Heavy metals,notably Pb2+and Cu^(2+),are some of the most persistent contaminants found in groundwater.Frequent monitoring of these metals,which relies on efficient,sensitive,cost-effective,and reliable methods,is a n...Heavy metals,notably Pb2+and Cu^(2+),are some of the most persistent contaminants found in groundwater.Frequent monitoring of these metals,which relies on efficient,sensitive,cost-effective,and reliable methods,is a necessity.We present a nanocomposite-based miniaturized electrode for the concurrent measurement of Pb2+and Cu^(2+)by exploiting the electroanalytical technique of square wave voltammetry.We also propose a facile in situ hydrothermal calcination method to directly grow binder-free mesoporous Ni O on a three-dimensional nickel foam,which is then electrochemically seeded with gold nanoparticles(Au NPs).The meticulous design of a low-barrier Ohmic contact between mesoporous Ni O and Au NPs facilitates target-mediated nanochannel-confined electron transfer within mesoporous Ni O.As a result,the heavy metals Pb2+(0.020 mg.L^(-1)detection limit;2.0–16.0 mg.L^(-1)detection range)and Cu^(2+)(0.013 mg.L^(-1)detection limit;0.4–12.8 mg.L^(-1)detection range)can be detected simultaneously with high precision.Furthermore,other heavy metal ions and common interfering ions found in groundwater showed negligible impacts on the electrode’s performance,and the recovery rate of groundwater samples varied between 96.3%±2.1%and 109.4%±0.6%.The compactness,flexible shape,low power consumption,and ability to remotely operate our electrode pave the way for onsite detection of heavy metals in groundwater,thereby demonstrating the potential to revolutionize the field of environmental monitoring.展开更多
Aqueous rechargeable zinc batteries are very attractive for energy storage applications due to their low cost and high safety.However,low operating voltages limit their further development.For the first time,this work...Aqueous rechargeable zinc batteries are very attractive for energy storage applications due to their low cost and high safety.However,low operating voltages limit their further development.For the first time,this work proposes a unique approach to increase the voltages of aqueous zinc batteries by using tri-functional metallic bipolar electrode with good electrochemical activity and ultrahigh electronic conductivity,which not only participates in redox reactions,but also functions as an electrical highway for charge transport.Furthermore,bipolar electrode can replace expensive ion selective membrane to separate electrolytes with different pH;thus,redox couples with higher potential in acid condition and Zn=Zn(OH)^(2-)_(4) couple with lower potential in alkaline condition can be employed together,leading to high voltages of aqueous zinc batteries.Herein,two types of metallic bipolar electrodes of Cu and Ag are utilized based on three kinds of aqueous zinc batteries:Zn–MnO_(2),Zn–I_(2),and Zn–Br_(2).The voltage of aqueous Zn–MnO_(2) battery is raised to 1.84 V by employing one Cu bipolar electrode,which shows no capacity attenuation after 3500 cycles.Moreover,the other Ag bipolar electrode can be adopted to successfully construct Zn–I_(2) and Zn–Br_(2) batteries exhibiting much higher voltages of 2.44 and 2.67 V,which also show no obvious capacity degradation for 1000 and 800 cycles,representing decent cycle stability.Since bipolar electrode can be applied in a large family of aqueous batteries,this work offers an elaborate high-voltage concept based on tri-functional metallic bipolar electrode as a model system to open a door to explore high-voltage aqueous batteries.展开更多
The concentration difference in the near-surface region of lithium metal is the main cause of lithium dendrite growth.Resolving this issue will be key to achieving high-performance lithium metal batteries(LMBs).Herein...The concentration difference in the near-surface region of lithium metal is the main cause of lithium dendrite growth.Resolving this issue will be key to achieving high-performance lithium metal batteries(LMBs).Herein,we construct a lithium nitrate(LiNO_(3))-implanted electroactiveβphase polyvinylidene fluoride-co-hexafluoropropylene(PVDF-HFP)crystalline polymorph layer(PHL).The electronegatively charged polymer chains attain lithium ions on the surface to form lithium-ion charged channels.These channels act as reservoirs to sustainably release Li ions to recompense the ionic flux of electrolytes,decreasing the growth of lithium dendrites.The stretched molecular channels can also accelerate the transport of Li ions.The combined effects enable a high Coulombic efficiency of 97.0%for 250 cycles in lithium(Li)||copper(Cu)cell and a stable symmetric plating/stripping behavior over 2000 h at 3 mA cm^(-2)with ultrahigh Li utilization of 50%.Furthermore,the full cell coupled with PHL-Cu@Li anode and Li Fe PO_(4) cathode exhibits long-term cycle stability with high-capacity retention of 95.9%after 900 cycles.Impressively,the full cell paired with LiNi_(0.87)Co_(0.1)Mn_(0.03)O_(2)maintains a discharge capacity of 170.0 mAh g^(-1)with a capacity retention of 84.3%after 100 cycles even under harsh condition of ultralow N/P ratio of 0.83.This facile strategy will widen the potential application of LiNO_(3)in ester-based electrolyte for practical high-voltage LMBs.展开更多
Supercapacitors(SCs)are considered promising energy storge systems because of their outstanding power density,fast charge and discharge rate and long-term cycling stability.The exploitation of cheap and efficient elec...Supercapacitors(SCs)are considered promising energy storge systems because of their outstanding power density,fast charge and discharge rate and long-term cycling stability.The exploitation of cheap and efficient electrode materials is the key to improve the performance of supercapacitors.As the battery-type materials,transition metal phosphides(TMPs)possess high theoretical specific capacity,good electrical conductivity and superior structural stability,which have been extensively studied to be electrode materials for supercapacitors.In this review,we summarize the up-to-date progress on TMPs materials from diversified synthetic methods,diverse nanostructures and several prominent TMPs and their composites in application of supercapacitors.In the end,we also propose the remaining challenges toward the rational discovery and synthesis of high-performance TMP electrodes materials for energy storage.展开更多
The relation between the structure of the silver network electrodes and the properties of Cu(In,Ga)Se_(2)(CIGS)solar cells is systemically investigated.The Ag network electrode is deposited onto an Al:ZnO(AZO)thin fil...The relation between the structure of the silver network electrodes and the properties of Cu(In,Ga)Se_(2)(CIGS)solar cells is systemically investigated.The Ag network electrode is deposited onto an Al:ZnO(AZO)thin film,employing a self-forming cracked template.Precise control over the cracked template's structure is achieved through careful adjustment of temperature and humidity.The Ag network electrodes with different coverage areas and network densities are systemically applied to the CIGS solar cells.It is revealed that predominant fill factor(FF)is influenced by the figure of merit of transparent conducting electrodes,rather than sheet resistance,particularly when the coverage area falls within the range of 1.3–5%.Furthermore,a higher network density corresponds to an enhanced FF when the coverage areas of the Ag networks are similar.When utilizing a thinner AZO film,CIGS solar cells with a surface area of 1.0609 cm^(2)exhibit a notable performance improvement,with efficiency increasing from 10.48%to 11.63%.This enhancement is primarily attributed to the increase in FF from 45%to 65%.These findings underscore the considerable potential for reducing the thickness of the transparent conductive oxide(TCO)in CIGS modules with implications for practical applications in photovoltaic technology.展开更多
