期刊文献+
共找到120篇文章
< 1 2 6 >
每页显示 20 50 100
Advancements in transition bimetal catalysts for electrochemical 5-hydroxymethylfurfural(HMF) oxidation
1
作者 Yuwei Li Huiting Huang +4 位作者 Mingkun Jiang Wanlong Xi Junyuan Duan Marina Ratova Dan Wu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第11期24-46,共23页
The electrochemical oxidation of 5-hydroxymethylfurfural(HMF) represents a significant avenue for sustainable chemical synthesis, owing to its potential to generate high-value derivatives from biomass feedstocks. Tran... The electrochemical oxidation of 5-hydroxymethylfurfural(HMF) represents a significant avenue for sustainable chemical synthesis, owing to its potential to generate high-value derivatives from biomass feedstocks. Transition metal catalysts offer a cost-effective alternative to precious metals for catalyzing HMF oxidation, with transition bimetallic catalysts emerging as particularly promising candidates. In this review, we delve into the intricate reaction pathways and electrochemical mechanisms underlying HMF oxidation, emphasizing the pivotal role of transition bimetallic catalysts in enhancing catalytic efficiency. Subsequently, various types of transition bimetallic catalysts are explored, detailing their synthesis methods and structural modulation strategies. By elucidating the mechanisms behind catalyst modification and performance enhancement, this review sets the stage for upcoming advancements in the field, ultimately advancing the electrochemical HMF conversion and facilitating the transition towards sustainable chemical production. 展开更多
关键词 HMF oxidation Transition metal catalysts Bimetallic catalysts Biomass valorization Electrocatalyst synthesis
下载PDF
Endeavors on the development of efficient and sustainable supported metal catalysts for chemical synthesis on solid-liquid interfaces
2
作者 Chao Yang Lifeng Cui 《Green Energy & Environment》 SCIE EI CSCD 2023年第1期1-3,共3页
Supported metal catalysts,particularly for precious metals,have gained increasing attention in green synthetic chemistry.They can make metal-catalyzed organic synthesis more sustainable and economical due to easy sepa... Supported metal catalysts,particularly for precious metals,have gained increasing attention in green synthetic chemistry.They can make metal-catalyzed organic synthesis more sustainable and economical due to easy separation of product with less metal residue,as well as reusability of the high-cost catalysts.Although great effort has been spent,the precise catalytic mechanism of supported metal-catalyzed reactions has not been clearly elucidated and the development of efficient and stable recyclable catalysts remains challenging.This highlight reveals a“molecular fence”metal stabilization strategy and discloses the metal evolution in Pd-catalyzed C-C bond formation reactions using Nheterocyclic carbene(NHC)-functionalized hypercrosslinked polymer support,wherein the polymeric skeleton isolates or confines the metal species involved in the catalytic reactions,and NHC captures free low-valent metal species in solution and stabilizes them on the support via strong metal-support coordination interaction.This strategy creates a novel route for the development of supported metal catalysts with high stability and provides insights into the reaction mechanism of heterogeneous catalysis. 展开更多
关键词 Supported metal catalysts Hypercrosslinked polymers Molecular fence effect C-C bond Formations
下载PDF
Towards the selectivity distinction of phenol hydrogenation on noble metal catalysts
3
作者 Shanjun Mao Zhe Wang +7 位作者 Zhirong Chen Kejun Wu Kaichao Zhang Qichuan Li Huihuan Yan Guofeng Lü Guodong Huang Yong Wang 《Nano Materials Science》 EI CAS CSCD 2023年第1期91-100,共10页
