In this study, the processing and mechanical properties of porous metal matrix composites(MMCs) composed of spheroidal cast iron chips(GGG40) and bronze chips(CuSn10) and formed by hot isostatic pressing were investig...In this study, the processing and mechanical properties of porous metal matrix composites(MMCs) composed of spheroidal cast iron chips(GGG40) and bronze chips(CuSn10) and formed by hot isostatic pressing were investigated. Bronze chips(CuSn10) were used as a matrix component, and spheroidal cast iron(GGG40) chips were used as a reinforcement component. The MMCs were produced with different CuSn10 contents(90 wt%, 80 wt%, 70 wt%, and 60 wt%). The hot isostatic pressing process was performed under three different pressures and temperatures. The produced MMCs were characterized using density tests, Brinell hardness tests, and compression tests. In addition, the consolidation mechanism was investigated by X-ray diffraction(XRD) analysis and scanning electron microscopy. The test results were compared with those for bulk CuSn10 and bulk GGG40. Mechanical tests results revealed that the metallic chips can be recycled by using hot pressing and that the mechanical properties of the produced MMCs were similar to those of bulk CuSn10. XRD and microscopy studies showed that no intermetallic compounds formed between the metallic chips. The results showed that the CuSn10 and GGG40 chips were consolidated by mechanical interlocking.展开更多
Heavy metals have been viewed as hazardous environmental pollutants, and anthropogenic activities due to their high toxicity and persistent nature in the environment. Anthropogenic activities such as artisanal mining,...Heavy metals have been viewed as hazardous environmental pollutants, and anthropogenic activities due to their high toxicity and persistent nature in the environment. Anthropogenic activities such as artisanal mining, industrial activities, improper usage of fertilizers and pesticides, and indiscriminate open waste disposal bring about an increase in the presence of heavy metals in the environment. In the Keffi Metropolis, different elements lead to land contamination which debilitates soil quality, plant survival, human well-being, and the environment as a result of extensive dispersion or quantity of heavy metals in the soil and water. In recent years, biochar has emerged as a promising soil amendment for mitigating heavy metal pollution due to its unique physicochemical properties. This paper provides the effects of softwood pellet biochar on the retention of heavy metals in contaminated soils. A microcosm experiment was carried out to investigate the effects of biochar on the retention of heavy metals in contaminated soils. This research aimed to give an overview of the effects of softwood biochar at different temperatures (550˚C and 700˚C) on the retention of heavy metals and metalloids released from the soil during water inundation. The results show that the addition of organic matter (grass chippings) minimizes heavy metal mobilization. Also, biochar at high temperatures is more effective than those at low temperatures. The expected outcome of the research analysis includes providing insights into the role of biochar in retaining heavy metal contamination and further understanding the use of biochar as a sorbent for the management of contaminated soil.展开更多
We propose a novel optical intensity modulator based on the combination of a symmetrical metal cladding optical waveguide (SMCW) and ferrofluid, where the ferrofluid is sealed in the waveguide to act as a guiding la...We propose a novel optical intensity modulator based on the combination of a symmetrical metal cladding optical waveguide (SMCW) and ferrofluid, where the ferrofluid is sealed in the waveguide to act as a guiding layer. The light matter interaction in the ferrofluid film leads to the formation of a regular nanoparticle pattern, which changes the phase match condition of the ultrahigh order modes in return. When two lasers are incident on the same spot of the waveguide chip, experiments illustrate all-optical modulation of one laser beam by adjusting the intensity of the other laser. A possible theoretical explanation may be due to the optical trapping and Soret effect since the phenomenon is considerable only when the control laser is effectively coupled into the waveguide.展开更多
The metabolic process of chiral drugs plays a significant role in clinics and in research on drugs.Here,we experimentally demonstrate by all-optical means that the chiral molecules can be quickly discriminated and mon...The metabolic process of chiral drugs plays a significant role in clinics and in research on drugs.Here,we experimentally demonstrate by all-optical means that the chiral molecules can be quickly discriminated and monitored with the ultrahighorder modes excited in a metal cladding optofluidic chip,achieving over 5 times sensitivity with a low-dosage sample.We show that the varying concentration of the chiral drugs can be monitored both in cell and animal experiments,presenting a significant difference between chiral enantiomers at the optimal function time and the effect of the reaction.To our knowledge,this approach provides a new way to achieve important chiral discrimination for the pharmacokinetics and the pharmacodynamics and may present opportunities in indicating the health status of humans.展开更多
The effect of Ce on ignition point of AZ91D magnesium alloy chips was studied. For the AZ91D and the AZ91D-xCe magnesium alloys, changing the sizes of the chips in the range of 58 - 270 μm has a limited influence on ...The effect of Ce on ignition point of AZ91D magnesium alloy chips was studied. For the AZ91D and the AZ91D-xCe magnesium alloys, changing the sizes of the chips in the range of 58 - 270 μm has a limited influence on ignition point, however, the shift of the content of Ce has much effect on ignition point. Increasing the Ce content, x from 0.15 to 0.25, the ignition point increases with increasing of Ce; however, x from 0.25 to 0.45, the ignition point decreases with increasing of Ce. By the addition of Ce of 0.25 %. the ignition point is raised by 43℃.展开更多
基金financially supported by the Scientific and Technological Research Council of Turkey(TUBITAK,No.113M141)
文摘In this study, the processing and mechanical properties of porous metal matrix composites(MMCs) composed of spheroidal cast iron chips(GGG40) and bronze chips(CuSn10) and formed by hot isostatic pressing were investigated. Bronze chips(CuSn10) were used as a matrix component, and spheroidal cast iron(GGG40) chips were used as a reinforcement component. The MMCs were produced with different CuSn10 contents(90 wt%, 80 wt%, 70 wt%, and 60 wt%). The hot isostatic pressing process was performed under three different pressures and temperatures. The produced MMCs were characterized using density tests, Brinell hardness tests, and compression tests. In addition, the consolidation mechanism was investigated by X-ray diffraction(XRD) analysis and scanning electron microscopy. The test results were compared with those for bulk CuSn10 and bulk GGG40. Mechanical tests results revealed that the metallic chips can be recycled by using hot pressing and that the mechanical properties of the produced MMCs were similar to those of bulk CuSn10. XRD and microscopy studies showed that no intermetallic compounds formed between the metallic chips. The results showed that the CuSn10 and GGG40 chips were consolidated by mechanical interlocking.