The development of a nanosecond discharge in a pin-to-pin gap filled with air at atmospheric pressure has been studied with high temporal and spatial resolutions from a breakdown start to the spark decay.Positive and ...The development of a nanosecond discharge in a pin-to-pin gap filled with air at atmospheric pressure has been studied with high temporal and spatial resolutions from a breakdown start to the spark decay.Positive and negative nanosecond voltage pulses with an amplitude of tens of kilovolts were applied.Time-resolved images of the discharge development were taken with a fourchannel Intensified Charge Coupled Device(ICCD)camera.The minimum delay between the camera channels could be as short as≈0.1 ns.This made it possible to study the gap breakdown process with subnanosecond resolution.It was observed that a wide-diameter streamer develops from the high-voltage pointed electrode.The ionization processes near the grounded pin electrode started when the streamer crossed half of the gap.After bridging the gap by the streamer,a diffuse discharge was formed.The development of spark leaders from bright spots on the surface of the pointed electrodes was observed at the next stage.It was found that the rate of development of the spark leader is an order of magnitude lower than that of the wide-diameter streamer.Long thin luminous tracks were observed against the background of a discharge plasma glow.It has been established that the tracks are adjacent to brightly glowing spots on the electrodes and are associated with the flight of small particles.展开更多
In the pursuit of ultrathin polymer electrolyte(<20 μm) for lithium metal batteries, achieving a balance between mechanical strength and interfacial stability is crucial for the longevity of the electrolytes.Herei...In the pursuit of ultrathin polymer electrolyte(<20 μm) for lithium metal batteries, achieving a balance between mechanical strength and interfacial stability is crucial for the longevity of the electrolytes.Herein, 11 μm-thick gel polymer electrolyte is designed via an integrated electrode/electrolyte structure supported by lithium metal anode. Benefiting from an exemplary superiority of excellent mechanical property, high ionic conductivity, and robust interfacial adhesion, the in-situ formed polymer electrolyte reinforced by titanosiloxane networks(ISPTS) embodies multifunctional roles of physical barrier, ionic carrier, and artificial protective layer at the interface. The potent interfacial interactions foster a seamless fusion of the electrode/electrolyte interfaces and enable continuous ion transport. Moreover, the built-in ISPTS electrolyte participates in the formation of gradient solid-electrolyte interphase(SEI) layer, which enhances the SEI's structural integrity against the strain induced by volume fluctuations of lithium anode.Consequently, the resultant 11 μm-thick ISPTS electrolyte enables lithium symmetric cells with cycling stability over 600 h and LiFePO_(4) cells with remarkable capacity retention of 96.6% after 800 cycles.This study provides a new avenue for designing ultrathin polymer electrolytes towards stable, safe,and high-energy–density lithium metal batteries.展开更多
Welding spatter cause many problems during the welding process and this issue is particularly important for cellulose electrode welding. The hot flying spatter balls often deteriorate the working environment, and decr...Welding spatter cause many problems during the welding process and this issue is particularly important for cellulose electrode welding. The hot flying spatter balls often deteriorate the working environment, and decrease the welding efficiency. Many factors affect the welding spatter, and metal transfer behavior is one of the main factors. Many studies concerning the spatter mechanism in arc welding process were made; most of them focused on the solid wire welding and the study on cellulose electrode is rarely reported. In this paper the metal transfer behavior and the weld spatter characteristics of three commercial cellulose electrodes were studied experimentally by using a high speed camera for visually capturing the metal transfer. The relationship between the metal transfer and the welding spatter was analyzed experimentally by comparing the spatter loss coefficient, which is for quantitative evaluation of welding spatter, with the statistical analysis of the large droplet transfer mode. The results showed that short circuiting transfer, large droplet spray transfer, fine droplet spray transfer and explosive transfer govern the metal transfer modes in cellulose electrode welding. Weld spatter occurred mainly in the deflection of large droplet process, explosive transfer process and fine droplet spraying process. Different metal transfer modes lead to different spatter. The deflection of large droplet and explosive transfer are the main factors of the spatter formation. Minimizing the droplet size and reducing the deflection of large droplet and explosive transfer leads to the reduction the amount of spatter in cellulose electrode welding.展开更多
Corrosion protection has become an important issue as the amount of infrastructure construction in marine environment increased.Photocathodic protection is a promising method to reduce the corrosion of metals,and tita...Corrosion protection has become an important issue as the amount of infrastructure construction in marine environment increased.Photocathodic protection is a promising method to reduce the corrosion of metals,and titanium dioxide(TiO2) is the most widely used photoanode.This review summarizes the progress in TiO2 photo gene rated protection in recent years.Different types of semiconductors,including sulfides,metals,metal oxide s,polymers,and other materials,are used to design and modify TiO2.The strategy to dramatically improve the efficiency of photoactivity is proposed,and the mechanism is investigated in detail.Characterization methods are also introduced,including morphology testing,light absorption,photoelectrochemistry,and protected metal observation.This review aims to provide a comprehensive overview of Ti02 development and guide photocathodic protection.展开更多
A high-speed photographic method is mainly used to analyze metal transfer ofa cellulose covered electrode in the vertical down welding. The experimental results show that finedroplets spraying transfer and globular tr...A high-speed photographic method is mainly used to analyze metal transfer ofa cellulose covered electrode in the vertical down welding. The experimental results show that finedroplets spraying transfer and globular transfer are the dominant transfer characteristic. The largedroplet spatter, especially the upwards spatter, is a particular phenomenon. It is found that thecombination action of gas blow force, surface tension, gravitational force and electromagnetic forcelead to globular transfer. Gravitational force and electromagnetic force, which hasten big dropletspatter, should not be neglected.展开更多
The effect of arc plasma on electrode erosion in a liquid metal current limiter (LMCL) is studied. Based on a simplified two-dimensional magnetohydrodynamic model, the elongated GaInSn metal vapor arc and its contra...The effect of arc plasma on electrode erosion in a liquid metal current limiter (LMCL) is studied. Based on a simplified two-dimensional magnetohydrodynamic model, the elongated GaInSn metal vapor arc and its contraction process in a liquid metal current limiter are simulated. The distributions of temperature, pressure and velocity of the arc plasma are calculated. The simulation results indicate that the electrode erosion is mainly caused by two high temperature gas jet flows arising from the pressure gradient, which is a result of the non-uniform arc temperature distribution. The gas flows, which act as jets onto the electrode surface, lead to the evaporation of the electrode material form the surface. A redesign structure of the electrode is proposed and implemented according to the analysis, which greatly increased the service life of the electrode.展开更多