Selective hydrogenation of phenol to cyclohexanone is intriguing in chemical industry.Though a few catalysts with promising performances have been developed in recent years,the basic principle for catalyst design is s... Selective hydrogenation of phenol to cyclohexanone is intriguing in chemical industry.Though a few catalysts with promising performances have been developed in recent years,the basic principle for catalyst design is still missing owing to the unclear catalytic mechanism.This work tries to unravel the mechanism of phenol hydro-genation and the reasons causing the selectivity discrepancy on noble metal catalysts under mild conditions.Results show that different reaction pathways always firstly converge to the formation of cyclohexanone under mild conditions.The selectivity discrepancy mainly depends on the activity for cyclohexanone sequential hy-drogenation,in which two factors are found to be responsible,i.e.the hydrogenation energy barrier and the competitive chemisorption between phenol and cyclohexanone,if the specific co-catalyzing effect of H 2 O on Ru is not considered.Based on the above results,a quantitative descriptor,E b(one/pl)/E a,in which E a can be further correlated to the d band center of the noble metal catalyst,is proposed by the first time to roughly evaluate and predict the selectivity to cyclohexanone for catalyst screening. 展开更多
关键词 PHENOL Selective hydrogenation CYCLOHEXANONE DFT Noble metal catalysts
下载PDF
Catalytic removal of volatile organic compounds using ordered porous transition metal oxide and supported noble metal catalysts 被引量:27
4
作者 刘雨溪 邓积光 +2 位作者 谢少华 王治伟 戴洪兴 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2016年第8期1193-1205,共13页
Most of volatile organic compounds (VOCs) are harmful to the atmosphere and human health. Cata‐lytic combustion is an effective way to eliminate VOCs. The key issue is the availability of high per‐formance catalys... Most of volatile organic compounds (VOCs) are harmful to the atmosphere and human health. Cata‐lytic combustion is an effective way to eliminate VOCs. The key issue is the availability of high per‐formance catalysts. Many catalysts including transition metal oxides, mixed metal oxides, and sup‐ported noble metals have been developed. Among these catalysts, the porous ones attract much attention. In this review, we focus on recent advances in the synthesis of ordered mesoporous and macroporous transition metal oxides, perovskites, and supported noble metal catalysts and their catalytic oxidation of VOCs. The porous catalysts outperformed their bulk counterparts. This excel‐lent catalytic performance was due to their high surface areas, high concentration of adsorbed oxy‐gen species, low temperature reducibility, strong interaction between noble metal and support and highly dispersed noble metal nanoparticles and unique porous structures. Catalytic oxidation of carbon monoxide over typical catalysts was also discussed. We made conclusive remarks and pro‐posed future work for the removal of VOCs. 展开更多
关键词 Volatile organic compound Catalytic combustion Porous transition metal oxide Perovskite-type oxide Supported noble metal catalyst
下载PDF
Efficient and Quick Inactivation of SARS Coronavirus and Other Microbes Exposed to the Surfaces of Some Metal Catalysts 被引量:5
5
作者 JUNHAN LANCHEN +6 位作者 SHU-MINDUAN QING-XIANGYANG MINYANG CHENGAO BAO-YUNZHANG HONGHE XIAO-PINGDONG 《Biomedical and Environmental Sciences》 SCIE CAS CSCD 2005年第3期176-180,共5页
Objective To study the two metal catalysts Ag/Al2O3 and Cu/Al2O3 that interdict the transmission pathway for SARS and other respiratory infectious diseases. Methods Two metal catalysts Ag/Al2O3 and Cu/Al2O3 were press... Objective To study the two metal catalysts Ag/Al2O3 and Cu/Al2O3 that interdict the transmission pathway for SARS and other respiratory infectious diseases. Methods Two metal catalysts Ag/Al2O3 and Cu/Al2O3 were pressed into wafers. One hundred μL 106 TCID50/mL SARS-CoV, 100 μL 106 PFU/mL recombinant baculovirus expressing hamster’s prion protein (haPrP) protein and roughly 106 E. coli were slowly dropped onto the surfaces of the catalyst wafers and exposed for 5 and 20 min, respectively. After eluted from the surfaces of wafers, the infectivity of viruses and propagation of bacteria were measured. The expression of PrP protein was determined by Western blot. The morphological changes of bacteria were observed by electronic microscopy. Results After exposure to the catalysts surfaces for 5 and 20 min, the infectivity of SARS-CoV in Vero cells and baculovirus in Sf9 cells dropped down to a very low and undetectable level, and no colony was detected using bacteria culture method. The expression of haPrP