期刊文献+
共找到13篇文章
< 1 >
每页显示 20 50 100
Mechanical Properties of Simple s-p Metals, and Defect Energies from Electron Theory and from Interatomic Force Laws 被引量:1
1
作者 N.H.March(Oxford University, Oxford, U.K.) 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 1997年第2期81-85,共5页
The cleavage force F(z) needed to separate parallel atomic planes by a distance z is first discussed for simple s-p metals using density functional theory.For the s-p nearly free-electron metals the linearized Thomas-... The cleavage force F(z) needed to separate parallel atomic planes by a distance z is first discussed for simple s-p metals using density functional theory.For the s-p nearly free-electron metals the linearized Thomas-Fermi equation is solved self-consistently in the cases of (a) semi-infinite planes of jellium (i.e. smeared uniform positive ions) and (b) a semi-infinite cylinder of finite radius, cleaved by a plane perpendicular to its axis. In (a), the elastic region has the form F(z)=Az ∝ Zrs-11/2, where rs is the mean interelectronic distance in the jellium model. Size effects are then considered, with possible relevance to atomic force microscopy.Defect energies are treated, using both electron theory and pair force laws. 展开更多
关键词 and Defect Energies from Electron Theory and from Interatomic Force Laws mechanical Properties of Simple s-p metals Rev
下载PDF
Effects of metal binder on the microstructure and mechanical properties of Al2O3-based micro-nanocomposite ceramic tool material
2
作者 Xiu-ying Ni Jun Zhao +2 位作者 Jia-lin Sun Feng Gong Zuo-li Li 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2017年第7期826-832,共7页
The Al_2O_3-(W,Ti)C composites with Ni and Mo additions varying from 0vol% to 12vol% were prepared via hot pressing sintering under 30 MPa. The microstructure was investigated via X-ray diffraction(XRD) and scanni... The Al_2O_3-(W,Ti)C composites with Ni and Mo additions varying from 0vol% to 12vol% were prepared via hot pressing sintering under 30 MPa. The microstructure was investigated via X-ray diffraction(XRD) and scanning electron microscopy(SEM) equipped with energy dispersive spectrometry(EDS). Mechanical properties such as flexural strength, fracture toughness, and Vickers hardness were also measured. Results show that the main phases A12O3 and(W,Ti)C were detected by XRD. Compound Mo Ni also existed in sintered nanocomposites. The fracture modes of the nanocomposites were both intergranular and transgranular fractures. The plastic deformation of metal particles and crack bridging were the main toughening mechanisms. The maximum flexural strength and fracture toughness were obtained for 9vol% and 12vol% additions of Ni and Mo, respectively. The hardness of the composites reduced gradually with increasing content of metals Ni and Mo. 展开更多
关键词 ceramic matrix nanocomposite metal phase microstructure mechanical properties
下载PDF
Mechanical Properties of Si and Some d-electron Metals:Force Laws, Electron Correlation and Bond-breaking
3
作者 N.H.MarChOxford University Oxford EnglandPrivate address: 6 Northcroft Road, Egham, Surrey,TW20 ODU, England 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 1999年第4期289-295,共7页
The coordination-dependent force fleld of TersofF for covalently bonded Si has been used tocalculate the cleavage force as a function of interplanar separation and hence to estimate surfaceenergies. This force field i... The coordination-dependent force fleld of TersofF for covalently bonded Si has been used tocalculate the cleavage force as a function of interplanar separation and hence to estimate surfaceenergies. This force field is already fitted to density functional results. The relation to bond-breaking and electron correlation will be emphasized. Finnis-Sinclair-type many-body potentialshave then been used to treat some d-electron metals. In particular, results for cleavage forcein bcc Fe will be presented, and also some calculations as two perfectly planar Fe surfaces arerubbed together' at different interplanar separations. Finally, lattice dynamical models for thesteady-state propagation of a screw dislocation, and then of a crack, will be used, again within abond-breaking type of force field. For the screw dislocation propagation. a solitary wave equationis shown to follow in the 'almost continuum' limit. Energy radiated by phonons as the dislocationmoves can thereby be calculated. 展开更多
