In the Mangodara area within the Banfora greenstone belts (Baoulé-Mossi domain of the West African Craton), our study focused on geochemical assessment of the mobility of major and trace elements. Gold and base m...In the Mangodara area within the Banfora greenstone belts (Baoulé-Mossi domain of the West African Craton), our study focused on geochemical assessment of the mobility of major and trace elements. Gold and base metal occurrences are hosted in highly metamorphic felsic (metarhyolite) and intermediate (metadacite and metaandesite) formations. Common mineral assemblages made up of staurolite - kyanite - pyrophyllite are interpreted to represent the metamorphosed equivalent of aluminous hydrothermal alteration. Associated felsic and intermediate volcanic rocks are enriched in Fe<sub>2</sub>O<sub>3</sub>, K<sub>2</sub>O (metaandesite, metarhyolite) and depleted in MgO, Al<sub>2</sub>O<sub>3</sub>, CaO, P<sub>2</sub>O<sub>5</sub>, Na<sub>2</sub>O (metarhyolite) and Fe<sub>2</sub>O<sub>3</sub>, MgO, CaO (metaandesite). Al<sub>2</sub>O<sub>3</sub> depletion in mineralized kyanite-staurotide bearing metarhyolites suggests corroded minerals. Mineralized metarhyolites show enrichment in Au, Ag, Ba, Bi, Cr, Cu, Eu, La, Mo, Ni, Pb, S, Sc, V and depletion in As Sb Co, Sn, Zn while mineralized metaandesites show enrichment in Au, Ag, As, Mo, S, Sb and depletion in Co, Sn, Zn, Bi, Cr, Cu, Eu, Ni, Pb, Sc. Ba, La, V are immobile in metaandesites. Finally, Ag, As, Sn appear as geochemical vectors for gold exploration in the study area since gold mineralization is characterized by Au + Ba + Cu + Eu + La + Mo + Ni + S association in metarhyolites and Au + S + Sb + As + Ag + Bi in metaandesites.展开更多
Anthropogenic activities have contributed to pollution of water bodies through deposition of diverse pollutants amongst which are heavy metals. These pollutants, which at times are above the maximum concentration leve...Anthropogenic activities have contributed to pollution of water bodies through deposition of diverse pollutants amongst which are heavy metals. These pollutants, which at times are above the maximum concentration levels recommended, are detrimental to the quality of the water, soil and crops (plant) with subsequent human health risks. The objective of the work was to evaluate the impacts of human-based activities on the heavy metal properties of surface water with focus on the Kumba River basin. Field observations, interviews, field measurements and laboratory analyses of different water samples enabled us to collect the different data. The results show four main human-based activities within the river basin (agriculture, livestock production, domestic waste disposal and carwash activities) that pollute surface water. Approximately 20.61 tons of nitrogen and phosphorus from agricultural activities, 156.48 tons of animal wastes, 2517.5 tons of domestic wastes and 1.52 tons of detergent from carwash activities were deposited into the river each year. A highly significant difference at 1% was observed between the upstream and downstream heavy metal loads in four of the five heavy metals tested except for copper that was not significant. Lead concentrations were highest in all the activities with an average of 2.4 mg∙L<sup>−</sup><sup>1</sup> representing 57.81%, followed by zinc with 1.596 mg∙L<sup>−</sup><sup>1</sup> (38.45%) and manganese with 0.155 mg∙L<sup>−</sup><sup>1</sup> (3.74%) for the different anthropogenic activities thus indicating that these activities highly lead to pollution of the Kumba River water. The level of zinc and manganese was significantly influenced at ρ 005 by anthropogenic activities though generally the variations were in the order: carwash (3.196 mg∙L<sup>−</sup><sup>1</sup>) < domestic waste disposal (3.347 mg∙L<sup>−</sup><sup>1</sup>) < agriculture (4.172 mg∙L<sup>−</sup><sup>1</sup>) < livestock (4.886 mg∙L<sup>−</sup><sup>1</sup>) respectively and leading to a total of 14.04 tons of heavy metal pollutants deposited each day.展开更多
The development of inexpensive and efficient electrocatalysts is key to commercializing energy-related electrocatalytic techniques such as water electrolyzers and metal-air batteries.In particular,novel oxygen evoluti...The development of inexpensive and efficient electrocatalysts is key to commercializing energy-related electrocatalytic techniques such as water electrolyzers and metal-air batteries.In particular,novel oxygen evolution reaction(OER)pre-catalysts,such as transition metal chalcogenides(TMCs)and phosphides(TMPs),have evolved in recent years from traditional stable OER electrocatalysts,which show superior OER electrocatalytic performance compared with transition metal oxides(TMOs)or(oxy)hydroxides(TMOHs).In this feature article,we summarize recent advances in the development of TMCand TMP-based OER electrocatalysts,as well as approaches to improve the OER performance in terms of morphology,structure,composition,surface engineering,lattice-strained and in-situ transformation in the electrolysis process.In particular,the electrochemical stability of TMCs and TMPs in alkaline electrolytes and the evolution of morphology,structure and composition under OER conditions are discussed.In the last section,we discuss the challenges that need to be addressed in this specific area of research and the implications for further research.展开更多
Metal atoms atomically dispersed on an inorganic metal‐based support compose a unique category of single atom catalysts(SACs)and have important applications in catalytic photoreduction reactions,including H_(2) evolu...Metal atoms atomically dispersed on an inorganic metal‐based support compose a unique category of single atom catalysts(SACs)and have important applications in catalytic photoreduction reactions,including H_(2) evolution reaction,CO_(2) reduction reaction,and N_(2) reduction reaction.In this minreview,we summarized the typical metal‐support interaction(M‐SI)patterns for successful anchoring of single‐atom metals on metallic compound supports.Subsequently,the contribution of the dispersed single metal atoms and M‐SI to photocatalytic reactions with improved activity,selectivity,and stability are highlighted,such as by accelerating charge transfer,regulating band structure of the support,acting as the reductive sites,and/or increasing catalytic selectivity.Finally,some challenges and perspectives of future development are proposed.We anticipate that this minireview will be a beneficial supplement for a comprehensive perception of metal‐based material supported SACs and their application in heterogeneous photo‐reductive catalysis.展开更多