protein reduced to 21.8% in the preparation of Sf9 cells infected with recombinant baculovirus exposed for 5 min and was undetectable exposed for 20 min. Bacterial membranes seemed to be cracked and the cytoplasm seemed to be effluent from cell bodies. Conclusion Exposures to the surfaces of Ag/Al2O3 and Cu/Al2O3 destroy the replication and propagation abilities of SARS-CoV, baculovirus and E. coli. Inactivation ability of metal catalysts needs to interact with air, utilizing oxygen molecules in air. Efficiently killing viruses and bacteria on the surfaces of the two metal catalysts has a promising potential for air-disinfection in hospitals, communities, and households. 展开更多
关键词 metal catalysts INACTIVATION SARS-COV BACULOVIRUS E. coli Infectivity
下载PDF
Low-temperature conversion of methane to oxygenates by supported metal catalysts: From nanoparticles to single atoms 被引量:2
6
作者 Geqian Fang Jian Lin Xiaodong Wang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2021年第10期18-29,共12页
Direct cost-effective conversion of abundant methane to high value-added oxygenates(methanol,formic acid,acetic acid,etc.)under mild conditions is prospective for optimizing the structure of energy resources.However,t... Direct cost-effective conversion of abundant methane to high value-added oxygenates(methanol,formic acid,acetic acid,etc.)under mild conditions is prospective for optimizing the structure of energy resources.However,the CAH bond of products is more reactive than that of high thermodynamic stable methane.Exploring an appropriate approach to eliminate the‘‘seesaw effect"between methane conversion and oxygenate selectivity is significant.In this review,we briefly summarize the research progress in the past decade on low-temperature direct conversion of methane to oxygenates in gas-solid-liquid phase over various transition metal(Fe,Cu,Rh,Pd,Au Pd,etc.)based nanoparticle or single-atom catalyst.Furthermore,the prospects of catalyst design and catalysis process are also discussed. 展开更多
关键词 METHANE OXYGENATES Supported metal catalysts NANOPARTICLE Single-atom catalysts
下载PDF
SULFUR-RESISTANT BIMETALLIC NOBLE METAL CATALYSTS FOR AROMATIC HYDROGENATION OF DIESEL FUEL 被引量:1
7
作者 XIA Guo-fu HU Lin-jie +2 位作者 NIE Hong SHI Ya-hua LI Da-dong 《石油学报(石油加工)》 EI CAS CSCD 北大核心 2001年第1期25-29,共5页
Y zeolite supporting noble metal catalysts, as the important industrial catalysts for aromatics hydrogenation, have received increasing attention in recent years. Pd M/Y bimetallic catalysts, where M is non noble meta... Y zeolite supporting noble metal catalysts, as the important industrial catalysts for aromatics hydrogenation, have received increasing attention in recent years. Pd M/Y bimetallic catalysts, where M is non noble metal element, were prepared to investigate the effects of the addition of a second metal. Pd M/Y catalysts were evaluated under the following conditions: H 2 pressure 4.2 MPa, MHSV 4.0 h -1 , sulfur content in feed 3000 μg/g. The microreactor results indicated that the second metal remarkably affects the hydrogenation activity of Pd/Y catalysts. Among them, Cr and W improve the sulfur resistance of Pd/Y, but La, Mn, Mo and Ag make the sulfur resistance worse and the second metals have no evident influence on product selectivity and acidic properties of the catalysts. 展开更多
关键词 aromatic hydrogenation sulfur resistance noble metal catalysts
下载PDF
Preparation of Spherical MgCl_2/SiO_2/THF-Supported Late-Transition Metal Catalysts for Ethylene Polymerization
8
作者 Bai Wei Gao Xianglu +2 位作者 Wu Haotian Cao Chengang Jiang Tao 《China Petroleum Processing & Petrochemical Technology》 SCIE CAS 2014年第3期77-83,共7页
