delta-ferrite(δ) phases make up most of the microstructure of additively fabricated SS316LSi steel. Within γ matrix, δ phase is dispersed both(within and along) grain boundaries, exhibiting a fine vermicular morphology. The bottom, middle,and top regions of WAAM deposited ASS exhibit similar values to those of wrought SS316L in the tensile and impact test findings. Notably, a drop in hardness values is observed as build height increases. During SEM examinations of fractured surfaces from tensile specimen, closed dimples were observed, indicating good ductility of as-built structure. Wear test findings show signs of mild oxidation and usual adhesive wear. By depositing a mechanically mixed composite layer, an increase in the oxidation percentage was discovered to facilitate healing of worn surfaces. The findings of this study will help in design, production and renovation of products/components that are prone to wear. WAAM-deposited ASS has remarkable strength and ability to withstand impacts;it can be used in the production of armour plates for defence applications, mainly military vehicles and aircraft. 展开更多
关键词 metal additive deposition Defence applications Arc-based DED Characterization Wear behaviour FRACTOGRAPHY
下载PDF
Numerical simulation of laser ultrasonic detection of the surface microdefects on laser powder bed fusion additive manufactured 316L stainless steel
5
作者 Yang Liu Zhixin Peng +1 位作者 Sheng Liu Ping Hu 《Theoretical & Applied Mechanics Letters》 CAS CSCD 2022年第6期451-458,共8页
A numerical model is presented in this article to investigate the interactions between laser generated ultrasonic and the microdefects(0.01 to 0.1 mm),which are on the surface of the laser powder bed fusion additive m... A numerical model is presented in this article to investigate the interactions between laser generated ultrasonic and the microdefects(0.01 to 0.1 mm),which are on the surface of the laser powder bed fusion additive manufactured 316L stainless steel.Firstly,the influence of the transient sound field and detection positions on Rayleigh wave signals are investigated.The interactions between the varied microdefects and the laser ultrasonic are studied.It is shown that arrival time of reflected Rayleigh(RR)waves wave is only related to the location of defects.The depth can be checked from the feature point Q,the displacement amplitude and time delay of converted transverse(RS)wave,while the width information can be evaluated from the RS wave time delay.With the aid of fitting curves,it is found to be linearly related.This simulation study provides a theoretical basis for quantitative detection of surface microdefects of additive manufactured 316L stainless steel components. 展开更多
关键词 Laser ultrasonic Numerical simulation metal additive manufacturing Surface defects
下载PDF
High plastic Zr–Cu–Fe–Al–Nb bulk metallic glasses for biomedical applications 被引量:1
6
作者 Shu-shen Wang Yun-liang Wang +2 位作者 Yi-dong Wu Tan Wang Xi-dong Hui 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2015年第6期648-653,共6页
Four Zr–Cu–Fe–Al-based bulk metallic glasses(BMGs) with Zr contents greater than 65at% and minor additions of Nb were designed and prepared. The glass forming abilities, thermal stabilities, mechanical properties... Four Zr–Cu–Fe–Al-based bulk metallic glasses(BMGs) with Zr contents greater than 65at% and minor additions of Nb were designed and prepared. The glass forming abilities, thermal stabilities, mechanical properties, and corrosion resistance properties of the prepared BMGs were investigated. These BMGs exhibit moderate glass forming abilities along with superior fracture and yield strengths compared to previously reported Zr–Cu–Fe–Al BMGs. Specifically, the addition of Nb into this quaternary system remarkably increases the plastic strain to 27.5%, which is related to the high Poisson's ratio and low Young's and shear moduli. The Nb-bearing BMGs also exhibit a lower corrosion current density by about one order of magnitude and a wider passive region than 316 L steel in phosphate buffer solution(PBS, pH 7.4). The combination of the optimized composition with high deformation ability, low Young's modulus, and excellent corrosion resistance properties indicates that this kind of BMG is promising for biomedical applications. 展开更多