Transient liquid phase (TLP) bonded aluminium based metal matrix composite (MMC) joints can be classified into three distinct regions, i.e. the particulate segregation region, the denuded particulate region and the ...Transient liquid phase (TLP) bonded aluminium based metal matrix composite (MMC) joints can be classified into three distinct regions, i.e. the particulate segregation region, the denuded particulate region and the base material region. The microstructure of the particulate segregation region consists of alumina particulate and Al alloy matrix with the Al 2Cu and MgAl 2O 4. It contains more and smaller alumina particulates compared with the base material region. The TLP bonded joints have the tensile strength of 150 MPa ~200 MPa and the shear strength of 70 MPa ~100 MPa . With increasing tensile stress, cracks initiate in the particulate segregation region, especially in the particulate/particulate interface and the particulate/matrix interface, and propagate along particulate/matrix interface, througth thin matrix metal and by linking up the close cracks. The particulate segregation region is the weakest during tensile testing and shear testing due to obviously increased proportion of weak bonds (particulate particulate bond and particulate matrix bond).展开更多
Seven kinds of Schiff base metal complexes(C1-C7)were synthesized by the reaction of substituted salicylaldehyde Schiff base with cobalt nitrate,nickel nitrate,and copper nitrate,respectively.The oxygen carrying perfo...Seven kinds of Schiff base metal complexes(C1-C7)were synthesized by the reaction of substituted salicylaldehyde Schiff base with cobalt nitrate,nickel nitrate,and copper nitrate,respectively.The oxygen carrying performance,and the catalytic property of complexes for the oxidation of model sulfides 1-hexanethiol,dibutyl sulfide,and 2-methylthiophene along with their influencing factors were explored,while the oxidized products of the model sulfides were also analyzed and characterized.The results show that the catalytic oxidation property of the complexes is determined by their oxygen carrying performance and solubility in n-octane.The oxygen carrying performance of the complexes is mainly affected by the central ion species,the electronic effects,and the spatial effects of the substituents as well as the degree of conjugation.More specifically,the oxygen carrying performance can be improved by enhancing the oxygenation capacity of the central metal ions,increasing the electron donating ability of the ligand substituent,and diminishing the steric hindrance as well as extending the conjugated chain.Complexes C7 were found to be with high oxygen carrying capacity and high solubility in n-octane,which shows the best catalytic oxidation property,and the oxidation conversion rates for 1-hexylthiol,dibutyl sulfide,and 2-methylthiophene are 74.2%,65.1%,and 22.7%,respectively.Upon using the oxidation catalyst of Schiff base metal complexes,three sulfides can be oxidized by oxygen to form sulfones and sulfoxides.1-Hexanethiol and dibutyl sulfide will continue to be oxidized to form sulfates and sulfites.展开更多
The possibility of using a centrifugal-gravity concentrator to reject Mg-bearing minerals and minimize metal losses in the flotation of base metals was evaluated. Sample characterization, batch scoping tests, pilot-sc...The possibility of using a centrifugal-gravity concentrator to reject Mg-bearing minerals and minimize metal losses in the flotation of base metals was evaluated. Sample characterization, batch scoping tests, pilot-scale tests, and regrind-flotation tests were conducted on a Ni flotation tailings stream. Batch tests revealed that the Mg grade decreased dramatically in the concentrate products. Pilot-scale testing of a continuous centrifugal concentrator(Knelson CVD6) on the flotation tailings revealed that a concentrate with a low mass yield, low Mg content, and high Ni upgrade ratio could be achieved. Under optimum conditions, a concentrate at 6.7% mass yield was obtained with 0.85% Ni grade at 12.9% Ni recovery and with a low Mg distribution(1.7%). Size partition curves demonstrated that the CVD also operated as a size classifier, enhancing the rejection of talc fines. Overall, the CVD was capable of rejecting Mg-bearing minerals. Moreover, an opportunity exists for the novel use of centrifugal-gravity concentration for scavenging flotation tailings and/or after comminution to minimize amount of Mg-bearing minerals reporting to flotation.展开更多
Five new solid complexes were synthesized about transition metals with Schiff base( L, C18H23NO2 ) derived from adamantaneamine and o-vanillin, and characterized by elemental analysis, molar conductance, infrared sp...Five new solid complexes were synthesized about transition metals with Schiff base( L, C18H23NO2 ) derived from adamantaneamine and o-vanillin, and characterized by elemental analysis, molar conductance, infrared spectra, UV-vis spectra, thermal analysis. Their chemical formula are [ML2](ClO4)2 ( M= Mn, Co, Ni, Cu, Zn), and the coordination numbers are four, The antibacterial activity of Schiff base ligand and its complexes was studied.展开更多
