The trend in die/mold manufacturing at present is towards the hard machining at high speed to replace the electron dis- charge machining. Failure forms of the AlTiN-coated micro-grain carbide endmill when used for th...The trend in die/mold manufacturing at present is towards the hard machining at high speed to replace the electron dis- charge machining. Failure forms of the AlTiN-coated micro-grain carbide endmill when used for the machining of JIS SKD61 (HRC 53), a widely used material in die/mold manufacturing, are investigated. The endmill shows a characteristic that tool life decreases greatly due to the chipping when overload occurs or the rapid increase of wear when over-heat accumulation in cutting edges. As a consequence of the investigation, a strategy to regulate heat generation in the end milling process is proposed. This is accomplished by controlling the cutting arc length, i.e. the length of each flute engaging workpiece in a cutting cycle. Case studies on the slot end milling and comer rounding are conducted. The results show that the proposed strategy suggests the optimal tool path as well as the optimal pitch between successive tool paths under the cutting time criterion.展开更多
During deep penetration laser welding,there exist plume(weak plasma) and spatters,which are the results of weld material ejection due to strong laser heating.The characteristics of plume and spatters are related to ...During deep penetration laser welding,there exist plume(weak plasma) and spatters,which are the results of weld material ejection due to strong laser heating.The characteristics of plume and spatters are related to welding stability and quality.Characteristics of metallic plume and spatters were investigated during high-power disk laser bead-on-plate welding of Type 304 austenitic stainless steel plates at a continuous wave laser power of 10 kW.An ultraviolet and visible sensitive high-speed camera was used to capture the metallic plume and spatter images.Plume area,laser beam path through the plume,swing angle,distance between laser beam focus and plume image centroid,abscissa of plume centroid and spatter numbers are defined as eigenvalues,and the weld bead width was used as a characteristic parameter that reflected welding stability.Welding status was distinguished by SVM(support vector machine) after data normalization and characteristic analysis.Also,PCA(principal components analysis) feature extraction was used to reduce the dimensions of feature space,and PSO(particle swarm optimization) was used to optimize the parameters of SVM.Finally a classification model based on SVM was established to estimate the weld bead width and welding stability.Experimental results show that the established algorithm based on SVM could effectively distinguish the variation of weld bead width,thus providing an experimental example of monitoring high-power disk laser welding quality.展开更多
Soft robot is a kind of machine form with flexible deformation capability. Making flexible actuators has recently become a hot research topic in the field. In this study, we demonstrated the facile fabrication of a so...Soft robot is a kind of machine form with flexible deformation capability. Making flexible actuators has recently become a hot research topic in the field. In this study, we demonstrated the facile fabrication of a soft electromagnetic actuator using liquid metal coil of Ga-In alloys, and designed several illustrative mechanical devices, such as jellyfish like robot, soft fishtail and flexible manipulator. Measurements of the liquid metal coil's electrical properties confirmed that the liquid metal coil was mechanically stable under 48% uniaxial strains. Furthermore, the resistance of the liquid metal coil is stable under 60° bending deformation. Tests on the liquid metal coil's driving properties confirmed that the liquid metal coil(55 mm×55 mm×1 mm) could reach the maximum displacement amplitude of 21.5 mm with the current of 0.48 A. It was shown that the electromagnetic interaction between the magnet and the liquid metal coil enables the coil as a highly efficient actuator. The mechanisms lying behind were interpreted and future applications of such system were discussed.展开更多
In the present work, the wire electrical discharge machining(WEDM) process of the 65 vol% SiCp/2024 Al composite prepared by pressure infiltration methods has been investigated. The microstructure of the machined co...In the present work, the wire electrical discharge machining(WEDM) process of the 65 vol% SiCp/2024 Al composite prepared by pressure infiltration methods has been investigated. The microstructure of the machined composite was characterized by scanning electron microscope, the average surface roughness(Ra), X-ray diffraction, X-ray photoelectron spectroscopy and transmission electron microscopy(TEM) techniques. Three zones from the surface to the interior(melting zone, heat affected zone and un-affected zone) were found in the machined composites, while the face of SiC particles on the surface toward the outside was ‘‘cut'' to be flat. Increase in Al and Si but decrease in C and O were observed in the core areas of the removed particles. Si phase, which was generated due to the decomposition of SiC, was detected after the WEDM process. The irregular and spherical particles were further observed by TEM. Based on the microstructure observation, it is suggested that the machining mechanism of 65 vol% SiCp/2024 Al composite was the combination of the melting of Al matrix and the decomposition of SiC particles.展开更多
