A large-scale evaporate series is developed in Paleogene-Neogene strata in the Kuqa basin. The series is composed mainly of evaporate with thin beds of clastic rock (mainly mudstone and siltstone). In grayish white ...A large-scale evaporate series is developed in Paleogene-Neogene strata in the Kuqa basin. The series is composed mainly of evaporate with thin beds of clastic rock (mainly mudstone and siltstone). In grayish white medium- and coarse-grained sandstone in Miocene strata, the formation of copper minerals is in close connection with brine. In joint planes, which are developed in vertical strata, are filled with gypsum. Gypsum and copper-mineralized sandstone contains enormous copper minerals, mainly atacamite. According to the SEM analysis for salt rock, gypsum rock, limestone, grayish green siltstone, grayish white medium-coarse-grained sandstone, some minerals are composed of metallic elements including Au, Ag, Cu, Zn, Pb, Co, Ni and U etc., in which Au occurs in a native form, Cu occurs in a native form or as atacamite in salt rock, gypsum rock and limestone, Ag occurs as silver sulfide in gypsum, and Zn, Pb, Co, Ni, U occur as compounds along with the above metallic ions in evaporate or clastic rock. From SEM images, we can see that metallic elements or their compounds (oxides or sulfides) "take root" as grains in salt or gypsum crystals, which belong to primary chemical sedimentation along with evaporate, while some grains "float" on surface of salt or gypsum. In the former case, mineral grains were formed together with salt (gypsum) crystals; while in the latter case, minerals were enriched from internal metallic ions (Paleogene evaporate samples) or external metallic ions (Neogene gypsum samples) in the late stage of evaporate formation. The metallic ions in Paleogene evaporate samples might originate from weathered or denudated materials in the south Tianshan Mountains. The metallic ions in the Neogene evaporate samples might be from metal- bearing brine, which migrated upward to surface along fractures and leached into evaporate (gypsum). Occurrence of metallic minerals and their compounds (elementary substance) in Paleogene evaporate proves that diversified metallic minerals exist in evaporate. The source of metallic ions in the Neogene evaporate series shows that evaporate could provide materials for late-stage metallic mineralization.展开更多
The long-term seepage of hydrocarbons, either as macroseepage or microseepage, can set up near-surface oxidation reduction zones that favor the development of a diverse array of chemical and mineralogical changes. The...The long-term seepage of hydrocarbons, either as macroseepage or microseepage, can set up near-surface oxidation reduction zones that favor the development of a diverse array of chemical and mineralogical changes. The bacterial oxidation of light hydrocarbons can directly or indirectly bring about significant changes in the values of pH and Eh of the surrounding environment, thereby also changing the stability fields of the different mineral species present in that environment. The paper reports the role of hydrocarbon microseepage in surface alterations of trace metal concentrations. In this study trace metal alterations were mapped that appear to be associated with hydrocarbon microseepages in the oil/ gas fields. A total of 50 soil samples were collected near oil and gas fields of the Tatipaka and Pasarlapudi areas of the Krishna Godavari Basin, Andhra Pradesh. The soil samples were collected from a depth of 2-2.5 m. The paper reports the chemical alterations associated with trace metals in soils that are related to hydrocarbon microseepages above some of the major oil and gas fields of this petroliferous region. Trace metals, such as scandium (Sc), vanadium (V), chromium (Cr), cobalt (Co), nickel (Ni), copper (Cu), zinc (Zn), barium (Ba) and strontium (Sr), in soil samples were analyzed using inductively coupled plasma- mass spectrometry (ICP-MS). The concentrations of Sc (8 to 40 mg/kg), V (197 to 489 mg/kg), Cr (106 to 287 mg/kg), Co (31 to 52 mg/kg), Ni (65 to 110 mg/kg), Cu (88 to 131 mg/kg), Zn (88 to 471 mg/kg), Ba (263 to 3,091 mg/kg) and Sr (119 to 218 mg/kg) were obtained. It was observed that the concentrations of trace elements were tremendously increased when they were compared with their normal concentrations in soils. The analysis of adsorbed soil gas showed the presence of high concentrations of YC2+ (C2H6, C3H8 and n-C4H10) ranging from 7 to 222 μg/kg respectively. Integrated studies of trace elements over adsorbed light gaseous hydrocarbons (2C2+) anomalies showed good correlation with the existing oil and gas wells. The carbon isotopic composition of δ13C1 of the samples ranges between -36.6%o to -22.7‰ (Pee Dee Belemnite) values indicate thermogenic origin, which presents convincing evidence that the adsorbed soil gases collected from these sediments are of catagenetic origin. The increase in the concentrations of trace metals near oil/gas producing areas, suggests a soil chemical change to a reducing environment, presumably due to the influence of hydrocarbon microseepage, which could be applied with other geoscientific data to identify areas of future hydrocarbon exploration in frontier areas.展开更多