A multi-component Cu-based metal powder was chosen for direct laser sintering. The powder consists of a mixture of high-purity Cu powder, pre-alloyed CuSn and CuP powder. Liquid phase sintering with complete melting o...A multi-component Cu-based metal powder was chosen for direct laser sintering. The powder consists of a mixture of high-purity Cu powder, pre-alloyed CuSn and CuP powder. Liquid phase sintering with complete melting of the binder (CuSn) but non-melting of the cores of structural metal (Cu) proves to be a feasible mechanism for laser sintering of this powder system. The microstructural evolution of the sintered powder with variation of laser processing parameters was presented. High sintering activities and sound densification response were obtained by optimizing the laser powers and scan speeds. Using a high laser power accompanied by a high scan speed gives rise to balling effect. At a high laser power with a slow scan speed the sintering mechanism may change into complete melting/solidification, which decreases the obtainable sintered density. The role of additive phosphorus in the laser sintering process is addressed. Phosphorus can act as a fluxing agent and has a preferential reaction with oxygen to form phosphatic slag, protecting the Cu particles from oxidation. The phosphatic slag shows a concentration along grain boundaries due to its light mass as well as the short thermal cycle of SLS.展开更多
Apple orchard surface soils in Japan are polluted with copper (Cu), lead (Pb), and arsenic (As) due to long-term use of metal-based pesticides. We investigated the effects of heavy metals accumulated in the surface so...Apple orchard surface soils in Japan are polluted with copper (Cu), lead (Pb), and arsenic (As) due to long-term use of metal-based pesticides. We investigated the effects of heavy metals accumulated in the surface soils in apple orchards on the microbial biomass and the microbial communities. Soil samples were taken from a chestnut orchard (unpolluted control) and five apple orchards with different degrees of heavy metal pollution. Total concentrations of Cu, Pb, and As in soil ranged from 29 to 931 mg/kg, 35 to 771 mg/kg, and 11 to 198 mg/kg, respectively. The amount of microbial biomass carbon expressed on a soil organic carbon basis decreased with increasing concentrations of heavy metals. Thus, the heavy metals that accumulated in apple orchard surface soils had adverse effects on the soil microbial biomass. The analysis of phospholipid fatty acid (PLFA) composition indicated that the microbial community structure had changed because of the pesticide-derived heavy metals in soil. The relative abundance of gram-positive bacterial marker PLFAs increased and that of fungal marker PLFA decreased with increasing concentrations of heavy metals in soil. Denaturing gradient gel electrophoreses targeting the 16S ribosomal RNA gene of bacteria and the 18S ribosomal RNA gene of fungi also showed shifts in the composition of bacterial and fungal communities induced by soil pollution with heavy metals. However, the diversity of microbial communities was not significantly affected by the heavy metal pollution. This was attributable to the adaptation of the microbial communities in apple orchard surface soils to heavy metals derived from previously used pesticides.展开更多
Lithium-sulfur batteries(Li–S batteries) are promising candidates for the next generation high-energy rechargeable Li batteries due to their high theoretical specific capacity(1672 m Ahg-1) and energy density(2500 Wh...Lithium-sulfur batteries(Li–S batteries) are promising candidates for the next generation high-energy rechargeable Li batteries due to their high theoretical specific capacity(1672 m Ahg-1) and energy density(2500 Wh kg-1). The commercialization of Li–S batteries is impeded by several key challenges at cathode side, e.g. the insulating nature of sulfur and discharged products(Li2S 2 and Li2S), the solubility of long-chain polysulfides and volume variation of sulfur cathode upon cycling. Recently, the carbonbased derivatives from metal-organic frameworks(MOFs) has emerged talent in their utilization as cathode hosts for Li–S batteries. They are not only highly conductive and porous to enable the acceleration of Li +/e-transfer and accommodation of volumetric expansion of sulfur cathode during cycling, but also enriched by controllable chemical active sites to enable the adsorption of polysulfides and promotion of their conversion reaction kinetics. In this review, based on the types of MOFs(e.g. ZIF-8, ZIF-67, Prussian blue, Al-MOF, MOF-5, Cu-MOF, Ni-MOF), the synthetic methods, formation process and morphology, structural superiority of MOFs-derived carbon frameworks along with their electrochemical performance as cathode host in Li–S batteries are summarized and discussed.展开更多
Flow based Erosion e corrosion problems are very common in fluid handling equipments such as propellers, impellers, pumps in warships, submarine. Though there are many coating materials available to combat erosionecor...Flow based Erosion e corrosion problems are very common in fluid handling equipments such as propellers, impellers, pumps in warships, submarine. Though there are many coating materials available to combat erosionecorrosion damage in the above components, iron based amorphous coatings are considered to be more effective to combat erosionecorrosion problems. High velocity oxy-fuel(HVOF)spray process is considered to be a better process to coat the iron based amorphous powders. In this investigation, iron based amorphous metallic coating was developed on 316 stainless steel substrate using HVOF spray technique. Empirical relationships were developed to predict the porosity and micro hardness of iron based amorphous coating incorporating HVOF spray parameters such as oxygen flow rate, fuel flow rate, powder feed rate, carrier gas flow rate, and spray distance. Response surface methodology(RSM) was used to identify the optimal HVOF spray parameters to attain coating with minimum porosity and maximum hardness.展开更多