A facile and user friendly technique to immobilize the late-transition metal complexes on spherical MgCl2/SiO2/THF support has been developed. The spherical MgCl2/SiO2/THF-supported late-transition metal catalysts 2,6... A facile and user friendly technique to immobilize the late-transition metal complexes on spherical MgCl2/SiO2/THF support has been developed. The spherical MgCl2/SiO2/THF-supported late-transition metal catalysts 2,6-bis-[1-(2,6-dimethylphenylimino)ethyl]pyridine iron(II) dichloride(SC-A) and 1,4-bis(2,6-dimethylphenyl)- acenaphthene diimine nickel(II) dibromide(SC-B) for ethylene polymerization has been prepared by spray-drying technique using tetrahydrofuran suspension containing MgCl2, SiO2 and late-transition metal complexes. The catalysts were characterized by BET, XRD, SEM and the polymers were analyzed using GPC, DSC and 13C-NMR. The test results show that spray-drying is a very effective method for immobilizing late-transition metal catalysts for ethylene polymerization. Among six kinds of cocatalysts for olefin polymerization, TMA and TEA were confirmed to be more effective than other compounds for the ethylene polymerization system using the catalyst SC-A. For the case of the catalyst SC-B, DEAC showed the best performance as cocatalysts in ethylene polymerization. The replication of the catalyst morphology was found in the resultant polyethylene. 展开更多
关键词 MgCl2/SiO2/THF support late-transition metal catalyst polymerization of ethylene SPRAY-DRYING
下载PDF
Research on K-V-rare Earth Metal Catalysts for Diesel Soot Oxidation
9
作者 王永涛 隋丽娜 +1 位作者 kang hongquan yu liyan 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2018年第2期331-337,共7页
Five types of KNO_3-NH_4VO_3-rare earth metal nitrate(K-V-rare earth metal) catalysts supported on a-porous alumina ceramic substrates were prepared by a coating method. All the catalysts were characterized by X-ray... Five types of KNO_3-NH_4VO_3-rare earth metal nitrate(K-V-rare earth metal) catalysts supported on a-porous alumina ceramic substrates were prepared by a coating method. All the catalysts were characterized by X-ray diffraction and thermogravimetry/differential scanning calorimetry. Catalytic activities were evaluated by a soot oxidation reaction using a temperature-programmed reaction system. The experimental results show that the addition of rare earth metal compound could obviously improve the catalytic activities of the K-V-based catalysts. The proper ratio of K-V-rare earth metal catalysts can not only lower the soot onset ignition temperature, but also quicken the soot oxidation rate. The crystalline phases formed by K, V, and rare earth metal are stable. 展开更多
关键词 K-V-rare earth metal catalyst diesel soot catalytic activity
下载PDF
The effect of the carbon components on the performance of carbonbased transition metal electrocatalysts for the hydrogen evolution reaction
10
作者 LI Guo-hua WANG Jing +6 位作者 REN Jin-tian LIU Hong-chen QIAN Jin-xiu CHENG Jia-ting ZHAO Mei-tong YANG Fan LI Yong-feng 《新型炭材料(中英文)》 SCIE EI CAS CSCD 北大核心 2024年第5期946-972,共27页
The hydrogen evolution reaction(HER)is a promising way to produce hydrogen,and the use of non-precious metals with an excellent electrochemical performance is vital for this.Carbon-based transition metal catalysts hav... The hydrogen evolution reaction(HER)is a promising way to produce hydrogen,and the use of non-precious metals with an excellent electrochemical performance is vital for this.Carbon-based transition metal catalysts have high activity and stability,which are important in reducing the cost of hydrogen production and promoting the development of the hydrogen production industry.However,there is a lack of discussion regarding the effect of carbon components on the performance of these electrocatalysts.This review of the literature discusses the choice of the carbon components in these catalysts and their impact on catalytic performance,including electronic structure control by heteroatom doping,morphology adjustment,and the influence of self-supporting materials.It not only analyzes the progress in HER,but also provides guidance for synthesizing high-performance carbon-based transition metal catalysts. 展开更多
关键词 Carbon-based transition metal catalysts Heteroatom doping Morphology adjustment Self-supporting materials Hydrogen evolution reaction
下载PDF
Advances of graphdiyne-supported metal catalysts in thermocatalytic reactions
11
作者 Jia Yu Yida Yang +2 位作者 Yuliang Li Changyan Cao Weiguo Song 《Nano Research》 SCIE EI CSCD 2024年第4期2223-2233,共11页