The Puyango River Basin covers approximately an area of 4400 km2, it is located in Southern of Ecuador, with Calera and Amarillo rivers as tributaries. In this region, one of the main activities is small scale gold an...The Puyango River Basin covers approximately an area of 4400 km2, it is located in Southern of Ecuador, with Calera and Amarillo rivers as tributaries. In this region, one of the main activities is small scale gold and silver mining. Currently there are 110 processing plants on the bank of Calera and Amarillo rivers, causing a significant degradation of natural resources. A seasonal comparison of metal concentrations in surface water, sediments and particulate matter from the Puyango River and its effluents is made. It was done a differentiation between natural contaminations with the anthropogenic one generated by mining activity. Samples were taken during dry season (2004) and rainy season (2006), and analyzed physicochemical parameters, anions and cations and the concentrations of heavy metals. The results show a clear influence of gold mining in Puyango River contamination, starting with its tributaries, Calera and Amarillo rivers, which have the highest concentrations of heavy metals from the basin, corresponding with the location of the mineral processing plants.展开更多
Anthropogenic activities have contributed to pollution of water bodies through deposition of diverse pollutants amongst which are heavy metals. These pollutants, which at times are above the maximum concentration leve...Anthropogenic activities have contributed to pollution of water bodies through deposition of diverse pollutants amongst which are heavy metals. These pollutants, which at times are above the maximum concentration levels recommended, are detrimental to the quality of the water, soil and crops (plant) with subsequent human health risks. The objective of the work was to evaluate the impacts of human-based activities on the heavy metal properties of surface water with focus on the Kumba River basin. Field observations, interviews, field measurements and laboratory analyses of different water samples enabled us to collect the different data. The results show four main human-based activities within the river basin (agriculture, livestock production, domestic waste disposal and carwash activities) that pollute surface water. Approximately 20.61 tons of nitrogen and phosphorus from agricultural activities, 156.48 tons of animal wastes, 2517.5 tons of domestic wastes and 1.52 tons of detergent from carwash activities were deposited into the river each year. A highly significant difference at 1% was observed between the upstream and downstream heavy metal loads in four of the five heavy metals tested except for copper that was not significant. Lead concentrations were highest in all the activities with an average of 2.4 mg∙L<sup>−</sup><sup>1</sup> representing 57.81%, followed by zinc with 1.596 mg∙L<sup>−</sup><sup>1</sup> (38.45%) and manganese with 0.155 mg∙L<sup>−</sup><sup>1</sup> (3.74%) for the different anthropogenic activities thus indicating that these activities highly lead to pollution of the Kumba River water. The level of zinc and manganese was significantly influenced at ρ 005 by anthropogenic activities though generally the variations were in the order: carwash (3.196 mg∙L<sup>−</sup><sup>1</sup>) < domestic waste disposal (3.347 mg∙L<sup>−</sup><sup>1</sup>) < agriculture (4.172 mg∙L<sup>−</sup><sup>1</sup>) < livestock (4.886 mg∙L<sup>−</sup><sup>1</sup>) respectively and leading to a total of 14.04 tons of heavy metal pollutants deposited each day.展开更多
Za’atari camp is the largest refugee camp in Jordan. It was first established in 2012 to host Syrian refugees. Currently the camp hosts more than 81,000 refugees, with no proper sanitary system which might pose a maj...Za’atari camp is the largest refugee camp in Jordan. It was first established in 2012 to host Syrian refugees. Currently the camp hosts more than 81,000 refugees, with no proper sanitary system which might pose a major threat to surface resources in the area. An investigation was done at Za’atari refugees’ camp to find the impact of refugees settling on surface and groundwater quality. Surface water quality of surface runoff generated from thirty rain fall events were collected during the winter season of 2013/2014 from the major Wadi that passes through the camp and small ponds within the camp after the rainfall event. The collected samples were analyzed for acidity (pH), the electrical connectivity (EC), total dissolved solids (TDS), nutrients (NO3<sup style='margin-left:-7px;'>- and PO4<sup style='margin-left:-7px;'>3-) and selected heavy metals (Mn, Cd, Zn, Pb and Ni) in addition to biological oxygen demand (BOD5), chemical oxygen demand (COD) and intestinal worms (Total Coliform, E. cali). The results showed that there are significant variations in the EC as well as with TDS between the sites due to fluctuating amounts of water used for different activities within the camp as it was highest in the center of the camp where most of the refugees settle decreasing away from the center. The pH values were within the specifications of the World Health Organization and the Jordanian Standards. For nutrients, nitrate concentration was low with high phosphate ions which are most probably from detergents origin.展开更多