Long-term thermal stability of a series of Zr-based metallic glasses with different oxygen contents below their glass transition temperatures was compared based on their deductive continuous-heating-transformation dia...Long-term thermal stability of a series of Zr-based metallic glasses with different oxygen contents below their glass transition temperatures was compared based on their deductive continuous-heating-transformation diagrams created by using the corollary of Kissinger analysis method. It is found that the influence of oxygen on the long-term thermal stability of Zr-based metallic glasses exhibits at lower temperature is different from that on their short-term thermal stability presented at higher temperature. For each kind of the Zr-based metallic glasses, there is a critical heating rate, φ , which corresponds to a critical c temperature, Tc. As heating rate is smaller than φ c and onset devitrification temperature is below Tc, the glass with higher oxygen content will have longer incubation period for onset devitrification. The values of φ c and Tc are related with the glasses’ reduced glass transition temperature Trg. The improving effect of oxygen impurity on the long-term thermal stability of Zr-based metallic glasses was discovered.展开更多
The mechanism of interaction relation between the rare-earth element Ce and elements Pb and Bi in Ag-based filler metal has been studied. The results show that the compounds CePb and CeBi with high melting point can b...The mechanism of interaction relation between the rare-earth element Ce and elements Pb and Bi in Ag-based filler metal has been studied. The results show that the compounds CePb and CeBi with high melting point can be easily produced between these three elements in the filler metal, which greatly limited the formation of the isolated phase Pb or Bi and also eliminated the bad effect of impurity elements Pb and Bi on the spreading property of Ag-based filler metal. The metallurgical and quantum-mechanical bond formation analysis show that a strong chemical affinity was existed between the rare-earth element Ce and impurity elements Pb and Bi, which was proved by the XRD analysis results.展开更多
We have prepared supramolecular systems of chiral Schiff base Ni(II), Cu(II), Zn(II) complexes and colloidal gold nanoparticles (AuNP) of 10 nm diameters. They demonstrated that direct adsorption of chiral Schiff base...We have prepared supramolecular systems of chiral Schiff base Ni(II), Cu(II), Zn(II) complexes and colloidal gold nanoparticles (AuNP) of 10 nm diameters. They demonstrated that direct adsorption of chiral Schiff base metal complex on the surface of AuNP owing to observation of clear induced CD spectra for the first time. We observed and discussed induced CD bands on AuNP from chiral Schiff base Ni(II), Cu(II), Zn(II) complexes.展开更多
Glutamic acid-salicylaldehyde Schiff-base metal complexes are bound into bovine serum albumin (BSA), which afforded BSA binding Schiff-base metal complexes (BSA-SalGluM, M=Cu, Co, Ni, Zn). The BSA binding metal co...Glutamic acid-salicylaldehyde Schiff-base metal complexes are bound into bovine serum albumin (BSA), which afforded BSA binding Schiff-base metal complexes (BSA-SalGluM, M=Cu, Co, Ni, Zn). The BSA binding metal complexes were characterized by UV-vis spectra and Native PAGE. It showed that the protein structures of BSA kept after coordinating amino acid Schiff-bases metal complexes. The effect of the antioxidant activity was investigated. The results indicate that the antioxidant capacity of BSA increased more than 10 times after binding Schiff-base metal complexes.展开更多
CO2 emission levels of copper and zinc mines from which Japanese smelters import ore concentrates into Japan,were estimated by using a database called MLED. Eleven copper mines selected from data availability of mine ...CO2 emission levels of copper and zinc mines from which Japanese smelters import ore concentrates into Japan,were estimated by using a database called MLED. Eleven copper mines selected from data availability of mine site covered 84% of the total imported concentrates. Adding inventories of sea transportation and smelting processes to mine development process,total CO2 emission level for copper and zinc ingots produced in Japan were calculated. The results show that the emission share of mining and mineral processing processes for each mine is indicated around 30%-70% of total emission for ingots,which implies the importance of including the mining activities to the inventory of upper stream products.展开更多
Mg-based bulk metallic glass fabricated by conventional copper mould method was aged at different temperatures. X-ray diffractometry(XRD), scanning electron microscopy(SEM), atomic force microscopy(AFM) and focused io...Mg-based bulk metallic glass fabricated by conventional copper mould method was aged at different temperatures. X-ray diffractometry(XRD), scanning electron microscopy(SEM), atomic force microscopy(AFM) and focused ion beam(FIB) miller were employed to examine specimens obtained under different conditions. The crystallization of Mg-based bulk metallic glass depends upon both the aging temperature and the aging time. As temperature increases or the holding time increases, the microstructure of the aged specimen varies from glassy one to crystalline one plus glassy phase and then to absolutely multiphase crystalline one. From the FIB images, it is clear that Mg-based bulk metallic glass could not only crystallize completely but also display dendrite-like growth style. From the AFM images, there are not only significant variations of microstructures but also surface morphology of specimens obtained under different conditions. It is proposed that the surface morphology varies as the treating temperature increases. The Vickers hardness of different specimens increases as the fraction of crystalline phase (s) increases.展开更多
