Short circuit transfer involves bridging between the consumable electrode and the weld pool, associated with variations of electrical parameters which characterize the change of molten metal bridge state and are very ...Short circuit transfer involves bridging between the consumable electrode and the weld pool, associated with variations of electrical parameters which characterize the change of molten metal bridge state and are very important for the control of .spatter. In this paper, electrical process parameters and short circuit transfer images were simultaneously recorded with a LabView-based synchronous sensing and visualizing system. The arc^bridge resistance and derivatives of welding current, arc voltage and arc resistance at various instants were calculated by means of offline analysis of the welding current, arc voltage and droplet images. Parameters and their feature values indicating the onset of short circuit and the oncoming necking-down of molten metal bridge were determined. Using the calculated feature values, bridge-state-feedback control for .short circuit transfer was realized with a spatter rate less than 0. 25%.展开更多
基金This work is supported by Shandong Natural Science Foundation ( Key Project) under contract No. ZR2010EZ005.
文摘Short circuit transfer involves bridging between the consumable electrode and the weld pool, associated with variations of electrical parameters which characterize the change of molten metal bridge state and are very important for the control of .spatter. In this paper, electrical process parameters and short circuit transfer images were simultaneously recorded with a LabView-based synchronous sensing and visualizing system. The arc^bridge resistance and derivatives of welding current, arc voltage and arc resistance at various instants were calculated by means of offline analysis of the welding current, arc voltage and droplet images. Parameters and their feature values indicating the onset of short circuit and the oncoming necking-down of molten metal bridge were determined. Using the calculated feature values, bridge-state-feedback control for .short circuit transfer was realized with a spatter rate less than 0. 25%.