The Ni(OH) 2 film electrodes doped respectively with alkali-earth metal aluminum, lead, partial transition metal and some rare-earth metal(altogether 17 kinds of metals) ions were prepared by cathode electrodeposition...The Ni(OH) 2 film electrodes doped respectively with alkali-earth metal aluminum, lead, partial transition metal and some rare-earth metal(altogether 17 kinds of metals) ions were prepared by cathode electrodeposition. The electrode reaction reversibility, the difficult extent of oxygen evolution, the proton diffusion coefficient, the discharge potential of middle value and the active material utilization of the Ni(OH) 2 film electrode were compared with those of the ones doped with the metal ions by means of cyclic voltammetry, potential step and constant current charge-discharge experiments. It was found that Ca 2+ , Co 2+ , Cd 2+ , Al 3+ etc. have obviously positive effect.展开更多
The decreasing feature sizes in complementary metal-oxide semiconductor (CMOS) transistor technology will require the replacement of SiO2 with gate dielectrics that have a high dielectric constant (high-k) because...The decreasing feature sizes in complementary metal-oxide semiconductor (CMOS) transistor technology will require the replacement of SiO2 with gate dielectrics that have a high dielectric constant (high-k) because as the SiO2 gate thickness is reduced below 1.4 nm, electron tunnelling effects and high leakage currents occur in SiO2, which present serious obstacles to future device reliability. In recent years significant progress has been made on the screening and selection of high-k gate dielectrics, understanding their physical properties, and their integration into CMOS technology. Now the family of hafnium oxide-based materials has emerged as the leading candidate for high-k gate dielectrics due to their excellent physical properties. It is also realized that the high-k oxides must be implemented in conjunction with metal gate electrodes to get sufficient potential for CMOS continue scaling. In the advanced nanoscale Si-based CMOS devices, the composition and thickness of interfacial layers in the gate stacks determine the critical performance of devices. Therefore, detailed atomic- scale understandings of the microstructures and interfacial structures built in the advanced CMOS gate stacks, are highly required. In this paper, several high-resolution electron, ion, and photon-based techniques currently used to characterize the high-k gate dielectrics and interfaces at atomic-scale, are reviewed. Particularly, we critically review the research progress on the characterization of interface behavior and structural evolution in the high-k gate dielectrics by high-resolution transmission electron microscopy (HRTEM) and the related techniques based on scanning transmission electron microscopy (STEM), including high-angle annular dark- field (HAADF) imaging (also known as Z-contrast imaging), electron energy-loss spectroscopy (EELS), and energy dispersive X-ray spectroscopy (EDS), due to that HRTEM and STEM have become essential metrology tools for characterizing the dielectric gate stacks in the present and future generations of CMOS devices. In Section 1 of this review, the working principles of each technique are briefly introduced and their key features are outlined. In Section 2, microstructural characterizations of high-k gate dielectrics at atomic-scale by electron microscopy are critically reviewed by citing some recent results reported on high-k gate dielectrics. In Section 3, metal gate electrodes and the interfacial structures between high-k dielectrics and metal gates are discussed. The electron beam damage effects in high-k gate stacks are also evaluated, and their origins and prevention are described in Section 4. Finally, we end this review with personal perspectives towards the future challenges of atomic-scale material characterization in advanced CMOS gate stacks.展开更多
The effects of different coating layers on lithium metal anode formed by reacting with different controlled atmospheres(argon,CO_2–O_2(2:1),N_2,and CO_2–O_2–N_2(2:1:3))have been investigated.The obtained X...The effects of different coating layers on lithium metal anode formed by reacting with different controlled atmospheres(argon,CO_2–O_2(2:1),N_2,and CO_2–O_2–N_2(2:1:3))have been investigated.The obtained XRD,second ion mass spectroscopy(SIMS),and scanning probe microscope(SPM)results demonstrate the formation of coating layers composed of Li_2CO_3,Li_3N,and the mixture of them on lithium tablets,respectively.The Li/Li symmetrical cell and Li/S cell are assembled to prove the advantages of the protected lithium tablet on electrochemical performance.The comparison of SEM and SIMS characterizations before/after cycles clarifies that an SEI-like composition formed on the lithium tablets could modulate the interfacial stabilization between the lithium foil and the ether electrolyte.展开更多
In present paper, the metal vapour behavior in double electrodes TIG welding was investigated by a numerical model, including the arc plasma and weld pool. The thermodynamic parameters and transport coefficients of th...In present paper, the metal vapour behavior in double electrodes TIG welding was investigated by a numerical model, including the arc plasma and weld pool. The thermodynamic parameters and transport coefficients of the arc plasma were dependent on both the local temperature and the mass ratio of the metal vapour. A second viscosity approximation was used to formulate the diffusion coefficient of the metal vapour in the arc plasma. The temperature and flow fields together with the metal vapour concentration were simulated, and the influences of metal vapour on the arc plasma and the weld pool were analyzed. It was found that the metal vapour transport in the arc plasma was significantly influenced by the flow of the arc plasma, and the distribution of the metal vapour was more extended in the direction perpendicular to the line through the double electrodes tips. Both the arc plasma and the heat flux at the weld pool were constricted by the presence of the metal vapour, while the metal vapour had a minor effect on the total heat input to the work piece and the weld pool profile as a whole.展开更多
In recent years,the pursuit of high-efficiency electrochemical storage technology,the multivalent metalion batteries (MIBs) based on aqueous electrolytes have been widely explored by researchers because of their safet...In recent years,the pursuit of high-efficiency electrochemical storage technology,the multivalent metalion batteries (MIBs) based on aqueous electrolytes have been widely explored by researchers because of their safety,environmental friendliness,abundant reserves and low price,and especially the merits in energy and power densities.This review firstly expounds on the problems existing in the electrode materials of aqueous multivalent MIBs (Zn^(2+),Mg^(2+),Al^(3+),Ca^(2+)),from the classical inorganic materials to the emerging organic compounds,and then summarizes the design strategies in bulk and interface structure of electrodes with favorable kinetics and stable cycling performance,especially laying the emphasis on the charge storage mechanism of cathode materials and dendrite-free Zinc anode from the aspect of electrolyte optimization strategies,which can be extended to other aqueous multivalent MIBs.Ultimately,the possible development directions of the aqueous multivalent MIBs in the future are provided,anticipating to provide a meaningful guideline for researchers in this area.展开更多