The lap joints of Fe-based metallic glass ribbons were carried by resistance spot welding, and the microstructures of spot welds were investigated by X-ray diffraction and transmission electron microscopy. The results...The lap joints of Fe-based metallic glass ribbons were carried by resistance spot welding, and the microstructures of spot welds were investigated by X-ray diffraction and transmission electron microscopy. The results indicated that the perfect formations of joints without typical defects such as spatter were achieved with optimized parameters. Except for little nano-particle Fe2B, no other crystalline particle was detected by TEM, revealing that the most microstructure in spot weld remains amorphous. The maximum tensile-shearing force was 45.0 N with the optimized parameters of 1 kA weld current, 30 N electrode force and 0.02 ms weld time. The spot weld failed as pullout failure mode propagating along the interface of nugget zone. The study demonstrates that resistance spot welding is an effective and practical welding process for Fe-based metallic glass.展开更多
A novel, simple approach to the synthesis of macrocyclic Schiff base ligand resulted from the condensation of bisaldehyde and ethylenediamine was prepared (7, 8, 15, 16, 17, 18-hexahydrodibenzo (a, g) (14) annulene) (...A novel, simple approach to the synthesis of macrocyclic Schiff base ligand resulted from the condensation of bisaldehyde and ethylenediamine was prepared (7, 8, 15, 16, 17, 18-hexahydrodibenzo (a, g) (14) annulene) (L) and its complexes were synthesized and characterized using different physicochemical studies as elemental analysis, FT-IR, 1H NMR, conductivity, magnetic properties, thermal analysis, and their biological activities. The spectroscopic data of the complexes suggest their 1:1 complexe structures which are investigated by elemental analysis, FT-IR, 1H NMR, conductivity, magnetic properties, thermal analysis, and their biological activities. The spectroscopic studies suggested the octahedral structure for the all complexes. The spectroscopic data of the complexes suggest their structure in which (N2O2) group act as a tetradentate ligand and two chlorides as monodentate ligands. Also electronic spectra and magnetic susceptibility measurements indicate octahedral structure of these complexes. The synthesized Schiff base and its metal complexes also were screened for their antibacterial and antifungal activity. Here we report the effect of a neutral chelating ligand on the complexation with iron to determine it in different types of natural water using recovery test. The activity data show that the metal complexes to be more potent/ antibacterial than the parent Schiff base ligand against one or more bacterial species.展开更多
文摘In the Mangodara area within the Banfora greenstone belts (Baoulé-Mossi domain of the West African Craton), our study focused on geochemical assessment of the mobility of major and trace elements. Gold and base metal occurrences are hosted in highly metamorphic felsic (metarhyolite) and intermediate (metadacite and metaandesite) formations. Common mineral assemblages made up of staurolite - kyanite - pyrophyllite are interpreted to represent the metamorphosed equivalent of aluminous hydrothermal alteration. Associated felsic and intermediate volcanic rocks are enriched in Fe<sub>2</sub>O<sub>3</sub>, K<sub>2</sub>O (metaandesite, metarhyolite) and depleted in MgO, Al<sub>2</sub>O<sub>3</sub>, CaO, P<sub>2</sub>O<sub>5</sub>, Na<sub>2</sub>O (metarhyolite) and Fe<sub>2</sub>O<sub>3</sub>, MgO, CaO (metaandesite). Al<sub>2</sub>O<sub>3</sub> depletion in mineralized kyanite-staurotide bearing metarhyolites suggests corroded minerals. Mineralized metarhyolites show enrichment in Au, Ag, Ba, Bi, Cr, Cu, Eu, La, Mo, Ni, Pb, S, Sc, V and depletion in As Sb Co, Sn, Zn while mineralized metaandesites show enrichment in Au, Ag, As, Mo, S, Sb and depletion in Co, Sn, Zn, Bi, Cr, Cu, Eu, Ni, Pb, Sc. Ba, La, V are immobile in metaandesites. Finally, Ag, As, Sn appear as geochemical vectors for gold exploration in the study area since gold mineralization is characterized by Au + Ba + Cu + Eu + La + Mo + Ni + S association in metarhyolites and Au + S + Sb + As + Ag + Bi in metaandesites.
文摘Anthropogenic activities have contributed to pollution of water bodies through deposition of diverse pollutants amongst which are heavy metals. These pollutants, which at times are above the maximum concentration levels recommended, are detrimental to the quality of the water, soil and crops (plant) with subsequent human health risks. The objective of the work was to evaluate the impacts of human-based activities on the heavy metal properties of surface water with focus on the Kumba River basin. Field observations, interviews, field measurements and laboratory analyses of different water samples enabled us to collect the different data. The results show four main human-based activities within the river basin (agriculture, livestock production, domestic waste disposal and carwash activities) that pollute surface water. Approximately 20.61 tons of nitrogen and phosphorus from agricultural activities, 156.48 tons of animal wastes, 2517.5 tons of domestic wastes and 1.52 tons of detergent from carwash activities were deposited into the river each year. A highly significant difference at 1% was observed between the upstream and downstream heavy metal loads in four of the five heavy metals tested except for copper that was not significant. Lead concentrations were highest in all the activities with an average of 2.4 mg∙L<sup>−</sup><sup>1</sup> representing 57.81%, followed by zinc with 1.596 mg∙L<sup>−</sup><sup>1</sup> (38.45%) and manganese with 0.155 mg∙L<sup>−</sup><sup>1</sup> (3.74%) for the different anthropogenic activities thus indicating that these activities highly lead to pollution of the Kumba River water. The level of zinc and manganese was significantly influenced at ρ 005 by anthropogenic activities though generally the variations were in the order: carwash (3.196 mg∙L<sup>−</sup><sup>1</sup>) < domestic waste disposal (3.347 mg∙L<sup>−</sup><sup>1</sup>) < agriculture (4.172 mg∙L<sup>−</sup><sup>1</sup>) < livestock (4.886 mg∙L<sup>−</sup><sup>1</sup>) respectively and leading to a total of 14.04 tons of heavy metal pollutants deposited each day.