文摘Heavy metals have been viewed as hazardous environmental pollutants, and anthropogenic activities due to their high toxicity and persistent nature in the environment. Anthropogenic activities such as artisanal mining, industrial activities, improper usage of fertilizers and pesticides, and indiscriminate open waste disposal bring about an increase in the presence of heavy metals in the environment. In the Keffi Metropolis, different elements lead to land contamination which debilitates soil quality, plant survival, human well-being, and the environment as a result of extensive dispersion or quantity of heavy metals in the soil and water. In recent years, biochar has emerged as a promising soil amendment for mitigating heavy metal pollution due to its unique physicochemical properties. This paper provides the effects of softwood pellet biochar on the retention of heavy metals in contaminated soils. A microcosm experiment was carried out to investigate the effects of biochar on the retention of heavy metals in contaminated soils. This research aimed to give an overview of the effects of softwood biochar at different temperatures (550˚C and 700˚C) on the retention of heavy metals and metalloids released from the soil during water inundation. The results show that the addition of organic matter (grass chippings) minimizes heavy metal mobilization. Also, biochar at high temperatures is more effective than those at low temperatures. The expected outcome of the research analysis includes providing insights into the role of biochar in retaining heavy metal contamination and further understanding the use of biochar as a sorbent for the management of contaminated soil.
基金supported by the National Natural Science Foundation of China (Grant Nos. 11274091 and 11274092)the Fundamental Research Funds for the Central Universities of Hohai University, China (Grant No. 2011B11014)
文摘We propose a novel optical intensity modulator based on the combination of a symmetrical metal cladding optical waveguide (SMCW) and ferrofluid, where the ferrofluid is sealed in the waveguide to act as a guiding layer. The light matter interaction in the ferrofluid film leads to the formation of a regular nanoparticle pattern, which changes the phase match condition of the ultrahigh order modes in return. When two lasers are incident on the same spot of the waveguide chip, experiments illustrate all-optical modulation of one laser beam by adjusting the intensity of the other laser. A possible theoretical explanation may be due to the optical trapping and Soret effect since the phenomenon is considerable only when the control laser is effectively coupled into the waveguide.
基金supported by the National Natural Science Foundation of China(NSFC)(Nos.12104298 and 12192252)the Shanghai Municipal Science and Technology Major Project(No.2019SHZDZX01-06)the Natural Science Foundation of Shanghai(No.23ZR1428400)。
文摘The metabolic process of chiral drugs plays a significant role in clinics and in research on drugs.Here,we experimentally demonstrate by all-optical means that the chiral molecules can be quickly discriminated and monitored with the ultrahighorder modes excited in a metal cladding optofluidic chip,achieving over 5 times sensitivity with a low-dosage sample.We show that the varying concentration of the chiral drugs can be monitored both in cell and animal experiments,presenting a significant difference between chiral enantiomers at the optimal function time and the effect of the reaction.To our knowledge,this approach provides a new way to achieve important chiral discrimination for the pharmacokinetics and the pharmacodynamics and may present opportunities in indicating the health status of humans.
基金Key Program of Natural Science Foundation of Shenzhen(JCYJ20220818102218039)Shenzhen Science and Technology Program(KCXFZ20230731093559005)+2 种基金Natural Science Foundation of Shenzhen(JCYJ20210324133412033)Guangdong Province Innovation Team Project for Universities(2023KCXTD049)Shenzhen Key Medical Discipline Construction Fund(SZXK045)。
文摘The effect of Ce on ignition point of AZ91D magnesium alloy chips was studied. For the AZ91D and the AZ91D-xCe magnesium alloys, changing the sizes of the chips in the range of 58 - 270 μm has a limited influence on ignition point, however, the shift of the content of Ce has much effect on ignition point. Increasing the Ce content, x from 0.15 to 0.25, the ignition point increases with increasing of Ce; however, x from 0.25 to 0.45, the ignition point decreases with increasing of Ce. By the addition of Ce of 0.25 %. the ignition point is raised by 43℃.