Sodium metal battery(SMB)technology is one of the most promising candidates for next-generation rechargeable energy storage systems due to its high theoretical capacity and economical costeffectiveness.Unfortunately,i...Sodium metal battery(SMB)technology is one of the most promising candidates for next-generation rechargeable energy storage systems due to its high theoretical capacity and economical costeffectiveness.Unfortunately,its practical implementation is hindered by several challenges including short life-span and fast capacity decay,which is closely related to the uncontrollable generation of the sodium dendrites.Herein,a nitrogen and oxygen co-doped three-dimensional carbon cloth with hollow tubular fiber units was constructed as the host material for Na plating(Na@CC)to tackle these challenges.The obtained composite electrode can effectively reduce the nucleation overpotential of Na,guide the homogeneous Na^(+)flux,increase the kinetics of Na electrodeposition,lower the effective current density and eventually suppress the formation of electrochemically inactive Na dendrites.As a result,batteries built with the Na@CC composites exhibited stable long-term cycling stability.To gain an in-depth and comprehensive understanding of such phenomena,non-destructive and three-dimensional synchrotron X-ray tomography was employed to investigate the cycled batteries.Moreover,the COMSOL Multiphysics simulation was further employed to reveal the Na electrodeposition mechanisms.The current work not only showcases the feasibility of currently proposed sodiophilic 3 D Na@CC composite electrode but also provides fundamental insights into the underlying working mechanisms that govern its outstanding electrochemical performance.展开更多
Zinc metal anodes(ZMA)have high theoretical capacities(820 mAh g−1 and 5855 mAh cm−3)and redox potential(−0.76 V vs.standard hydrogen electrode),similar to the electrochemical voltage window of the hydrogen evolution ...Zinc metal anodes(ZMA)have high theoretical capacities(820 mAh g−1 and 5855 mAh cm−3)and redox potential(−0.76 V vs.standard hydrogen electrode),similar to the electrochemical voltage window of the hydrogen evolution reaction(HER)in a mild acidic electrolyte system,facilitating aqueous zinc batteries competitive in next-generation energy storage devices.However,the HER and byproduct formation effectuated by water-splitting deteriorate the electrochemical performance of ZMA,limiting their application.In this study,a key factor in promoting the HER in carbon-based electrode materials(CEMs),which can provide a larger active surface area and guide uniform zinc metal deposition,was investigated using a series of threedimensional structured templating carbon electrodes(3D-TCEs)with different local graphitic orderings,pore structures,and surface properties.The ultramicropores of CEMs are the determining critical factors in initiating HER and clogging active surfaces by Zn(OH)2 byproduct formation,through a systematic comparative study based on the 3D-TCE series samples.When the 3D-TCEs had a proper graphitic structure with few ultramicropores,they showed highly stable cycling performances over 2000 cycles with average Coulombic efficiencies of≥99%.These results suggest that a well-designed CEM can lead to high-performance ZMA in aqueous zinc batteries.展开更多
Commercial application of the dye-sensitized solar cells(DSCs) depends on great improvement of the power conversion efficiency and reduction of the fabrication cost. Generally, developing low cost counter electrode ...Commercial application of the dye-sensitized solar cells(DSCs) depends on great improvement of the power conversion efficiency and reduction of the fabrication cost. Generally, developing low cost counter electrode catalysts to replace the expensive Pt counter electrode is a feasible path to reduce the production cost of DSCs. In this review article, we summarize the recent progress on the transition metal compound based counter electrode catalysts containing carbides, nitrides, oxides, sulfides, phosphide, selenides, borides, silicide, and telluride toward the regeneration of the traditional iodide redox couple.Moreover, the benefits and drawbacks of each kind of CE catalyst are discussed and the research directions to design new counter electrode catalysts in future research are also proposed.展开更多
A Microbial fuel cell(MFC)with metal free polymer/graphite electrodes(150 mm×150 mm)was constructed.The electrodes with flowing channels,which were different in roughness,were designed.No additional catalyst was ...A Microbial fuel cell(MFC)with metal free polymer/graphite electrodes(150 mm×150 mm)was constructed.The electrodes with flowing channels,which were different in roughness,were designed.No additional catalyst was coated on the electrode,therefore the MFC was cheaper and possessed good durability with high performance.The effect of roughness,K3Fe(CN)6 concentration and sprayed air on the performance of the constructed MFC was investigated.Results showed that the roughness of electrode can significantly affect the performance of MFC.The power density of MFC increased by 1.56 times owing to the arithmetic mean roughness which has increased by 1.41 times.With an increasing K3Fe(CN)6 concentration,the performance of MFC also improves.The MFC with K3Fe(CN)6 only(30 mM)showed the highest power density of 1260 mW/m2,which is by 21.4 times and 1.3 times higher than those of MFCs with spraying air only(59 mW/m2)and with K3Fe(CN)6+air(1005 mW/m2),respectively.This showed that the appropriate concentration of K3Fe(CN)6 can significantly improve the power density,while the air has a negative effect when it is sprayed onto K3Fe(CN)6 catholyte.A coulombic efficiency of 34.2%and an energy efficiency of 13.3%with a COD degradation rate of 73.5%were achieved with MFC using K3Fe(CN)6 only.The overpotentials of MFC were also calculated.It can be seen that both theηohmic andηconcentration were very low as compared to theηactivation,and theηconcentration can be ignored because its effect was less than 3 mV.The theoretical calculation suggested that with an increasing conversion rate of K3Fe(CN)6,the cathode potential decreased and reached 0.31 V at a conversion rate of 0.99.While the anode behaves differently for constant pH and changeable pH as the reaction progresses,which reveals that the buffer solution and removal of protons play an important role in maintaining the anode potential.展开更多
基金supported by the National Key Research and Development Project of China(2019YFC1804802)。
文摘Heavy metals,notably Pb2+and Cu^(2+),are some of the most persistent contaminants found in groundwater.Frequent monitoring of these metals,which relies on efficient,sensitive,cost-effective,and reliable methods,is a necessity.We present a nanocomposite-based miniaturized electrode for the concurrent measurement of Pb2+and Cu^(2+)by exploiting the electroanalytical technique of square wave voltammetry.We also propose a facile in situ hydrothermal calcination method to directly grow binder-free mesoporous Ni O on a three-dimensional nickel foam,which is then electrochemically seeded with gold nanoparticles(Au NPs).The meticulous design of a low-barrier Ohmic contact between mesoporous Ni O and Au NPs facilitates target-mediated nanochannel-confined electron transfer within mesoporous Ni O.As a result,the heavy metals Pb2+(0.020 mg.L^(-1)detection limit;2.0–16.0 mg.L^(-1)detection range)and Cu^(2+)(0.013 mg.L^(-1)detection limit;0.4–12.8 mg.L^(-1)detection range)can be detected simultaneously with high precision.Furthermore,other heavy metal ions and common interfering ions found in groundwater showed negligible impacts on the electrode’s performance,and the recovery rate of groundwater samples varied between 96.3%±2.1%and 109.4%±0.6%.The compactness,flexible shape,low power consumption,and ability to remotely operate our electrode pave the way for onsite detection of heavy metals in groundwater,thereby demonstrating the potential to revolutionize the field of environmental monitoring.