Abstract The compliance of an integrated approach, principal component analysis (PCA), coupled with Tagu chi's robust theory for simultaneous optimization of cor related multiple responses of wire electrical discha...Abstract The compliance of an integrated approach, principal component analysis (PCA), coupled with Tagu chi's robust theory for simultaneous optimization of cor related multiple responses of wire electrical discharge machining (WEDM) process for machining SiCp rein forced ZC63 metal matrix composites (MMCs) is investi gated in this work. The WEDM is proven better for its efficiency to machine MMCs among others, while the particulate size and volume percentage of SiCp with the composite are the utmost important factors. These improve the mechanical properties enormously, however reduce the machining performance. Hence the WEDM experiments are conducted by varying the particulate size, volume fraction, pulseon time, pulseoff time and wire tension. In the view of quality cut, the most important performance indicators of WEDM as surface roughness (Ra), metal removal rate (MRR), wire wear ratio (WWR), kerf (Kw) and white layer thickness (WLT) are measured as respon ses. PCA is used as multiresponse optimization technique to derive the composite principal component (CPC) which acts as the overall quality index in the process. Consequently, Taguchi's S/N ratio analysis is applied to optimize the CPC. The derived optimal process responses are confirmed by the experimental validation tests results. The analysis of vari ance is conducted to find the effects of choosing process variables on the overall quality of the machined component.The practical possibility of the derived optimal process conditions is also presented using SEM.展开更多
文摘The trend in die/mold manufacturing at present is towards the hard machining at high speed to replace the electron dis- charge machining. Failure forms of the AlTiN-coated micro-grain carbide endmill when used for the machining of JIS SKD61 (HRC 53), a widely used material in die/mold manufacturing, are investigated. The endmill shows a characteristic that tool life decreases greatly due to the chipping when overload occurs or the rapid increase of wear when over-heat accumulation in cutting edges. As a consequence of the investigation, a strategy to regulate heat generation in the end milling process is proposed. This is accomplished by controlling the cutting arc length, i.e. the length of each flute engaging workpiece in a cutting cycle. Case studies on the slot end milling and comer rounding are conducted. The results show that the proposed strategy suggests the optimal tool path as well as the optimal pitch between successive tool paths under the cutting time criterion.
基金partly supported by National Natural Science Foundation of China(No.51175095)Guangdong Provincial Natural Science Foundation of China(No.10251009001000001)the Guangdong Provincial Project of Science and Technology Innovation of Discipline Construction,China(No.2013KJCX0063)
文摘During deep penetration laser welding,there exist plume(weak plasma) and spatters,which are the results of weld material ejection due to strong laser heating.The characteristics of plume and spatters are related to welding stability and quality.Characteristics of metallic plume and spatters were investigated during high-power disk laser bead-on-plate welding of Type 304 austenitic stainless steel plates at a continuous wave laser power of 10 kW.An ultraviolet and visible sensitive high-speed camera was used to capture the metallic plume and spatter images.Plume area,laser beam path through the plume,swing angle,distance between laser beam focus and plume image centroid,abscissa of plume centroid and spatter numbers are defined as eigenvalues,and the weld bead width was used as a characteristic parameter that reflected welding stability.Welding status was distinguished by SVM(support vector machine) after data normalization and characteristic analysis.Also,PCA(principal components analysis) feature extraction was used to reduce the dimensions of feature space,and PSO(particle swarm optimization) was used to optimize the parameters of SVM.Finally a classification model based on SVM was established to estimate the weld bead width and welding stability.Experimental results show that the established algorithm based on SVM could effectively distinguish the variation of weld bead width,thus providing an experimental example of monitoring high-power disk laser welding quality.