Supported metal catalysts are widely used in the modern chemical industry.The electronic interaction between supports and active components is of great significance for heterogeneous catalysis.Graphdiyne(GDY),a new ty... Supported metal catalysts are widely used in the modern chemical industry.The electronic interaction between supports and active components is of great significance for heterogeneous catalysis.Graphdiyne(GDY),a new type of carbon allotrope with sp-hybridized carbon atoms,πconjugate structure,and electron transmission capability,is a promising candidate as catalyst support.Recent years have witnessed the rapid progress of GDY-supported metal catalysts for different catalysis reactions.Considering that most processes in the current chemical industry are thermocatalytic reactions,we herein give an overview about the advances and particular characteristics of GDY-supported catalysts in these reactions.The geometric structure and electronic properties of GDY are first introduced.Then,the synthesis methods for GDY-supported metal catalysts and their applications in thermocatalytic reactions are discussed,in which the effect of electronic interaction on catalytic performance is highlighted.Finally,the current challenges and future directions of GDY-supported metal catalysts for thermocatalysis are proposed.It is expected that this review will enrich our understanding of the advances of GDY as a superior support for metal catalysts in thermocatalytic reactions. 展开更多
关键词 graphdiyne metal catalysts thermocatalytic reactions heterogeneous catalysis
原文传递
Recent process in developing advanced heterogeneous diatomic-site metal catalysts for electrochemical CO_(2)reduction
12
作者 Xueyang Zhao Bangwei Deng +3 位作者 Hongtao Xie Yizhao Li Qingqing Ye Fan Dong 《Chinese Chemical Letters》 SCIE CAS CSCD 2024年第7期4-13,共10页
Diatomic-site catalysts(DASCs)have emerged as a kind of promising heterogeneous candidate catalysts for electrochemical CO_(2)reduction(ECR),which is considered to retain the advantage of single-atom catalysts(SACs)bu... Diatomic-site catalysts(DASCs)have emerged as a kind of promising heterogeneous candidate catalysts for electrochemical CO_(2)reduction(ECR),which is considered to retain the advantage of single-atom catalysts(SACs)but also introduce opportunities to exceed the limit of single-atom catalysts.In the past few years,tremendous progress has been achieved in this field.Herein,the recent progress in ECR on DASCs has been summarized.It will start with the classification of DASCs.Then the challenges in the precise fabrication and characterization of DASCs have been emphasized.By introducing the advanced ECR performance on DASCs,superior to that on SACs,the synergistic effects of the dual metal atoms are highlighted,as this origin of the advanced ECR performance on DASCs is comprehensively summarized.Finally,the major challenges and perspectives of DASCs have been proposed to shed light on the development of DASCs for ECR application. 展开更多
关键词 Diatomic-site metal catalyst Electrochemical CO_(2)reduction Classification CO_(2)activation Synergistic effects
原文传递
A Review on Engineering Transition Metal Compound Catalysts to Accelerate the Redox Kinetics of Sulfur Cathodes for Lithium–Sulfur Batteries
13
作者 Liping Chen Guiqiang Cao +8 位作者 Yong Li Guannan Zu Ruixian Duan Yang Bai Kaiyu Xue Yonghong Fu Yunhua Xu Juan Wang Xifei Li 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第5期300-332,共33页
Engineering transition metal compounds(TMCs)catalysts with excellent adsorption-catalytic ability has been one of the most effec-tive strategies to accelerate the redox kinetics of sulfur cathodes.Herein,this review f... Engineering transition metal compounds(TMCs)catalysts with excellent adsorption-catalytic ability has been one of the most effec-tive strategies to accelerate the redox kinetics of sulfur cathodes.Herein,this review focuses on engineering TMCs catalysts by cation doping/anion doping/dual doping,bimetallic/bi-anionic TMCs,and TMCs-based heterostructure composites.It is obvious that introducing cations/anions to TMCs or constructing heterostructure can boost adsorption-catalytic capacity by regulating the electronic structure including energy band,d/p-band center,electron filling,and valence state.Moreover,the elec-tronic structure of doped/dual-ionic TMCs are adjusted by inducing ions with different electronegativity,electron filling,and ion radius,resulting