基金supported by the National Natural Science Foundation of China (No.22179014)the China Postdoctoral Science Foundation (No.2022 M720593)+2 种基金the Scientific Research Foundation of Chongqing University of Technology (Nos.2022ZDZ011,2022PYZ026)the Youth Project of Science and Technology Research Program of Chongqing Municipal Education Commission (No.KJQN202201127)the Project of Natural Science Foundation of Chongqing (No.2022NSCQ-MSX1123)。
文摘The development of inexpensive and efficient electrocatalysts is key to commercializing energy-related electrocatalytic techniques such as water electrolyzers and metal-air batteries.In particular,novel oxygen evolution reaction(OER)pre-catalysts,such as transition metal chalcogenides(TMCs)and phosphides(TMPs),have evolved in recent years from traditional stable OER electrocatalysts,which show superior OER electrocatalytic performance compared with transition metal oxides(TMOs)or(oxy)hydroxides(TMOHs).In this feature article,we summarize recent advances in the development of TMCand TMP-based OER electrocatalysts,as well as approaches to improve the OER performance in terms of morphology,structure,composition,surface engineering,lattice-strained and in-situ transformation in the electrolysis process.In particular,the electrochemical stability of TMCs and TMPs in alkaline electrolytes and the evolution of morphology,structure and composition under OER conditions are discussed.In the last section,we discuss the challenges that need to be addressed in this specific area of research and the implications for further research.
文摘Metal atoms atomically dispersed on an inorganic metal‐based support compose a unique category of single atom catalysts(SACs)and have important applications in catalytic photoreduction reactions,including H_(2) evolution reaction,CO_(2) reduction reaction,and N_(2) reduction reaction.In this minreview,we summarized the typical metal‐support interaction(M‐SI)patterns for successful anchoring of single‐atom metals on metallic compound supports.Subsequently,the contribution of the dispersed single metal atoms and M‐SI to photocatalytic reactions with improved activity,selectivity,and stability are highlighted,such as by accelerating charge transfer,regulating band structure of the support,acting as the reductive sites,and/or increasing catalytic selectivity.Finally,some challenges and perspectives of future development are proposed.We anticipate that this minireview will be a beneficial supplement for a comprehensive perception of metal‐based material supported SACs and their application in heterogeneous photo‐reductive catalysis.
文摘Transient liquid phase (TLP) bonded aluminium based metal matrix composite (MMC) joints can be classified into three distinct regions, i.e. the particulate segregation region, the denuded particulate region and the base material region. The microstructure of the particulate segregation region consists of alumina particulate and Al alloy matrix with the Al 2Cu and MgAl 2O 4. It contains more and smaller alumina particulates compared with the base material region. The TLP bonded joints have the tensile strength of 150 MPa ~200 MPa and the shear strength of 70 MPa ~100 MPa . With increasing tensile stress, cracks initiate in the particulate segregation region, especially in the particulate/particulate interface and the particulate/matrix interface, and propagate along particulate/matrix interface, througth thin matrix metal and by linking up the close cracks. The particulate segregation region is the weakest during tensile testing and shear testing due to obviously increased proportion of weak bonds (particulate particulate bond and particulate matrix bond).
基金This work was supported by the National Natural Science Foundation of China(No.21576292).
文摘Seven kinds of Schiff base metal complexes(C1-C7)were synthesized by the reaction of substituted salicylaldehyde Schiff base with cobalt nitrate,nickel nitrate,and copper nitrate,respectively.The oxygen carrying performance,and the catalytic property of complexes for the oxidation of model sulfides 1-hexanethiol,dibutyl sulfide,and 2-methylthiophene along with their influencing factors were explored,while the oxidized products of the model sulfides were also analyzed and characterized.The results show that the catalytic oxidation property of the complexes is determined by their oxygen carrying performance and solubility in n-octane.The oxygen carrying performance of the complexes is mainly affected by the central ion species,the electronic effects,and the spatial effects of the substituents as well as the degree of conjugation.More specifically,the oxygen carrying performance can be improved by enhancing the oxygenation capacity of the central metal ions,increasing the electron donating ability of the ligand substituent,and diminishing the steric hindrance as well as extending the conjugated chain.Complexes C7 were found to be with high oxygen carrying capacity and high solubility in n-octane,which shows the best catalytic oxidation property,and the oxidation conversion rates for 1-hexylthiol,dibutyl sulfide,and 2-methylthiophene are 74.2%,65.1%,and 22.7%,respectively.Upon using the oxidation catalyst of Schiff base metal complexes,three sulfides can be oxidized by oxygen to form sulfones and sulfoxides.1-Hexanethiol and dibutyl sulfide will continue to be oxidized to form sulfates and sulfites.
文摘The possibility of using a centrifugal-gravity concentrator to reject Mg-bearing minerals and minimize metal losses in the flotation of base metals was evaluated. Sample characterization, batch scoping tests, pilot-scale tests, and regrind-flotation tests were conducted on a Ni flotation tailings stream. Batch tests revealed that the Mg grade decreased dramatically in the concentrate products. Pilot-scale testing of a continuous centrifugal concentrator(Knelson CVD6) on the flotation tailings revealed that a concentrate with a low mass yield, low Mg content, and high Ni upgrade ratio could be achieved. Under optimum conditions, a concentrate at 6.7% mass yield was obtained with 0.85% Ni grade at 12.9% Ni recovery and with a low Mg distribution(1.7%). Size partition curves demonstrated that the CVD also operated as a size classifier, enhancing the rejection of talc fines. Overall, the CVD was capable of rejecting Mg-bearing minerals. Moreover, an opportunity exists for the novel use of centrifugal-gravity concentration for scavenging flotation tailings and/or after comminution to minimize amount of Mg-bearing minerals reporting to flotation.
文摘Five new solid complexes were synthesized about transition metals with Schiff base( L, C18H23NO2 ) derived from adamantaneamine and o-vanillin, and characterized by elemental analysis, molar conductance, infrared spectra, UV-vis spectra, thermal analysis. Their chemical formula are [ML2](ClO4)2 ( M= Mn, Co, Ni, Cu, Zn), and the coordination numbers are four, The antibacterial activity of Schiff base ligand and its complexes was studied.