关键词 metallic glasses biomedical materials mechanical properties corrosion resistance zirconium content niobium addition
下载PDF
A NOVEL SYNTHETIC METHOD AND STRUCTURE OF TETRAKIS(BENZOATE)BIS(TRIPHENYLPHOSPHINE OXIDE)DICOPPER(II).OXIDATIVE ADDITION OF DIBENZOYL ON METALLIC COPPER
7
作者 Rui Na YANG Bao Yu XUE and Dou Man JIN Henan Institute of Chemistry,Zhengzhou 450003 KOZO KOZAWA and TOKIKO UCHIDA Science University of Tokyo,Noda,Chiba 278,Japan 《Chinese Chemical Letters》 SCIE CAS CSCD 1992年第9期737-740,共4页
Dibenzoyl peroxide undergoes oxidative addition on metallic copper with triphenylphosphine in a mixed solvent(acetone,dichloromethane and trichloromethane),and affords the binuclear copper complex (Cu(C_6H_5COO)_2(OPP... Dibenzoyl peroxide undergoes oxidative addition on metallic copper with triphenylphosphine in a mixed solvent(acetone,dichloromethane and trichloromethane),and affords the binuclear copper complex (Cu(C_6H_5COO)_2(OPPh_3))_2.Crystals are monoclinic,space group A_2/a,with cell parameters,a=24.337(3),b=10.566(1),c=21.579(2),β= 93.18(1)°, V=5540(1)~3,Z=4,R=0.042,and Rw=0.044 for 5872 observed reflections. Each copper ion is coordinated by four bridging benzoato ligands and one triphenylphosphine oxide group to form binuclear complexes. 展开更多
关键词 BENZOATE)BIS A NOVEL SYNTHETIC METHOD AND STRUCTURE OF TETRAKIS OXIDATIVE ADDITION OF DIBENZOYL ON metalLIC COPPER TRIPHENYLPHOSPHINE OXIDE)DICOPPER II
下载PDF
SYNTHESIS AND STRUCTURE OF Cu(Ⅱ)COMPLEXES BY OXIDATIVE ADDITION OF DIBENZOYL PEROXIDE ON METALLIC COPPER
8
作者 Rui Na YANG Dong Mei WANG Dou Man JIN Henan Institute of Chemistry,Zhengzhou 450003Hua Qin WANG Yao YANG Nanjing University,Nanjing 210008 《Chinese Chemical Letters》 SCIE CAS CSCD 1993年第2期123-124,共2页
Dibenzoyl peroxide undergoes oxidative addition on metallic copper powder with 2,2′-bipyridine(or imidazole)in a mixed solvent(methanol and tetrahydrofuran),and affords the Cu(Ⅱ)complexes-[Cu(Ce(C_6H_5COO)_2(2,2'... Dibenzoyl peroxide undergoes oxidative addition on metallic copper powder with 2,2′-bipyridine(or imidazole)in a mixed solvent(methanol and tetrahydrofuran),and affords the Cu(Ⅱ)complexes-[Cu(Ce(C_6H_5COO)_2(2,2'-bipy)]H_2O(1) and[Cu(C_6H_5COO)_2(C_3H_4N_2)_2](2).The structure was solved by direct methods and Fourier synthesis.C_(24)H_(20)N_2O_5Cu (1),Mr=479.78,space group P2(1)/c,a=6.986(7), b=18.833(I),c=17.021(3),α=γ=90°,Z=4,V=2218.1~3,Dc=1.443g/cm\+3,R=0.055 Rw=0.062.Complex(2),C_(20)H_(18)N_4O_4Cu(2),Mr=441.74,space group P2(1)/n,a=8.699(4), b=9.840(6),c=12.399(5),α=γ=90°,β=100.8°,Z=4,V=1010.9~3,Dc=1.654g/cm\+3,R=0.055, Rw=0.062. 展开更多
关键词 SYNTHESIS AND STRUCTURE OF Cu COMPLEXES BY OXIDATIVE ADDITION OF DIBENZOYL PEROXIDE ON metalLIC COPPER
下载PDF
Multi-scale defects in powder-based additively manufactured metals and alloys 被引量:26
9
作者 J.Fu H.Li +1 位作者 X.Song M.W.Fu 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2022年第27期165-199,共35页