in electron redistribution,bonds reconstruction,induced vacancies due to the electronic interaction and changed crystal structure such as lat-tice spacing and lattice distortion.Different from the aforementioned two strategies,heterostructures are constructed by two types of TMCs with different Fermi energy levels,which causes built-in electric field and electrons transfer through the interface,and induces electron redistribution and arranged local atoms to regulate the electronic structure.Additionally,the lacking studies of the three strategies to comprehensively regulate electronic structure for improving catalytic performance are pointed out.It is believed that this review can guide the design of advanced TMCs catalysts for boosting redox of lithium sulfur batteries. 展开更多
关键词 Lithium–sulfur battery Redox kinetic Transition metal compounds catalyst Multiple metals/anions
下载PDF
Nested Metal Catalysts:Metal Atoms and Clusters Stabilized by Confinement with Accessibility on Supports
14
作者 Bruce C.Gates Alexander Katz Jingyue Liu 《Precision Chemistry》 2023年第1期3-13,共11页
Supported catalysts that are important in technology prominently include atomically dispersed metals and metal clusters.When the metals are noble,they are typically unstablesusceptible to sinteringespecially under red... Supported catalysts that are important in technology prominently include atomically dispersed metals and metal clusters.When the metals are noble,they are typically unstablesusceptible to sinteringespecially under reducing conditions.Embedding the metals in supports such as organic polymers,metal oxides,and zeolites confers stability on the metals but at the cost of catalytic activity associated with the lack of accessibility of metal bonding sites to reactants.An approach to stabilizing noble metal catalysts while maintaining their accessibility involves anchoring them in molecular-scale nests that are in or on supports.The nests include zeolite pore mouths,zeolite surface cups(half-cages),raft-like islands of oxophilic metals bonded to metal oxide supports,clusters of non-noble metals(e.g.,hosting noble metals as single-atom alloys),and nanoscale metal oxide islands that selectively bond to the catalytic metals,isolating them from the support.These examples illustrate a trend toward precision in the synthesis of solid catalysts,and the latter two classes of nested catalysts offer realistic prospects for economical large-scale application. 展开更多
关键词 catalyst synthesis supported metal catalysts encapsulated catalysts nested catalysts atomically dispersed metal catalysts
原文传递
The role of morphology on the electrochemical CO_(2) reduction performance of transition metal-based catalysts
15
作者 Umar Mustapha Chidera C.Nnadiekwe +7 位作者 Maria Abdulkarim Alhaboudal Umar Yunusa Abdulhakam Shafiu Abdullahi Ismail Abdulazeez Ijaz Hussain Saheed A.Ganiyu Abdulaziz A.Al-Saadi Khalid Alhooshani 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第10期198-219,I0007,共23页
The continued increase in population and the industrial revolution have led to an increase in atmospheric carbon dioxide(CO_(2)) concentration. Consequently, developing and implementing effective solutions to reduce C... The continued increase in population and the industrial revolution have led to an increase in atmospheric carbon dioxide(CO_(2)) concentration. Consequently, developing and implementing effective solutions to reduce CO_(2) emissions is a global priority. The electrochemical CO_(2) reduction reaction(CO_(2)RR) is strongly believed to be a promising alternative to fossil fuel-based technologies for the production of value-added chemicals. So far, the implementation of CO_(2)RR is hindered by associated electrochemical reactions, such as low selectivity, hydrogen evolution reaction(HER), and additional overpotential induced in some cases. As a result, it is necessary to conduct a timely evaluation of the state-of-the-art strategies in CO_(2)RR, with a focus on the engineering of the electrocatalytic systems. Catalyst morphology is one factor that plays a critical role in overcoming these drawbacks and significantly contributes to enhancing product selectivity and Faradaic efficiency(FE). This review article