关键词 mechanical Properties of Si and Some d-electron metals Rev Electron Correlation and Bond-breaking SI
下载PDF
Mathematical modeling for dynamic stability of sandwich beam with variable mechanical properties of core 被引量:3
4
作者 M.GRYGOROWICZ E.MAGNUCKA-BLANDZI 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2016年第10期1361-1374,共14页
The paper is devoted to mathematical modelling of static and dynamic stability of a simply supported three-layered beam with a metal foam core. Mechanical properties of the core vary along the vertical direction. The ... The paper is devoted to mathematical modelling of static and dynamic stability of a simply supported three-layered beam with a metal foam core. Mechanical properties of the core vary along the vertical direction. The field of displacements is for- mulated using the classical broken line hypothesis and the proposed nonlinear hypothesis that generalizes the classical one. Using both hypotheses, the strains are determined as well as the stresses of each layer. The kinetic energy, the elastic strain energy, and the work of load are also determined. The system of equations of motion is derived using Hamilton's principle. Finally, the system of three equations is reduced to one equation of motion, in particular, the Mathieu equation. The Bubnov-Galerkin method is used to solve the system of equations of motion, and the Runge-Kutta method is used to solve the second-order differential equation. Numerical calculations are done for the chosen family of beams. The critical loads, unstable regions, angular frequencies of the beam, and the static and dynamic equilibrium paths are calculated analytically and verified numerically. The results of this study are presented in the forms of figures and tables. 展开更多
关键词 mathematical modelling dynamic stability metal foam core with variable mechanical property static and dynamic equilibrium path angular frequency
下载PDF
Interfacial Microstructure and Mechanical Properties of Al/Mg Butt Joints Made by MIG Welding Process with Zn-Cd Alloy as Interlayer 被引量:5
5
作者 张洪涛 DAI Xiangyu FENG Jicai 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2014年第6期1258-1264,共7页
Butt joints between Mg alloy AZ31 B and pure Al 1 060 sheets were produced via metal inert gas welding process with Zn-Cd alloy foil. Crack-free Al/Mg butt joints between AZ31 B Mg alloy and pure Al 1060 sheets were o... Butt joints between Mg alloy AZ31 B and pure Al 1 060 sheets were produced via metal inert gas welding process with Zn-Cd alloy foil. Crack-free Al/Mg butt joints between AZ31 B Mg alloy and pure Al 1060 sheets were obtained. Intermetallic compound layer 1 and layer 2 had formed in fusion zone/Mg alloy and the average thickness of the layer 1 was about 50 μm. The intermetallic compound layer 1 consisted of Al12Mg17 and Mg2Si phases while layer 2 consisted of Al12Mg17, Mg2Si and Mg Zn2 phases. The crack started from the IMC layer at the bottom of the joint and propagated along the brittle IMC layer, then expanded into weld metal during the SEM in situ tensile test. The highest tensile strength of the dissimilar metal butt joints could reach 46.8 MPa and the effect ofinterfacial IMC layer on mechanical property of the joint was discussed in detail in the present study. 展开更多
关键词 metal inert gas welding aluminum magnesium microstructure mechanical property
下载PDF
Mechanical, electrical, and thermal expansion properties of carbon nanotube-based silver and silver–palladium alloy composites 被引量:3
6
作者 Hemant Pal Vimal Sharma 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2014年第11期1132-1140,共9页