The study aimed to assess the heavy metals(K, Ca, Ti, Cr, Mn, Fe, Ni, Cu, Zn, As, Pb, Sr, Zr) contamination in the soil of mine affected Singaran river basin and to analyse spatial variation in the contamination level...The study aimed to assess the heavy metals(K, Ca, Ti, Cr, Mn, Fe, Ni, Cu, Zn, As, Pb, Sr, Zr) contamination in the soil of mine affected Singaran river basin and to analyse spatial variation in the contamination level considering 32 soil samples. Elemental analysis of soil samples has been performed through Energy Dispersive X-ray Analysis(EDX) to quantify the elemental concentration(mg kgà1). Heavy metal concentrations have been assessed through geo-accumulation index(Igeo) and enrichment factor(EF).Indices showed soils have moderate accumulation of most of the metals with moderate enrichment of Sr,Zr, Zn, Cu and Ni. Soil contamination level assessment has been carried out using indices like Contamination Factor(CF), degree of contamination(C_(deg)), modified degree of contamination(m C_(deg)) and Pollution Load Index(PLI). CF shows moderate to considerable contamination by Sr, Zr, Ca, Cu, Mn, Zn and Ni. Mean indices values(m C_(deg)and PLI for the entire basin are 3.38 and 2.23 respectively) show low to moderate level of soil contamination. These indices result have been mapped and analysed in GIS platform to get spatial variation of pollution level. Opencast mines dominate middle catchment area and so is comparatively contaminated. Sample sites 11, 18 and 25 evidenced high values of all indices of pollution load. From the ecological standpoint Ecological Risk Factor(Er) and Potential Ecological Risk Index(RI) have been estimated to assess regional threat to native soil environment and it shows low ecological risk potential. Analysis shows that mine dominated soil of the entire Singaran basin is less contaminated in all respect but tends to the moderate contamination level at the mid-catchment area,especially by Sr, Zr, Zn, Cu and Ni.展开更多
The Mungo River and its tributaries represent the major sources of water supply for agriculture and drinking purposes for the Douala city and the south western agricultural region of Cameroon. In this study, the surfa...The Mungo River and its tributaries represent the major sources of water supply for agriculture and drinking purposes for the Douala city and the south western agricultural region of Cameroon. In this study, the surface water hydrochemistry was investigated at 12 locations to determine the hydrochemical and heavy metals characteristics and to assess the suitability for drinking and irrigational purposes. Results of water samples collected along the main channel and tributaries showed that the major ions were dominated by Ca<sup>2+</sup> > Na<sup>+</sup> > Mg<sup>2+</sup> > K<sup>+</sup> > NH<sub>4</sub><sup>+ </sup>and > HCO<sub>3</sub><sup>-</sup> > SO<sub>4</sub><sup>2</sup><span style="font-size:10px;white-space:normal;"><sup><span style="font-size:10px;white-space:normal;">-</span></sup> </span>> Cl<sup><span style="font-size:10px;white-space:normal;">-</span></sup> > F<sup><span style="font-size:10px;white-space:normal;">-</span></sup> > PO<sub>4</sub><sup>3-</sup> , with concentrations varying between 0 to 60 mg/l. Heavy metal concentrations were relatively weak, dominated by Fe > Mn > As > Cd > Zn > Se. The main hydrochemical facies types revealed primarily 52% Ca-Na-HCO<sub>3</sub> and 48% Ca-Mg-HCO<sub>3</sub>. Base on Gibbs diagram and relative ion ratios, the hydrochemical characteristics are derived from weathering of silicate rocks and atmospheric source. The influence of anthropogenic factors including agro-industrial activities on the hydrochemical characteristics was less marked. The chemical composition of the water samples was compared with the drinking water standards and only the concentration of Fe was above the WHO guide limits in a single sample at Passi. The evaluation of the water quality for irrigation showed that 95% of water samples are suitable for irrigation in almost all soil types. According to the water quality index (HPI, HEI and Cd), this water is considered of excellent quality for consumption. The results provide a preliminary database for sustainable management of water resource in the Mungo River basin.展开更多