summarizes the recent advances in the rational design of electrocatalysts with various morphologies and the influence of these morphologies on CO_(2)RR. To compare literature findings in a meaningful way, the article focuses on results reported under a well-defined period and considers the first three rows of the d-block metal catalysts. The discussion typically covers the design of nanostructured catalysts and the molecular-level understanding of morphology-performance relationship in terms of activity, selectivity, and stability during CO_(2) electrolysis. Among others, it would be convenient to recommend a comprehensive discussion on the morphologies of single metals and heterostructures, with a detailed emphasis on their impact on CO_(2) conversion. 展开更多
关键词 CO_(2)electroreduction Electrochemical reduction of CO_(2) MORPHOLOGY catalysts d-block metals catalysts Faradaic efficiency Selectivity
下载PDF
Graphitized nanocarbon-supported metal catalysts:synthesis,properties,and applications in heterogeneous catalysis 被引量:2
16
作者 黄飞 刘洪阳 苏党生 《Science China Materials》 SCIE EI CSCD 2017年第12期1149-1167,共19页
Graphitized nanocarbon materials can be an ideal catalyst support for heterogeneous catalytic systems. Their unique physical and chemical properties, such as large surface area, high adsorption capacity, excellent the... Graphitized nanocarbon materials can be an ideal catalyst support for heterogeneous catalytic systems. Their unique physical and chemical properties, such as large surface area, high adsorption capacity, excellent thermal and mechanical stability, outstanding electronic properties, and tunable porosity, allow the anchoring and dispersion of the active metals. Therefore, currently they are used as the key support material in many catalytic processes. This review summarizes recent relevant applications in supported catalysts that use graphitized nanocarbon as supports for catalytic oxidation, hydrogenation, dehydrogenation, and C-C coupling reactions in liquid-phase and gas-solid phase-reaction systems. The latest developments in specific features derived from the morphology and characteristics of graphitized na- nocarbon-supported metal catalysts are highlighted, as well as the differences in the catalytic behavior of graphitized nano- carbon-supported metal catalysts versus other related cata- lysts. The scientific challenges and opportunities in this field are also discussed. 展开更多
关键词 nanocarbon materials graphitized carbon supports metal catalysts hetergeneous catalysis
原文传递
Importance of Metal-Oxide Support Wettingandinteractions on Understanding of Physical and Chemical Behaviours of Supported Metal Catalysts
17
作者 李建国 《Rare Metals》 SCIE EI CAS CSCD 1994年第3期179-187,共9页
It has been generally recognised that the metal catalysts supported on oxide ceramic and non-oxide ceramic supports exhibit completely different characteristics as compared with the homogeneous ones. The na-ture of bo... It has been generally recognised that the metal catalysts supported on oxide ceramic and non-oxide ceramic supports exhibit completely different characteristics as compared with the homogeneous ones. The na-ture of bonding and interactions occurring at the metal / ceramic interfaces are believed to be of importancefor the characteristics of such catalysts. The recently developed microscopic theory of adhesion and wettingin metal/ ceramic systems is briefly presented here with the emphasis on the ionocovalent oxide ceramics.and its consequence on the understanding of the physical and chemical behaviours of supported metal cata-lysts is exploited. 展开更多
关键词 Wetting and adhesion metal-ceramic interaction Dissolved oxygen Supported metal catalysts Physical and chemical behaviours
下载PDF
Importance, features and uses of metal oxide catalysts in heterogeneous catalysis 被引量:9
18
作者 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2019年第11期1627-1636,共10页