Defect formation is a critical challenge for powder-based metal additive manufacturing(AM).Current understanding on the three important issues including formation mechanism,influence and control method of metal AM def... Defect formation is a critical challenge for powder-based metal additive manufacturing(AM).Current understanding on the three important issues including formation mechanism,influence and control method of metal AM defects should be updated.In this review paper,multi-scale defects in AMed metals and alloys are identified and for the first time classified into three categories,including geometry related,surface integrity related and microstructural defects.In particular,the microstructural defects are further divided into internal cracks and pores,textured columnar grains,compositional defects and dislocation cells.The root causes of the multi-scale defects are discussed.The key factors that affect the defect formation are identified and analyzed.The detection methods and modeling of the multi-scale defects are briefly introduced.The effects of the multi-scale defects on the mechanical properties especially for tensile properties and fatigue performance of AMed metallic components are reviewed.Various control and mitigation methods for the corresponding defects,include process parameter control,post processing,alloy design and hybrid AM techniques,are summarized and discussed.From research aspect,current research gaps and future prospects from three important aspects of the multi-scale AM defects are identified and delineated. 展开更多
关键词 metal additive manufacturing Multi-scale defects Detection and modeling Mechanical properties Defect control and mitigation
原文传递
Review on Enhancement of Nitridation of Si Powder 被引量:1
10
作者 GUO Weiming WU Lixiang +1 位作者 LIN Huatay ZHANG Guojun 《China's Refractories》 CAS 2015年第3期18-21,共4页
This paper reviewed the effect of powder characteristics and additives including metals,rare earth oxides,and ZrO2 on nitridation of Si powder.The decrease of particle size of Si powder increased nitridation.Most of m... This paper reviewed the effect of powder characteristics and additives including metals,rare earth oxides,and ZrO2 on nitridation of Si powder.The decrease of particle size of Si powder increased nitridation.Most of metal additives inhibited nitridation,while some metal additives such as Fe,Cu,Cr,and Ca increased nitrida—tion.Otherwise,the addition of metals might lead to the degradation of physical and mechanical properties of Si3N4.All the rare earth oxides,especially CeO2 and Eu2O3,showed nitridation enhancing effect.In addition,ZrO2 with small particle size showed a stronger enhancing effect. 展开更多
关键词 silicon powder nitridation powder characteristics metal additives rare earth oxides zirconia
下载PDF
Design of high-performance molybdenum alloys via doping metal oxide and carbide strengthening:A review 被引量:5
11
作者 Hairui Xing Ping Hu +7 位作者 Chaojun He Xiangyang Zhang Jiayu Han Fan Yang Run Bai Wen Zhang Kuaishe Wang Alex AVolinsky 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2023年第29期161-180,共20页
Metal oxide and carbide strengthening molybdenum(Mo)alloys have been designed as promising ad-vanced materials in refractory metals to solve some of the core engineering problems in superalloy ap-plications.Hence,ther... Metal oxide and carbide strengthening molybdenum(Mo)alloys have been designed as promising ad-vanced materials in refractory metals to solve some of the core engineering problems in superalloy ap-plications.Hence,there is a need to summarize the results obtained and evaluate the opportunities for preparing high-performance Mo alloys by strengthening metal oxides and carbides to improve the per-formance characteristics of Mo metal materials.This paper reviews the results of the reported work con-cerning the structure and properties of Mo alloys with different metal oxide and carbide strengthening methods added to Mo matrix.The influence of the doping of La 2 O 3 and Y 2 O 3 particles,ceramic Al 2 O 3 and ZrO 2 particles,and refractory TiC and ZrC carbides particles of Mo alloys are discussed.The impacts of particle morphology,size,distribution and volume fractions of oxide and carbide are analyzed,as well as the specific features of different doping techniques for obtaining high-performance Mo alloys mate-rials.This work will guide future research on the design of high-performance refractory Mo alloys by adding oxides and carbide particles,helping to solve the core issues in the field of superalloy application research. 展开更多