基金supported by the Basic Research Project for the Central Public Welfare Scientific Institutions(K0807)granted by the Institutc of Mineral Resources,Chinese Academy of Geological Sciencesthe Scientific and Technical Supporting Project during the National Eleventh Five-Yea Plan Period (2006BAB07B06)
文摘A large-scale evaporate series is developed in Paleogene-Neogene strata in the Kuqa basin. The series is composed mainly of evaporate with thin beds of clastic rock (mainly mudstone and siltstone). In grayish white medium- and coarse-grained sandstone in Miocene strata, the formation of copper minerals is in close connection with brine. In joint planes, which are developed in vertical strata, are filled with gypsum. Gypsum and copper-mineralized sandstone contains enormous copper minerals, mainly atacamite. According to the SEM analysis for salt rock, gypsum rock, limestone, grayish green siltstone, grayish white medium-coarse-grained sandstone, some minerals are composed of metallic elements including Au, Ag, Cu, Zn, Pb, Co, Ni and U etc., in which Au occurs in a native form, Cu occurs in a native form or as atacamite in salt rock, gypsum rock and limestone, Ag occurs as silver sulfide in gypsum, and Zn, Pb, Co, Ni, U occur as compounds along with the above metallic ions in evaporate or clastic rock. From SEM images, we can see that metallic elements or their compounds (oxides or sulfides) "take root" as grains in salt or gypsum crystals, which belong to primary chemical sedimentation along with evaporate, while some grains "float" on surface of salt or gypsum. In the former case, mineral grains were formed together with salt (gypsum) crystals; while in the latter case, minerals were enriched from internal metallic ions (Paleogene evaporate samples) or external metallic ions (Neogene gypsum samples) in the late stage of evaporate formation. The metallic ions in Paleogene evaporate samples might originate from weathered or denudated materials in the south Tianshan Mountains. The metallic ions in the Neogene evaporate samples might be from metal- bearing brine, which migrated upward to surface along fractures and leached into evaporate (gypsum). Occurrence of metallic minerals and their compounds (elementary substance) in Paleogene evaporate proves that diversified metallic minerals exist in evaporate. The source of metallic ions in the Neogene evaporate series shows that evaporate could provide materials for late-stage metallic mineralization.
文摘The long-term seepage of hydrocarbons, either as macroseepage or microseepage, can set up near-surface oxidation reduction zones that favor the development of a diverse array of chemical and mineralogical changes. The bacterial oxidation of light hydrocarbons can directly or indirectly bring about significant changes in the values of pH and Eh of the surrounding environment, thereby also changing the stability fields of the different mineral species present in that environment. The paper reports the role of hydrocarbon microseepage in surface alterations of trace metal concentrations. In this study trace metal alterations were mapped that appear to be associated with hydrocarbon microseepages in the oil/ gas fields. A total of 50 soil samples were collected near oil and gas fields of the Tatipaka and Pasarlapudi areas of the Krishna Godavari Basin, Andhra Pradesh. The soil samples were collected from a depth of 2-2.5 m. The paper reports the chemical alterations associated with trace metals in soils that are related to hydrocarbon microseepages above some of the major oil and gas fields of this petroliferous region. Trace metals, such as scandium (Sc), vanadium (V), chromium (Cr), cobalt (Co), nickel (Ni), copper (Cu), zinc (Zn), barium (Ba) and strontium (Sr), in soil samples were analyzed using inductively coupled plasma- mass spectrometry (ICP-MS). The concentrations of Sc (8 to 40 mg/kg), V (197 to 489 mg/kg), Cr (106 to 287 mg/kg), Co (31 to 52 mg/kg), Ni (65 to 110 mg/kg), Cu (88 to 131 mg/kg), Zn (88 to 471 mg/kg), Ba (263 to 3,091 mg/kg) and Sr (119 to 218 mg/kg) were obtained. It was observed that the concentrations of trace elements were tremendously increased when they were compared with their normal concentrations in soils. The analysis of adsorbed soil gas showed the presence of high concentrations of YC2+ (C2H6, C3H8 and n-C4H10) ranging from 7 to 222 μg/kg respectively. Integrated studies of trace elements over adsorbed light gaseous hydrocarbons (2C2+) anomalies showed good correlation with the existing oil and gas wells. The carbon isotopic composition of δ13C1 of the samples ranges between -36.6%o to -22.7‰ (Pee Dee Belemnite) values indicate thermogenic origin, which presents convincing evidence that the adsorbed soil gases collected from these sediments are of catagenetic origin. The increase in the concentrations of trace metals near oil/gas producing areas, suggests a soil chemical change to a reducing environment, presumably due to the influence of hydrocarbon microseepage, which could be applied with other geoscientific data to identify areas of future hydrocarbon exploration in frontier areas.