基金The authors would like to acknowledge the financial support sponsored by Ten-thousand Talents Program,K.C.Wong Pioneer Talent Program,Shanghai Pujiang Program (Grant No.19PJ1410600)the National Natural Science Foundation of China (Grant No.51901240).
文摘Aqueous rechargeable zinc batteries are very attractive for energy storage applications due to their low cost and high safety.However,low operating voltages limit their further development.For the first time,this work proposes a unique approach to increase the voltages of aqueous zinc batteries by using tri-functional metallic bipolar electrode with good electrochemical activity and ultrahigh electronic conductivity,which not only participates in redox reactions,but also functions as an electrical highway for charge transport.Furthermore,bipolar electrode can replace expensive ion selective membrane to separate electrolytes with different pH;thus,redox couples with higher potential in acid condition and Zn=Zn(OH)^(2-)_(4) couple with lower potential in alkaline condition can be employed together,leading to high voltages of aqueous zinc batteries.Herein,two types of metallic bipolar electrodes of Cu and Ag are utilized based on three kinds of aqueous zinc batteries:Zn–MnO_(2),Zn–I_(2),and Zn–Br_(2).The voltage of aqueous Zn–MnO_(2) battery is raised to 1.84 V by employing one Cu bipolar electrode,which shows no capacity attenuation after 3500 cycles.Moreover,the other Ag bipolar electrode can be adopted to successfully construct Zn–I_(2) and Zn–Br_(2) batteries exhibiting much higher voltages of 2.44 and 2.67 V,which also show no obvious capacity degradation for 1000 and 800 cycles,representing decent cycle stability.Since bipolar electrode can be applied in a large family of aqueous batteries,this work offers an elaborate high-voltage concept based on tri-functional metallic bipolar electrode as a model system to open a door to explore high-voltage aqueous batteries.
基金the financial support from the National Natural Science Foundation of China(Nos.22205191 and 52002346)the Science and Technology Innovation Program of Hunan Province(No.2021RC3109)+1 种基金the Natural Science Foundation of Hunan Province,China(No.2022JJ40446)Guangxi Key Laboratory of Low Carbon Energy Material(No.2020GXKLLCEM01)。
文摘The concentration difference in the near-surface region of lithium metal is the main cause of lithium dendrite growth.Resolving this issue will be key to achieving high-performance lithium metal batteries(LMBs).Herein,we construct a lithium nitrate(LiNO_(3))-implanted electroactiveβphase polyvinylidene fluoride-co-hexafluoropropylene(PVDF-HFP)crystalline polymorph layer(PHL).The electronegatively charged polymer chains attain lithium ions on the surface to form lithium-ion charged channels.These channels act as reservoirs to sustainably release Li ions to recompense the ionic flux of electrolytes,decreasing the growth of lithium dendrites.The stretched molecular channels can also accelerate the transport of Li ions.The combined effects enable a high Coulombic efficiency of 97.0%for 250 cycles in lithium(Li)||copper(Cu)cell and a stable symmetric plating/stripping behavior over 2000 h at 3 mA cm^(-2)with ultrahigh Li utilization of 50%.Furthermore,the full cell coupled with PHL-Cu@Li anode and Li Fe PO_(4) cathode exhibits long-term cycle stability with high-capacity retention of 95.9%after 900 cycles.Impressively,the full cell paired with LiNi_(0.87)Co_(0.1)Mn_(0.03)O_(2)maintains a discharge capacity of 170.0 mAh g^(-1)with a capacity retention of 84.3%after 100 cycles even under harsh condition of ultralow N/P ratio of 0.83.This facile strategy will widen the potential application of LiNO_(3)in ester-based electrolyte for practical high-voltage LMBs.
基金supported by National Undergraduate Training Programs for Innovations[grant number 202210225259]the Outstanding Youth Project of Natural Science Foundation in Heilongjiang Province(YQ2022E040)+3 种基金the Shandong Provincial Natural Science Foundation(ZR2022ME166)the Postdoctoral Scientific Research Developmental Fund of Heilongjiang Province(LBH-Q20023)the University Nursing Program for Young Scholars with Creative Talents in Heilongjiang Province(UNPYSCT-2020197)the 111 Project(B20088).
文摘Supercapacitors(SCs)are considered promising energy storge systems because of their outstanding power density,fast charge and discharge rate and long-term cycling stability.The exploitation of cheap and efficient electrode materials is the key to improve the performance of supercapacitors.As the battery-type materials,transition metal phosphides(TMPs)possess high theoretical specific capacity,good electrical conductivity and superior structural stability,which have been extensively studied to be electrode materials for supercapacitors.In this review,we summarize the up-to-date progress on TMPs materials from diversified synthetic methods,diverse nanostructures and several prominent TMPs and their composites in application of supercapacitors.In the end,we also propose the remaining challenges toward the rational discovery and synthesis of high-performance TMP electrodes materials for energy storage.
基金the National Research Foundation of Korea(NRF)The specific grants that facilitated this study include No.2021R1A5A8033165,RS-2023-00249229,2022M3J1A1085371,and 2023R1A2C1007386+1 种基金supported by the Human Resource Program in Energy Technology of the Korea Institute of Energy Technology Evaluation and Planning(KETEP),under grant No.20214000000200funded by the Ministry of Science and ICT(MSIT),the Ministry of Education,and the Ministry of Trade,Industry&Energy of the Republic of Korea.