关键词 Molybdenum alloy metal oxide and carbide addition Oxide dispersion-strengthened Carbide precipitation-strengthened Microstructure Mechanical properties
原文传递
Effect of yttrium addition on flow behavior of Cu-Zr-Al bulk metallic glass in the supercooled liquid region 被引量:3
12
作者 杨珂 范新会 +3 位作者 李炳 李艳红 王鑫 徐璇璇 《Journal of Rare Earths》 SCIE EI CAS CSCD 2017年第10期1035-1041,共7页
The high temperature deformation behaviors and thermal workability of Cu_(43)Zr_(48)Al_9 and(Cu_(43)Zr_(48)Al_9)_(98)Y_2 bulk metallic glasses in the supercooled liquid region were investigated by the unia... The high temperature deformation behaviors and thermal workability of Cu_(43)Zr_(48)Al_9 and(Cu_(43)Zr_(48)Al_9)_(98)Y_2 bulk metallic glasses in the supercooled liquid region were investigated by the uniaxial compression tests. The results showed that the high temperature deformation behaviors were highly sensitive to strain rate and temperature, and the flow stress decreased with the increase of temperature, as well as with the decrease of strain rate. Additionally, the(Cu_(43)Zr_(48)Al_9)_(98)Y_2 bulk metallic glass displayed smaller flow stress under the same condition. The flow behavior changed from Newtonian to non-Newtonian with increase of the strain rate, as well as the decrease of temperature, which could be explained by the transition state theory. We found that(Cu_(43)Zr_(48)Al_9)_(98)Y_2 bulk metallic glass had better flow behavior than the Cu_(43)Zr_(48)Al_9 bulk metallic glass in the supercooled liquid region. In addition, the processing maps of the two bulk metallic glasses were constructed considering the power dissipation efficiency. The optimum domain for thermal workability of the bulk metallic glass was located using the processing map, where the power dissipation efficiency was larger than 0.8. It was shown that the(Cu_(43)Zr_(48)Al_9)_(98)Y_2 bulk metallic glass, which had larger area of optimum domain, had excellent thermoplastic forming. 展开更多
关键词 bulk metallic glass yttrium addition flow behavior deformation map rare earths
原文传递
Studies on a New Material for Hydrogen Storage and Supply by Modified Fe and Fe2O3 Powder
13
作者 王惠 王宪生 +3 位作者 王新智 王小芳 董发昕 史启祯 《Chinese Journal of Chemistry》 SCIE CAS CSCD 2007年第7期883-887,共5页
Modified iron oxide, a new material for hydrogen storage and supply to polymer electrolyte fuel cell (PEFC), was prepared by impregnating Fe or Fe2O3 powder with an aqueous solution containing metal cation additives... Modified iron oxide, a new material for hydrogen storage and supply to polymer electrolyte fuel cell (PEFC), was prepared by impregnating Fe or Fe2O3 powder with an aqueous solution containing metal cation additives (Al, Cr, Ni, Co, Zr and Mo). Hydrogen storage properties of the samples were investigated. The results show that both Fe and Fe2O3 powder with additive Mo presented excellent catalytic activity and cyclic stability, and their hydrogen producing temperature could be surprisingly decreased. The temperature of forming hydrogen for the Fe2O3-Mo at the rate of 250 μmol·min^-1·Fe-g^-1 could be dramatically decreased from 527 ℃ before addition of Mo to 283 ℃ after addition of Mo in the fourth cycle. The cause for it was probably related to preventing the sinter of the sample particles. In addition, hydrogen storage capacity of the Fe2O3-Mo can reach w=4.5% (72 kg H2/m^3), close to International Energy Agency (IEA) criterion. These show the value of practical application of the Fe2O3-Mo as the promising hydrogen storage material. 展开更多
关键词 modified Fe and Fe2O3 powder material for hydrogen storage metal additive performance of hydrogen storage catalytic activity and cyclic stability
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部