文摘The Puyango River Basin covers approximately an area of 4400 km2, it is located in Southern of Ecuador, with Calera and Amarillo rivers as tributaries. In this region, one of the main activities is small scale gold and silver mining. Currently there are 110 processing plants on the bank of Calera and Amarillo rivers, causing a significant degradation of natural resources. A seasonal comparison of metal concentrations in surface water, sediments and particulate matter from the Puyango River and its effluents is made. It was done a differentiation between natural contaminations with the anthropogenic one generated by mining activity. Samples were taken during dry season (2004) and rainy season (2006), and analyzed physicochemical parameters, anions and cations and the concentrations of heavy metals. The results show a clear influence of gold mining in Puyango River contamination, starting with its tributaries, Calera and Amarillo rivers, which have the highest concentrations of heavy metals from the basin, corresponding with the location of the mineral processing plants.
文摘Anthropogenic activities have contributed to pollution of water bodies through deposition of diverse pollutants amongst which are heavy metals. These pollutants, which at times are above the maximum concentration levels recommended, are detrimental to the quality of the water, soil and crops (plant) with subsequent human health risks. The objective of the work was to evaluate the impacts of human-based activities on the heavy metal properties of surface water with focus on the Kumba River basin. Field observations, interviews, field measurements and laboratory analyses of different water samples enabled us to collect the different data. The results show four main human-based activities within the river basin (agriculture, livestock production, domestic waste disposal and carwash activities) that pollute surface water. Approximately 20.61 tons of nitrogen and phosphorus from agricultural activities, 156.48 tons of animal wastes, 2517.5 tons of domestic wastes and 1.52 tons of detergent from carwash activities were deposited into the river each year. A highly significant difference at 1% was observed between the upstream and downstream heavy metal loads in four of the five heavy metals tested except for copper that was not significant. Lead concentrations were highest in all the activities with an average of 2.4 mg∙L<sup>−</sup><sup>1</sup> representing 57.81%, followed by zinc with 1.596 mg∙L<sup>−</sup><sup>1</sup> (38.45%) and manganese with 0.155 mg∙L<sup>−</sup><sup>1</sup> (3.74%) for the different anthropogenic activities thus indicating that these activities highly lead to pollution of the Kumba River water. The level of zinc and manganese was significantly influenced at ρ 005 by anthropogenic activities though generally the variations were in the order: carwash (3.196 mg∙L<sup>−</sup><sup>1</sup>) < domestic waste disposal (3.347 mg∙L<sup>−</sup><sup>1</sup>) < agriculture (4.172 mg∙L<sup>−</sup><sup>1</sup>) < livestock (4.886 mg∙L<sup>−</sup><sup>1</sup>) respectively and leading to a total of 14.04 tons of heavy metal pollutants deposited each day.
文摘Za’atari camp is the largest refugee camp in Jordan. It was first established in 2012 to host Syrian refugees. Currently the camp hosts more than 81,000 refugees, with no proper sanitary system which might pose a major threat to surface resources in the area. An investigation was done at Za’atari refugees’ camp to find the impact of refugees settling on surface and groundwater quality. Surface water quality of surface runoff generated from thirty rain fall events were collected during the winter season of 2013/2014 from the major Wadi that passes through the camp and small ponds within the camp after the rainfall event. The collected samples were analyzed for acidity (pH), the electrical connectivity (EC), total dissolved solids (TDS), nutrients (NO3<sup style='margin-left:-7px;'>- and PO4<sup style='margin-left:-7px;'>3-) and selected heavy metals (Mn, Cd, Zn, Pb and Ni) in addition to biological oxygen demand (BOD5), chemical oxygen demand (COD) and intestinal worms (Total Coliform, E. cali). The results showed that there are significant variations in the EC as well as with TDS between the sites due to fluctuating amounts of water used for different activities within the camp as it was highest in the center of the camp where most of the refugees settle decreasing away from the center. The pH values were within the specifications of the World Health Organization and the Jordanian Standards. For nutrients, nitrate concentration was low with high phosphate ions which are most probably from detergents origin.