文摘The relation between the structure of the silver network electrodes and the properties of Cu(In,Ga)Se_(2)(CIGS)solar cells is systemically investigated.The Ag network electrode is deposited onto an Al:ZnO(AZO)thin film,employing a self-forming cracked template.Precise control over the cracked template's structure is achieved through careful adjustment of temperature and humidity.The Ag network electrodes with different coverage areas and network densities are systemically applied to the CIGS solar cells.It is revealed that predominant fill factor(FF)is influenced by the figure of merit of transparent conducting electrodes,rather than sheet resistance,particularly when the coverage area falls within the range of 1.3–5%.Furthermore,a higher network density corresponds to an enhanced FF when the coverage areas of the Ag networks are similar.When utilizing a thinner AZO film,CIGS solar cells with a surface area of 1.0609 cm^(2)exhibit a notable performance improvement,with efficiency increasing from 10.48%to 11.63%.This enhancement is primarily attributed to the increase in FF from 45%to 65%.These findings underscore the considerable potential for reducing the thickness of the transparent conductive oxide(TCO)in CIGS modules with implications for practical applications in photovoltaic technology.
基金performed within the framework of the State assignment of the IHCE SB RAS,project No.FWRM-2021-0014.
文摘The development of a nanosecond discharge in a pin-to-pin gap filled with air at atmospheric pressure has been studied with high temporal and spatial resolutions from a breakdown start to the spark decay.Positive and negative nanosecond voltage pulses with an amplitude of tens of kilovolts were applied.Time-resolved images of the discharge development were taken with a fourchannel Intensified Charge Coupled Device(ICCD)camera.The minimum delay between the camera channels could be as short as≈0.1 ns.This made it possible to study the gap breakdown process with subnanosecond resolution.It was observed that a wide-diameter streamer develops from the high-voltage pointed electrode.The ionization processes near the grounded pin electrode started when the streamer crossed half of the gap.After bridging the gap by the streamer,a diffuse discharge was formed.The development of spark leaders from bright spots on the surface of the pointed electrodes was observed at the next stage.It was found that the rate of development of the spark leader is an order of magnitude lower than that of the wide-diameter streamer.Long thin luminous tracks were observed against the background of a discharge plasma glow.It has been established that the tracks are adjacent to brightly glowing spots on the electrodes and are associated with the flight of small particles.
基金National Natural Science Foundation of China (22222902, 22209062)Natural Science Foundation of the Jiangsu Higher Education Institutions of China (22KJB150004)+1 种基金Youth Talent Promotion Project of Jiangsu Association for Science and Technology of China (JSTJ-2022-023)Undergraduate Innovation and Entrepreneurship Training Program (202310320066Z)。
文摘In the pursuit of ultrathin polymer electrolyte(<20 μm) for lithium metal batteries, achieving a balance between mechanical strength and interfacial stability is crucial for the longevity of the electrolytes.Herein, 11 μm-thick gel polymer electrolyte is designed via an integrated electrode/electrolyte structure supported by lithium metal anode. Benefiting from an exemplary superiority of excellent mechanical property, high ionic conductivity, and robust interfacial adhesion, the in-situ formed polymer electrolyte reinforced by titanosiloxane networks(ISPTS) embodies multifunctional roles of physical barrier, ionic carrier, and artificial protective layer at the interface. The potent interfacial interactions foster a seamless fusion of the electrode/electrolyte interfaces and enable continuous ion transport. Moreover, the built-in ISPTS electrolyte participates in the formation of gradient solid-electrolyte interphase(SEI) layer, which enhances the SEI's structural integrity against the strain induced by volume fluctuations of lithium anode.Consequently, the resultant 11 μm-thick ISPTS electrolyte enables lithium symmetric cells with cycling stability over 600 h and LiFePO_(4) cells with remarkable capacity retention of 96.6% after 800 cycles.This study provides a new avenue for designing ultrathin polymer electrolytes towards stable, safe,and high-energy–density lithium metal batteries.
文摘Welding spatter cause many problems during the welding process and this issue is particularly important for cellulose electrode welding. The hot flying spatter balls often deteriorate the working environment, and decrease the welding efficiency. Many factors affect the welding spatter, and metal transfer behavior is one of the main factors. Many studies concerning the spatter mechanism in arc welding process were made; most of them focused on the solid wire welding and the study on cellulose electrode is rarely reported. In this paper the metal transfer behavior and the weld spatter characteristics of three commercial cellulose electrodes were studied experimentally by using a high speed camera for visually capturing the metal transfer. The relationship between the metal transfer and the welding spatter was analyzed experimentally by comparing the spatter loss coefficient, which is for quantitative evaluation of welding spatter, with the statistical analysis of the large droplet transfer mode. The results showed that short circuiting transfer, large droplet spray transfer, fine droplet spray transfer and explosive transfer govern the metal transfer modes in cellulose electrode welding. Weld spatter occurred mainly in the deflection of large droplet process, explosive transfer process and fine droplet spraying process. Different metal transfer modes lead to different spatter. The deflection of large droplet and explosive transfer are the main factors of the spatter formation. Minimizing the droplet size and reducing the deflection of large droplet and explosive transfer leads to the reduction the amount of spatter in cellulose electrode welding.
基金the CAS Strategic Priority Project(No.XDA13040404)the National Natural Science Foundation of China for Exploring Key Scientific Instrument(No.41827805)the Shandong Key Laboratory of Corrosion Science。
文摘Corrosion protection has become an important issue as the amount of infrastructure construction in marine environment increased.Photocathodic protection is a promising method to reduce the corrosion of metals,and titanium dioxide(TiO2) is the most widely used photoanode.This review summarizes the progress in TiO2 photo gene rated protection in recent years.Different types of semiconductors,including sulfides,metals,metal oxide s,polymers,and other materials,are used to design and modify TiO2.The strategy to dramatically improve the efficiency of photoactivity is proposed,and the mechanism is investigated in detail.Characterization methods are also introduced,including morphology testing,light absorption,photoelectrochemistry,and protected metal observation.This review aims to provide a comprehensive overview of Ti02 development and guide photocathodic protection.
基金This project is supported by Provincial Natural Science Foundation of Shanxi (No.546).
文摘A high-speed photographic method is mainly used to analyze metal transfer ofa cellulose covered electrode in the vertical down welding. The experimental results show that finedroplets spraying transfer and globular transfer are the dominant transfer characteristic. The largedroplet spatter, especially the upwards spatter, is a particular phenomenon. It is found that thecombination action of gas blow force, surface tension, gravitational force and electromagnetic forcelead to globular transfer. Gravitational force and electromagnetic force, which hasten big dropletspatter, should not be neglected.