文摘A multi-component Cu-based metal powder was chosen for direct laser sintering. The powder consists of a mixture of high-purity Cu powder, pre-alloyed CuSn and CuP powder. Liquid phase sintering with complete melting of the binder (CuSn) but non-melting of the cores of structural metal (Cu) proves to be a feasible mechanism for laser sintering of this powder system. The microstructural evolution of the sintered powder with variation of laser processing parameters was presented. High sintering activities and sound densification response were obtained by optimizing the laser powers and scan speeds. Using a high laser power accompanied by a high scan speed gives rise to balling effect. At a high laser power with a slow scan speed the sintering mechanism may change into complete melting/solidification, which decreases the obtainable sintered density. The role of additive phosphorus in the laser sintering process is addressed. Phosphorus can act as a fluxing agent and has a preferential reaction with oxygen to form phosphatic slag, protecting the Cu particles from oxidation. The phosphatic slag shows a concentration along grain boundaries due to its light mass as well as the short thermal cycle of SLS.
文摘Apple orchard surface soils in Japan are polluted with copper (Cu), lead (Pb), and arsenic (As) due to long-term use of metal-based pesticides. We investigated the effects of heavy metals accumulated in the surface soils in apple orchards on the microbial biomass and the microbial communities. Soil samples were taken from a chestnut orchard (unpolluted control) and five apple orchards with different degrees of heavy metal pollution. Total concentrations of Cu, Pb, and As in soil ranged from 29 to 931 mg/kg, 35 to 771 mg/kg, and 11 to 198 mg/kg, respectively. The amount of microbial biomass carbon expressed on a soil organic carbon basis decreased with increasing concentrations of heavy metals. Thus, the heavy metals that accumulated in apple orchard surface soils had adverse effects on the soil microbial biomass. The analysis of phospholipid fatty acid (PLFA) composition indicated that the microbial community structure had changed because of the pesticide-derived heavy metals in soil. The relative abundance of gram-positive bacterial marker PLFAs increased and that of fungal marker PLFA decreased with increasing concentrations of heavy metals in soil. Denaturing gradient gel electrophoreses targeting the 16S ribosomal RNA gene of bacteria and the 18S ribosomal RNA gene of fungi also showed shifts in the composition of bacterial and fungal communities induced by soil pollution with heavy metals. However, the diversity of microbial communities was not significantly affected by the heavy metal pollution. This was attributable to the adaptation of the microbial communities in apple orchard surface soils to heavy metals derived from previously used pesticides.
基金supported by National Key R&D Program of China(2016YFB0901600)the National Natural Science Foundation of China(51772313 , U1830113 and 51802334)
文摘Lithium-sulfur batteries(Li–S batteries) are promising candidates for the next generation high-energy rechargeable Li batteries due to their high theoretical specific capacity(1672 m Ahg-1) and energy density(2500 Wh kg-1). The commercialization of Li–S batteries is impeded by several key challenges at cathode side, e.g. the insulating nature of sulfur and discharged products(Li2S 2 and Li2S), the solubility of long-chain polysulfides and volume variation of sulfur cathode upon cycling. Recently, the carbonbased derivatives from metal-organic frameworks(MOFs) has emerged talent in their utilization as cathode hosts for Li–S batteries. They are not only highly conductive and porous to enable the acceleration of Li +/e-transfer and accommodation of volumetric expansion of sulfur cathode during cycling, but also enriched by controllable chemical active sites to enable the adsorption of polysulfides and promotion of their conversion reaction kinetics. In this review, based on the types of MOFs(e.g. ZIF-8, ZIF-67, Prussian blue, Al-MOF, MOF-5, Cu-MOF, Ni-MOF), the synthetic methods, formation process and morphology, structural superiority of MOFs-derived carbon frameworks along with their electrochemical performance as cathode host in Li–S batteries are summarized and discussed.
文摘Flow based Erosion e corrosion problems are very common in fluid handling equipments such as propellers, impellers, pumps in warships, submarine. Though there are many coating materials available to combat erosionecorrosion damage in the above components, iron based amorphous coatings are considered to be more effective to combat erosionecorrosion problems. High velocity oxy-fuel(HVOF)spray process is considered to be a better process to coat the iron based amorphous powders. In this investigation, iron based amorphous metallic coating was developed on 316 stainless steel substrate using HVOF spray technique. Empirical relationships were developed to predict the porosity and micro hardness of iron based amorphous coating incorporating HVOF spray parameters such as oxygen flow rate, fuel flow rate, powder feed rate, carrier gas flow rate, and spray distance. Response surface methodology(RSM) was used to identify the optimal HVOF spray parameters to attain coating with minimum porosity and maximum hardness.
基金Project(50671076) supported by the National Natural Science Foundation of China
文摘Long-term thermal stability of a series of Zr-based metallic glasses with different oxygen contents below their glass transition temperatures was compared based on their deductive continuous-heating-transformation diagrams created by using the corollary of Kissinger analysis method. It is found that the influence of oxygen on the long-term thermal stability of Zr-based metallic glasses exhibits at lower temperature is different from that on their short-term thermal stability presented at higher temperature. For each kind of the Zr-based metallic glasses, there is a critical heating rate, φ , which corresponds to a critical c temperature, Tc. As heating rate is smaller than φ c and onset devitrification temperature is below Tc, the glass with higher oxygen content will have longer incubation period for onset devitrification. The values of φ c and Tc are related with the glasses’ reduced glass transition temperature Trg. The improving effect of oxygen impurity on the long-term thermal stability of Zr-based metallic glasses was discovered.