基金the Council of Scientific and Industrial Research (CSIR), India for financial assistance (Research Fellowship)
文摘The study aimed to assess the heavy metals(K, Ca, Ti, Cr, Mn, Fe, Ni, Cu, Zn, As, Pb, Sr, Zr) contamination in the soil of mine affected Singaran river basin and to analyse spatial variation in the contamination level considering 32 soil samples. Elemental analysis of soil samples has been performed through Energy Dispersive X-ray Analysis(EDX) to quantify the elemental concentration(mg kgà1). Heavy metal concentrations have been assessed through geo-accumulation index(Igeo) and enrichment factor(EF).Indices showed soils have moderate accumulation of most of the metals with moderate enrichment of Sr,Zr, Zn, Cu and Ni. Soil contamination level assessment has been carried out using indices like Contamination Factor(CF), degree of contamination(C_(deg)), modified degree of contamination(m C_(deg)) and Pollution Load Index(PLI). CF shows moderate to considerable contamination by Sr, Zr, Ca, Cu, Mn, Zn and Ni. Mean indices values(m C_(deg)and PLI for the entire basin are 3.38 and 2.23 respectively) show low to moderate level of soil contamination. These indices result have been mapped and analysed in GIS platform to get spatial variation of pollution level. Opencast mines dominate middle catchment area and so is comparatively contaminated. Sample sites 11, 18 and 25 evidenced high values of all indices of pollution load. From the ecological standpoint Ecological Risk Factor(Er) and Potential Ecological Risk Index(RI) have been estimated to assess regional threat to native soil environment and it shows low ecological risk potential. Analysis shows that mine dominated soil of the entire Singaran basin is less contaminated in all respect but tends to the moderate contamination level at the mid-catchment area,especially by Sr, Zr, Zn, Cu and Ni.
文摘The Mungo River and its tributaries represent the major sources of water supply for agriculture and drinking purposes for the Douala city and the south western agricultural region of Cameroon. In this study, the surface water hydrochemistry was investigated at 12 locations to determine the hydrochemical and heavy metals characteristics and to assess the suitability for drinking and irrigational purposes. Results of water samples collected along the main channel and tributaries showed that the major ions were dominated by Ca<sup>2+</sup> > Na<sup>+</sup> > Mg<sup>2+</sup> > K<sup>+</sup> > NH<sub>4</sub><sup>+ </sup>and > HCO<sub>3</sub><sup>-</sup> > SO<sub>4</sub><sup>2</sup><span style="font-size:10px;white-space:normal;"><sup><span style="font-size:10px;white-space:normal;">-</span></sup> </span>> Cl<sup><span style="font-size:10px;white-space:normal;">-</span></sup> > F<sup><span style="font-size:10px;white-space:normal;">-</span></sup> > PO<sub>4</sub><sup>3-</sup> , with concentrations varying between 0 to 60 mg/l. Heavy metal concentrations were relatively weak, dominated by Fe > Mn > As > Cd > Zn > Se. The main hydrochemical facies types revealed primarily 52% Ca-Na-HCO<sub>3</sub> and 48% Ca-Mg-HCO<sub>3</sub>. Base on Gibbs diagram and relative ion ratios, the hydrochemical characteristics are derived from weathering of silicate rocks and atmospheric source. The influence of anthropogenic factors including agro-industrial activities on the hydrochemical characteristics was less marked. The chemical composition of the water samples was compared with the drinking water standards and only the concentration of Fe was above the WHO guide limits in a single sample at Passi. The evaluation of the water quality for irrigation showed that 95% of water samples are suitable for irrigation in almost all soil types. According to the water quality index (HPI, HEI and Cd), this water is considered of excellent quality for consumption. The results provide a preliminary database for sustainable management of water resource in the Mungo River basin.