基金supported by National Natural Science Foundation of China(No.51207125)State Key Laboratory of Electrical Insulation and Power Equipment of China(No.EIPE13312)
文摘The effect of arc plasma on electrode erosion in a liquid metal current limiter (LMCL) is studied. Based on a simplified two-dimensional magnetohydrodynamic model, the elongated GaInSn metal vapor arc and its contraction process in a liquid metal current limiter are simulated. The distributions of temperature, pressure and velocity of the arc plasma are calculated. The simulation results indicate that the electrode erosion is mainly caused by two high temperature gas jet flows arising from the pressure gradient, which is a result of the non-uniform arc temperature distribution. The gas flows, which act as jets onto the electrode surface, lead to the evaporation of the electrode material form the surface. A redesign structure of the electrode is proposed and implemented according to the analysis, which greatly increased the service life of the electrode.
基金Supported by the Science Foundation of Jilin Province( No.980 5 6 2
文摘The Ni(OH) 2 film electrodes doped respectively with alkali-earth metal aluminum, lead, partial transition metal and some rare-earth metal(altogether 17 kinds of metals) ions were prepared by cathode electrodeposition. The electrode reaction reversibility, the difficult extent of oxygen evolution, the proton diffusion coefficient, the discharge potential of middle value and the active material utilization of the Ni(OH) 2 film electrode were compared with those of the ones doped with the metal ions by means of cyclic voltammetry, potential step and constant current charge-discharge experiments. It was found that Ca 2+ , Co 2+ , Cd 2+ , Al 3+ etc. have obviously positive effect.
基金support from Natural Science Foundation of Jiangsu Province (ProjectNo. BK2007130)National Natural Science Foundation of China (Grant Nos. 10874065, 60576023 and 60636010)+3 种基金Ministry of Science and Technology of China (Grant No.2009CB929503)Ministry of Science and Technology of China (Grant Nos. 2009CB929503 and2009ZX02101-4)the project sponsored by the Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education MinistryNational Found for Fostering Talents of Basic Science (NFFTBS) (ProjectNo. J0630316)
文摘The decreasing feature sizes in complementary metal-oxide semiconductor (CMOS) transistor technology will require the replacement of SiO2 with gate dielectrics that have a high dielectric constant (high-k) because as the SiO2 gate thickness is reduced below 1.4 nm, electron tunnelling effects and high leakage currents occur in SiO2, which present serious obstacles to future device reliability. In recent years significant progress has been made on the screening and selection of high-k gate dielectrics, understanding their physical properties, and their integration into CMOS technology. Now the family of hafnium oxide-based materials has emerged as the leading candidate for high-k gate dielectrics due to their excellent physical properties. It is also realized that the high-k oxides must be implemented in conjunction with metal gate electrodes to get sufficient potential for CMOS continue scaling. In the advanced nanoscale Si-based CMOS devices, the composition and thickness of interfacial layers in the gate stacks determine the critical performance of devices. Therefore, detailed atomic- scale understandings of the microstructures and interfacial structures built in the advanced CMOS gate stacks, are highly required. In this paper, several high-resolution electron, ion, and photon-based techniques currently used to characterize the high-k gate dielectrics and interfaces at atomic-scale, are reviewed. Particularly, we critically review the research progress on the characterization of interface behavior and structural evolution in the high-k gate dielectrics by high-resolution transmission electron microscopy (HRTEM) and the related techniques based on scanning transmission electron microscopy (STEM), including high-angle annular dark- field (HAADF) imaging (also known as Z-contrast imaging), electron energy-loss spectroscopy (EELS), and energy dispersive X-ray spectroscopy (EDS), due to that HRTEM and STEM have become essential metrology tools for characterizing the dielectric gate stacks in the present and future generations of CMOS devices. In Section 1 of this review, the working principles of each technique are briefly introduced and their key features are outlined. In Section 2, microstructural characterizations of high-k gate dielectrics at atomic-scale by electron microscopy are critically reviewed by citing some recent results reported on high-k gate dielectrics. In Section 3, metal gate electrodes and the interfacial structures between high-k dielectrics and metal gates are discussed. The electron beam damage effects in high-k gate stacks are also evaluated, and their origins and prevention are described in Section 4. Finally, we end this review with personal perspectives towards the future challenges of atomic-scale material characterization in advanced CMOS gate stacks.
基金supported by the National Key Research and Development Program of China(Grant No.2016YFB0100100)the National Natural Science Foundation of China(Grants Nos.52315206 and 51502334)the Fund from Beijing Municipal Science&Technology Commission,China(Grants No.D171100005517001)
文摘The effects of different coating layers on lithium metal anode formed by reacting with different controlled atmospheres(argon,CO_2–O_2(2:1),N_2,and CO_2–O_2–N_2(2:1:3))have been investigated.The obtained XRD,second ion mass spectroscopy(SIMS),and scanning probe microscope(SPM)results demonstrate the formation of coating layers composed of Li_2CO_3,Li_3N,and the mixture of them on lithium tablets,respectively.The Li/Li symmetrical cell and Li/S cell are assembled to prove the advantages of the protected lithium tablet on electrochemical performance.The comparison of SEM and SIMS characterizations before/after cycles clarifies that an SEI-like composition formed on the lithium tablets could modulate the interfacial stabilization between the lithium foil and the ether electrolyte.
基金supported by the National Natural Science Foundation of China(Grant No.51705054)Scientific and Technological Research Program of Chongqing Municipal Education Commission(Grant No.KJ 1600903)
文摘In present paper, the metal vapour behavior in double electrodes TIG welding was investigated by a numerical model, including the arc plasma and weld pool. The thermodynamic parameters and transport coefficients of the arc plasma were dependent on both the local temperature and the mass ratio of the metal vapour. A second viscosity approximation was used to formulate the diffusion coefficient of the metal vapour in the arc plasma. The temperature and flow fields together with the metal vapour concentration were simulated, and the influences of metal vapour on the arc plasma and the weld pool were analyzed. It was found that the metal vapour transport in the arc plasma was significantly influenced by the flow of the arc plasma, and the distribution of the metal vapour was more extended in the direction perpendicular to the line through the double electrodes tips. Both the arc plasma and the heat flux at the weld pool were constricted by the presence of the metal vapour, while the metal vapour had a minor effect on the total heat input to the work piece and the weld pool profile as a whole.