文摘The mechanism of interaction relation between the rare-earth element Ce and elements Pb and Bi in Ag-based filler metal has been studied. The results show that the compounds CePb and CeBi with high melting point can be easily produced between these three elements in the filler metal, which greatly limited the formation of the isolated phase Pb or Bi and also eliminated the bad effect of impurity elements Pb and Bi on the spreading property of Ag-based filler metal. The metallurgical and quantum-mechanical bond formation analysis show that a strong chemical affinity was existed between the rare-earth element Ce and impurity elements Pb and Bi, which was proved by the XRD analysis results.
文摘We have prepared supramolecular systems of chiral Schiff base Ni(II), Cu(II), Zn(II) complexes and colloidal gold nanoparticles (AuNP) of 10 nm diameters. They demonstrated that direct adsorption of chiral Schiff base metal complex on the surface of AuNP owing to observation of clear induced CD spectra for the first time. We observed and discussed induced CD bands on AuNP from chiral Schiff base Ni(II), Cu(II), Zn(II) complexes.
文摘Glutamic acid-salicylaldehyde Schiff-base metal complexes are bound into bovine serum albumin (BSA), which afforded BSA binding Schiff-base metal complexes (BSA-SalGluM, M=Cu, Co, Ni, Zn). The BSA binding metal complexes were characterized by UV-vis spectra and Native PAGE. It showed that the protein structures of BSA kept after coordinating amino acid Schiff-bases metal complexes. The effect of the antioxidant activity was investigated. The results indicate that the antioxidant capacity of BSA increased more than 10 times after binding Schiff-base metal complexes.
文摘CO2 emission levels of copper and zinc mines from which Japanese smelters import ore concentrates into Japan,were estimated by using a database called MLED. Eleven copper mines selected from data availability of mine site covered 84% of the total imported concentrates. Adding inventories of sea transportation and smelting processes to mine development process,total CO2 emission level for copper and zinc ingots produced in Japan were calculated. The results show that the emission share of mining and mineral processing processes for each mine is indicated around 30%-70% of total emission for ingots,which implies the importance of including the mining activities to the inventory of upper stream products.
基金Project(2005) supported by the Science Foundation of the Education Administration for Returning Oversea Scholars Project (2004JDG018) supported by the Natural Science Foundation of Jiangsu University, China
文摘Mg-based bulk metallic glass fabricated by conventional copper mould method was aged at different temperatures. X-ray diffractometry(XRD), scanning electron microscopy(SEM), atomic force microscopy(AFM) and focused ion beam(FIB) miller were employed to examine specimens obtained under different conditions. The crystallization of Mg-based bulk metallic glass depends upon both the aging temperature and the aging time. As temperature increases or the holding time increases, the microstructure of the aged specimen varies from glassy one to crystalline one plus glassy phase and then to absolutely multiphase crystalline one. From the FIB images, it is clear that Mg-based bulk metallic glass could not only crystallize completely but also display dendrite-like growth style. From the AFM images, there are not only significant variations of microstructures but also surface morphology of specimens obtained under different conditions. It is proposed that the surface morphology varies as the treating temperature increases. The Vickers hardness of different specimens increases as the fraction of crystalline phase (s) increases.
基金the National Natural Science Foundation of China(No.51461031)the State Key Lab of Advanced Metals and Materials(No.2013-Z05)+2 种基金the Department of Education Fund of jiangxi(GJJ150733)the Beijing Natural Science Foundation(No.214200)the Program for Excellent Talents in Beijing Municipality
文摘The lap joints of Fe-based metallic glass ribbons were carried by resistance spot welding, and the microstructures of spot welds were investigated by X-ray diffraction and transmission electron microscopy. The results indicated that the perfect formations of joints without typical defects such as spatter were achieved with optimized parameters. Except for little nano-particle Fe2B, no other crystalline particle was detected by TEM, revealing that the most microstructure in spot weld remains amorphous. The maximum tensile-shearing force was 45.0 N with the optimized parameters of 1 kA weld current, 30 N electrode force and 0.02 ms weld time. The spot weld failed as pullout failure mode propagating along the interface of nugget zone. The study demonstrates that resistance spot welding is an effective and practical welding process for Fe-based metallic glass.
文摘A novel, simple approach to the synthesis of macrocyclic Schiff base ligand resulted from the condensation of bisaldehyde and ethylenediamine was prepared (7, 8, 15, 16, 17, 18-hexahydrodibenzo (a, g) (14) annulene) (L) and its complexes were synthesized and characterized using different physicochemical studies as elemental analysis, FT-IR, 1H NMR, conductivity, magnetic properties, thermal analysis, and their biological activities. The spectroscopic data of the complexes suggest their 1:1 complexe structures which are investigated by elemental analysis, FT-IR, 1H NMR, conductivity, magnetic properties, thermal analysis, and their biological activities. The spectroscopic studies suggested the octahedral structure for the all complexes. The spectroscopic data of the complexes suggest their structure in which (N2O2) group act as a tetradentate ligand and two chlorides as monodentate ligands. Also electronic spectra and magnetic susceptibility measurements indicate octahedral structure of these complexes. The synthesized Schiff base and its metal complexes also were screened for their antibacterial and antifungal activity. Here we report the effect of a neutral chelating ligand on the complexation with iron to determine it in different types of natural water using recovery test. The activity data show that the metal complexes to be more potent/ antibacterial than the parent Schiff base ligand against one or more bacterial species.