This short review paper aims at assembling the present state of the art of the multiuses of metal oxides in heterogeneous catalysis, concerning liquid and gaseous phases of the reactant mixtures on solid catalysts. It... This short review paper aims at assembling the present state of the art of the multiuses of metal oxides in heterogeneous catalysis, concerning liquid and gaseous phases of the reactant mixtures on solid catalysts. It includes the description of the main types of metal oxide catalysts, of their various preparation procedures and of the main reactions catalysed by them (acid-base type, selective and total oxidations, bi-functional catalysis, photocatalysis, biomass treatments, environmental catalysis and some of the numerous industrial applications). Challenges and prospectives are also discussed. 展开更多
关键词 Heterogeneous catalysis metal oxide catalyst Preparation procedure Acid-base reaction Selective and total oxidation reaction PHOTOCATALYSIS Environmental catalysis Industrial process
下载PDF
Sodium-treated sepiolite-supported transition metal(Cu,Fe,Ni,Mn,or Co)catalysts for HCHO oxidation 被引量:5
19
作者 Ning Dong Qing Ye +3 位作者 Mengyue Chen Shuiyuan Cheng Tianfang Kang Hongxing Dai 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2020年第11期1734-1744,共11页
Sodium-treated sepiolite(Na Sep)-supported transition metal catalysts(TM/Na Sep;TM = Cu, Fe, Ni, Mn, and Co) were synthesized via a rotary evaporation method. Physicochemical properties of the as-synthesized samples w... Sodium-treated sepiolite(Na Sep)-supported transition metal catalysts(TM/Na Sep;TM = Cu, Fe, Ni, Mn, and Co) were synthesized via a rotary evaporation method. Physicochemical properties of the as-synthesized samples were characterized by means of various techniques, and their catalytic activities for HCHO(0.2%) oxidation were evaluated. Among the samples, Cu/Na Sep exhibited superior performance, and complete HCHO conversion was achieved at 100 ℃(GHSV = 240000 m L/(g·h)). Additionally, the sample retained good catalytic activity during a 42 h stability test. A number of factors, including elevated acidity, the abundance of oxygen species, and favorable low-temperature reducibility, were responsible for the excellent catalytic activity of Cu/Na Sep. According to the results of the in-situ DRIFTS characterization, the HCHO oxidation mechanism was as follows:(i) HCHO was rapidly decomposed into dioxymethylene(DOM) species on the Cu/Na Sep surface;(ii) DOM was then immediately converted to formate species;(iii) the resultant formate species were further oxidized to carbonates;(iv) the carbonate species were eventually converted to CO2 and H2O. 展开更多
关键词 Sodium-treated sepiolite Transition metal loading Supported transition metal catalyst Volatile organic compound HCHO oxidation
下载PDF
TiO_2-Supported Binary Metal Oxide Catalysts for Low-temperature Selective Catalytic Reduction of NO_x with NH_3 被引量:5
20
作者 WU Bi-jun LIU Xiao-qin +1 位作者 XIAO Ping WANG Shu-gang 《Chemical Research in Chinese Universities》 SCIE CAS CSCD 2008年第5期615-619,共5页
Binary metal oxide(MnOx-A/TiO2)catalysts were prepared by adding the second metal to manganese oxides supported on titanium dioxide(TiO2),where,A indicates Fe2O3,WO3,MoO3,and Cr2O3.Their catalytic activity,N2 sele... Binary metal oxide(MnOx-A/TiO2)catalysts were prepared by adding the second metal to manganese oxides supported on titanium dioxide(TiO2),where,A indicates Fe2O3,WO3,MoO3,and Cr2O3.Their catalytic activity,N2 selectivity,and SO2 poisonous tolerance were investigated.The catalytic performance at low temperatures decreased in the following order:Mn-W/TiO2〉Mn-Fe/TiO2〉Mn-Cr/TiO2〉Mn-Mo/TiO2,whereas the N2 selectivity decreased in the order:Mn-Fe/TiO2〉Mn-W/TiO2〉Mn-Mo/TiO2〉Mn-Cr/TiO2.In the presence of 0.01%SO2 and 6%H2O,the NOx conversions in the presence of Mn-W/TiO2,Mn-Fe/TiO2,or Mn-Mo/TiO2 maintain 98.5%,95.8%and 94.2%, respectively,after 8 h at 120°C at GHSV 12600 h? 1 .As effective promoters,WO3 and Fe2O3 can increase N2 selectivity and the resistance to SO2 of MnOx/TiO2 significantly.The Fourier transform infrared(FTIR)spectra of NH3 over WO3 show the presence of Lewis acid sites.The results suggest that WO3 is the best promoter of MnOx/TiO2,and Mn-W/TiO2 is one of the most active catalysts for the low temperature selective catalytic reduction of NO with NH3. 展开更多
关键词 Selective catalytic reduction of NO with NH3 Low-temperature selective catalytic reduction Binary metal oxide catalyst FTIR NH3-TPD
下载PDF
上一页 1 2 6 下一页 到第
使用帮助 返回顶部