基金supported by Tsinghua University and the Beijing Municipal Science and Technology Funding(Grant No.Z151100003715002)
文摘Soft robot is a kind of machine form with flexible deformation capability. Making flexible actuators has recently become a hot research topic in the field. In this study, we demonstrated the facile fabrication of a soft electromagnetic actuator using liquid metal coil of Ga-In alloys, and designed several illustrative mechanical devices, such as jellyfish like robot, soft fishtail and flexible manipulator. Measurements of the liquid metal coil's electrical properties confirmed that the liquid metal coil was mechanically stable under 48% uniaxial strains. Furthermore, the resistance of the liquid metal coil is stable under 60° bending deformation. Tests on the liquid metal coil's driving properties confirmed that the liquid metal coil(55 mm×55 mm×1 mm) could reach the maximum displacement amplitude of 21.5 mm with the current of 0.48 A. It was shown that the electromagnetic interaction between the magnet and the liquid metal coil enables the coil as a highly efficient actuator. The mechanisms lying behind were interpreted and future applications of such system were discussed.
基金supported by the National Natural Science Foundation of China(No.51501047)China Postdoctoral Science Foundation(No.2016M590280)the Fundamental Research Funds for the Central Universities(Nos.HIT.NSRIF.20161,HIT.MKSTISP.201615)
文摘In the present work, the wire electrical discharge machining(WEDM) process of the 65 vol% SiCp/2024 Al composite prepared by pressure infiltration methods has been investigated. The microstructure of the machined composite was characterized by scanning electron microscope, the average surface roughness(Ra), X-ray diffraction, X-ray photoelectron spectroscopy and transmission electron microscopy(TEM) techniques. Three zones from the surface to the interior(melting zone, heat affected zone and un-affected zone) were found in the machined composites, while the face of SiC particles on the surface toward the outside was ‘‘cut'' to be flat. Increase in Al and Si but decrease in C and O were observed in the core areas of the removed particles. Si phase, which was generated due to the decomposition of SiC, was detected after the WEDM process. The irregular and spherical particles were further observed by TEM. Based on the microstructure observation, it is suggested that the machining mechanism of 65 vol% SiCp/2024 Al composite was the combination of the melting of Al matrix and the decomposition of SiC particles.
文摘Abstract The compliance of an integrated approach, principal component analysis (PCA), coupled with Tagu chi's robust theory for simultaneous optimization of cor related multiple responses of wire electrical discharge machining (WEDM) process for machining SiCp rein forced ZC63 metal matrix composites (MMCs) is investi gated in this work. The WEDM is proven better for its efficiency to machine MMCs among others, while the particulate size and volume percentage of SiCp with the composite are the utmost important factors. These improve the mechanical properties enormously, however reduce the machining performance. Hence the WEDM experiments are conducted by varying the particulate size, volume fraction, pulseon time, pulseoff time and wire tension. In the view of quality cut, the most important performance indicators of WEDM as surface roughness (Ra), metal removal rate (MRR), wire wear ratio (WWR), kerf (Kw) and white layer thickness (WLT) are measured as respon ses. PCA is used as multiresponse optimization technique to derive the composite principal component (CPC) which acts as the overall quality index in the process. Consequently, Taguchi's S/N ratio analysis is applied to optimize the CPC. The derived optimal process responses are confirmed by the experimental validation tests results. The analysis of vari ance is conducted to find the effects of choosing process variables on the overall quality of the machined component.The practical possibility of the derived optimal process conditions is also presented using SEM.