基金supported by the National Key R&D Program of China(2016YFA0202500)the Natural Science Foundation of China(51803054,51772093)+1 种基金the Natural Science Foundation of Hunan province(2020JJ3022,2019JJ50223,2019JJ20010)the foundation from Education Department of Hunan Province(19B270,SYL201802008)。
文摘In recent years,the pursuit of high-efficiency electrochemical storage technology,the multivalent metalion batteries (MIBs) based on aqueous electrolytes have been widely explored by researchers because of their safety,environmental friendliness,abundant reserves and low price,and especially the merits in energy and power densities.This review firstly expounds on the problems existing in the electrode materials of aqueous multivalent MIBs (Zn^(2+),Mg^(2+),Al^(3+),Ca^(2+)),from the classical inorganic materials to the emerging organic compounds,and then summarizes the design strategies in bulk and interface structure of electrodes with favorable kinetics and stable cycling performance,especially laying the emphasis on the charge storage mechanism of cathode materials and dendrite-free Zinc anode from the aspect of electrolyte optimization strategies,which can be extended to other aqueous multivalent MIBs.Ultimately,the possible development directions of the aqueous multivalent MIBs in the future are provided,anticipating to provide a meaningful guideline for researchers in this area.
基金sponsored by the National Natural Science Foundation of China(U1904216)the QIBEBT I201922,Dalian National Laboratory for Clean Energy(DNL),CAS。
文摘Sodium metal battery(SMB)technology is one of the most promising candidates for next-generation rechargeable energy storage systems due to its high theoretical capacity and economical costeffectiveness.Unfortunately,its practical implementation is hindered by several challenges including short life-span and fast capacity decay,which is closely related to the uncontrollable generation of the sodium dendrites.Herein,a nitrogen and oxygen co-doped three-dimensional carbon cloth with hollow tubular fiber units was constructed as the host material for Na plating(Na@CC)to tackle these challenges.The obtained composite electrode can effectively reduce the nucleation overpotential of Na,guide the homogeneous Na^(+)flux,increase the kinetics of Na electrodeposition,lower the effective current density and eventually suppress the formation of electrochemically inactive Na dendrites.As a result,batteries built with the Na@CC composites exhibited stable long-term cycling stability.To gain an in-depth and comprehensive understanding of such phenomena,non-destructive and three-dimensional synchrotron X-ray tomography was employed to investigate the cycled batteries.Moreover,the COMSOL Multiphysics simulation was further employed to reveal the Na electrodeposition mechanisms.The current work not only showcases the feasibility of currently proposed sodiophilic 3 D Na@CC composite electrode but also provides fundamental insights into the underlying working mechanisms that govern its outstanding electrochemical performance.
基金National Research Foundation of Korea,Grant/Award Numbers:NRF-2019R1A2C1084836,NRF-2021R1A4A2001403,NRF-2022R1C1C1011484。
文摘Zinc metal anodes(ZMA)have high theoretical capacities(820 mAh g−1 and 5855 mAh cm−3)and redox potential(−0.76 V vs.standard hydrogen electrode),similar to the electrochemical voltage window of the hydrogen evolution reaction(HER)in a mild acidic electrolyte system,facilitating aqueous zinc batteries competitive in next-generation energy storage devices.However,the HER and byproduct formation effectuated by water-splitting deteriorate the electrochemical performance of ZMA,limiting their application.In this study,a key factor in promoting the HER in carbon-based electrode materials(CEMs),which can provide a larger active surface area and guide uniform zinc metal deposition,was investigated using a series of threedimensional structured templating carbon electrodes(3D-TCEs)with different local graphitic orderings,pore structures,and surface properties.The ultramicropores of CEMs are the determining critical factors in initiating HER and clogging active surfaces by Zn(OH)2 byproduct formation,through a systematic comparative study based on the 3D-TCE series samples.When the 3D-TCEs had a proper graphitic structure with few ultramicropores,they showed highly stable cycling performances over 2000 cycles with average Coulombic efficiencies of≥99%.These results suggest that a well-designed CEM can lead to high-performance ZMA in aqueous zinc batteries.
基金supported by National Natural Science Foundation of China(21303039)Natural Science Foundation of Hebei Province(B2015205163,B2013205171)+1 种基金Support Program for Hundred Excellent Innovation Talents from the Universities of Hebei Province,(BR2-220)supported by Science Foundation of Hebei Normal University(L2016J02)
文摘Commercial application of the dye-sensitized solar cells(DSCs) depends on great improvement of the power conversion efficiency and reduction of the fabrication cost. Generally, developing low cost counter electrode catalysts to replace the expensive Pt counter electrode is a feasible path to reduce the production cost of DSCs. In this review article, we summarize the recent progress on the transition metal compound based counter electrode catalysts containing carbides, nitrides, oxides, sulfides, phosphide, selenides, borides, silicide, and telluride toward the regeneration of the traditional iodide redox couple.Moreover, the benefits and drawbacks of each kind of CE catalyst are discussed and the research directions to design new counter electrode catalysts in future research are also proposed.
基金The authors would like to thank the Federal Ministry of Education and Research(Bundesministerium für Bildung und Forschung),BMBF,Germany,for funding parts of this study under the contract No.02WER1317D.
文摘A Microbial fuel cell(MFC)with metal free polymer/graphite electrodes(150 mm×150 mm)was constructed.The electrodes with flowing channels,which were different in roughness,were designed.No additional catalyst was coated on the electrode,therefore the MFC was cheaper and possessed good durability with high performance.The effect of roughness,K3Fe(CN)6 concentration and sprayed air on the performance of the constructed MFC was investigated.Results showed that the roughness of electrode can significantly affect the performance of MFC.The power density of MFC increased by 1.56 times owing to the arithmetic mean roughness which has increased by 1.41 times.With an increasing K3Fe(CN)6 concentration,the performance of MFC also improves.The MFC with K3Fe(CN)6 only(30 mM)showed the highest power density of 1260 mW/m2,which is by 21.4 times and 1.3 times higher than those of MFCs with spraying air only(59 mW/m2)and with K3Fe(CN)6+air(1005 mW/m2),respectively.This showed that the appropriate concentration of K3Fe(CN)6 can significantly improve the power density,while the air has a negative effect when it is sprayed onto K3Fe(CN)6 catholyte.A coulombic efficiency of 34.2%and an energy efficiency of 13.3%with a COD degradation rate of 73.5%were achieved with MFC using K3Fe(CN)6 only.The overpotentials of MFC were also calculated.It can be seen that both theηohmic andηconcentration were very low as compared to theηactivation,and theηconcentration can be ignored because its effect was less than 3 mV.The theoretical calculation suggested that with an increasing conversion rate of K3Fe(CN)6,the cathode potential decreased and reached 0.31 V at a conversion rate of 0.99.While the anode behaves differently for constant pH and changeable pH as the reaction progresses,which reveals that the buffer solution and removal of protons play an important role in maintaining the anode potential.