In this paper are reported the characteristics and nature of metal fog in molten cryolite-alumina mixtures on the basis of laboratory experiments and quantum chemistry studies.The metal fog is the finely divided metal...In this paper are reported the characteristics and nature of metal fog in molten cryolite-alumina mixtures on the basis of laboratory experiments and quantum chemistry studies.The metal fog is the finely divided metal particles in the molten salts, and it dissolves partly in the molten cryolite to form atomic clusters,such as(Al_nNa_m)^(x+) type.展开更多
A simple preparation of ultrathin nanoporous gold film was described. Copper and gold were used to fabricate Cu-Au alloy films through vacuum deposition. The formation of nanoporous gold films from the alloy films inv...A simple preparation of ultrathin nanoporous gold film was described. Copper and gold were used to fabricate Cu-Au alloy films through vacuum deposition. The formation of nanoporous gold films from the alloy films involved thermal process and chemical etch by hydrochloric acid or by nitric acid. The free-standing nanoporous gold films have been analyzed by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectrometer (XPS) and surface-enhanced Raman scattering (SELLS). R was noted that the nanoporous gold film etched by hydrochloric acid is uniform with a cover of fog-like moieties.展开更多
To investigate the fog chemistry along the Yangtze River basin, a field observation experiment was performed from Shanghai to Vv'uhan during November 2015. Fifteen fog water samples were collected by using a three-st...To investigate the fog chemistry along the Yangtze River basin, a field observation experiment was performed from Shanghai to Vv'uhan during November 2015. Fifteen fog water samples were collected by using a three-stage Caltech Active Strand Cloud water Collector (CASCC). The three-stage CASCC was mounted on the board of a ship. PH, electrical conductivity (EC), H202, HCHO, S(ll0, ten inorganic ions, seven organicacids and sixteen trace metal elements were measured in this study. The pH of fog water samples ranged from weakly acidic (pH 4.3) to weakly alkaline (pH 7.05) and the EC ranged from 32.4 to 436.3 μS/cm. The main cations in fog water were NH^4+ and Ca2+, accounting for 12.35% and 29.07% of those inorganic ions, respectively. In addition, SO24- and NO^-3 contributed to 25.52% and 12.93% to total anion concentrations respectively. Moreover, the dominant kinds of organicacids were formate and oxalate, occupying 45.28% and 28.03% of the total organicacids, respectively. For trace metal elements in fog samples, Al, Fe, Zn, and Ba revealed 34.6%, 16.4%, 19.3%, and 20.9% contributions to these sixteen trace element concentrations, respectively. The results indicated that pollutants were mainly from human activities, including fossil fuel combustion, biomass burning, steel-making, stone quarrying and sand digging. Besides, natural sources including natural background levels and long-range transport of sea salt particles also aggravated the pollution levels in the fog events along the Yangtze River.展开更多
文摘In this paper are reported the characteristics and nature of metal fog in molten cryolite-alumina mixtures on the basis of laboratory experiments and quantum chemistry studies.The metal fog is the finely divided metal particles in the molten salts, and it dissolves partly in the molten cryolite to form atomic clusters,such as(Al_nNa_m)^(x+) type.
基金This work was supported by the National Natural Science Foundation of China(No.60171008)Shanghai Science and Technology Committee(No.0214nm005,No.0452nm087).
文摘A simple preparation of ultrathin nanoporous gold film was described. Copper and gold were used to fabricate Cu-Au alloy films through vacuum deposition. The formation of nanoporous gold films from the alloy films involved thermal process and chemical etch by hydrochloric acid or by nitric acid. The free-standing nanoporous gold films have been analyzed by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectrometer (XPS) and surface-enhanced Raman scattering (SELLS). R was noted that the nanoporous gold film etched by hydrochloric acid is uniform with a cover of fog-like moieties.
基金supported by the National Natural Science Foundation of China (Nos. 41605113, 41375126)the Taishan Scholar Grand (No. ts20120552)
文摘To investigate the fog chemistry along the Yangtze River basin, a field observation experiment was performed from Shanghai to Vv'uhan during November 2015. Fifteen fog water samples were collected by using a three-stage Caltech Active Strand Cloud water Collector (CASCC). The three-stage CASCC was mounted on the board of a ship. PH, electrical conductivity (EC), H202, HCHO, S(ll0, ten inorganic ions, seven organicacids and sixteen trace metal elements were measured in this study. The pH of fog water samples ranged from weakly acidic (pH 4.3) to weakly alkaline (pH 7.05) and the EC ranged from 32.4 to 436.3 μS/cm. The main cations in fog water were NH^4+ and Ca2+, accounting for 12.35% and 29.07% of those inorganic ions, respectively. In addition, SO24- and NO^-3 contributed to 25.52% and 12.93% to total anion concentrations respectively. Moreover, the dominant kinds of organicacids were formate and oxalate, occupying 45.28% and 28.03% of the total organicacids, respectively. For trace metal elements in fog samples, Al, Fe, Zn, and Ba revealed 34.6%, 16.4%, 19.3%, and 20.9% contributions to these sixteen trace element concentrations, respectively. The results indicated that pollutants were mainly from human activities, including fossil fuel combustion, biomass burning, steel-making, stone quarrying and sand digging. Besides, natural sources including natural background levels and long-range transport of sea salt particles also aggravated the pollution levels in the fog events along the Yangtze River.