The mechanical, electrical, and thermal expansion properties of carbon nanotube(CNT)-based silver and silver–palladium(10:1, w/w) alloy nanocomposites are reported. To tailor the properties of silver, CNTs were ... The mechanical, electrical, and thermal expansion properties of carbon nanotube(CNT)-based silver and silver–palladium(10:1, w/w) alloy nanocomposites are reported. To tailor the properties of silver, CNTs were incorporated into a silver matrix by a modified molecular level-mixing process. CNTs interact weakly with silver because of their non-reactive nature and lack of mutual solubility. Therefore, palladium was utilized as an alloying element to improve interfacial adhesion. Comparative microstructural characterizations and property evaluations of the nanocomposites were performed. The structural characterizations revealed that decorated type-CNTs were dispersed, embedded, and anchored into the silver matrix. The experimental results indicated that the modification of the silver and silver–palladium nanocomposite with CNT resulted in increases in the hardness and Young's modulus along with concomitant decreases in the electrical conductivity and the coefficient of thermal expansion(CTE). The hardness and Young's modulus of the nanocomposites were increased by 30%?40% whereas the CTE was decreased to 50%-60% of the CTE of silver. The significantly improved CTE and the mechanical properties of the CNT-reinforced silver and silver–palladium nanocomposites are correlated with the intriguing properties of CNTs and with good interfacial adhesion between the CNTs and silver as a result of the fabrication process and the contact action of palladium as an alloying element. 展开更多
关键词 metal matrix composites carbon nanotubes mechanical properties coefficient of thermal expansion electrical conductivity
下载PDF
High plastic Zr–Cu–Fe–Al–Nb bulk metallic glasses for biomedical applications 被引量:1
7
作者 Shu-shen Wang Yun-liang Wang +2 位作者 Yi-dong Wu Tan Wang Xi-dong Hui 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2015年第6期648-653,共6页
Four Zr–Cu–Fe–Al-based bulk metallic glasses(BMGs) with Zr contents greater than 65at% and minor additions of Nb were designed and prepared. The glass forming abilities, thermal stabilities, mechanical properties... Four Zr–Cu–Fe–Al-based bulk metallic glasses(BMGs) with Zr contents greater than 65at% and minor additions of Nb were designed and prepared. The glass forming abilities, thermal stabilities, mechanical properties, and corrosion resistance properties of the prepared BMGs were investigated. These BMGs exhibit moderate glass forming abilities along with superior fracture and yield strengths compared to previously reported Zr–Cu–Fe–Al BMGs. Specifically, the addition of Nb into this quaternary system remarkably increases the plastic strain to 27.5%, which is related to the high Poisson's ratio and low Young's and shear moduli. The Nb-bearing BMGs also exhibit a lower corrosion current density by about one order of magnitude and a wider passive region than 316 L steel in phosphate buffer solution(PBS, pH 7.4). The combination of the optimized composition with high deformation ability, low Young's modulus, and excellent corrosion resistance properties indicates that this kind of BMG is promising for biomedical applications. 展开更多
关键词 metallic glasses biomedical materials mechanical properties corrosion resistance zirconium content niobium addition
下载PDF
Formation and Mechanical Properties of Zr-Nb-Cu-Ni-Al-Lu Bulk Glassy Alloys with Superior Glass-Forming Ability 被引量:1
8
作者 赵相金 LIU Wei +3 位作者 LIU Li ZHANG Tao PANG Shujie MA Chaoli 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2016年第1期186-190,共5页
Glass-forming ability(GFA) and mechanical properties of(Zr_(0.58)Nb_(0.03)Cu_(0.16)Ni_(0.13)Al_(0.10))_(100-x)Lu_x(x= 0-3 at%) alloys have been investigated.The GFA of Zr_(58)Nb_3Cu_(16)Ni_(13)... Glass-forming ability(GFA) and mechanical properties of(Zr_(0.58)Nb_(0.03)Cu_(0.16)Ni_(0.13)Al_(0.10))_(100-x)Lu_x(x= 0-3 at%) alloys have been investigated.The GFA of Zr_(58)Nb_3Cu_(16)Ni_(13)Al_(10) alloy is dramatically enhanced by adding Lu.The(Zr_(0.58)Nb_(0.03)Cu_(0.16)Ni_(0.13)Al_(0.10))_(98)Lu_2 alloy possesses the highest GFA in the studied Zr-Nb-Cu-Ni-Al-Lu alloys,with its critical diameter for glass formation reaching 20 mm by copper-mould casting method,while that of the Lu-free Zr_(58)Nb_3Cu_(16)Ni_(13)Al_(10) alloy is 7 mm.The critical diameters of(Zr_(0.58)Nb_(0.03)Cu_(0.16)Ni_(0.13)Al_(0.10))_(100-x)Lu_x(x =1 at%and 3 at%) alloys are 15 mm and 12 mm,respectively.The Lu addition to Zr_(58)Nb_3Cu_(16)Ni_(13)Al_(10) alloy induces the change of initial crystallization phases from face-centred-cubic Zr_2Ni and tetragonal Zr_2Ni phases for the Lu-free Zr_(58)Nb_3Cu_(16)Ni_(13)Al_(10) alloy to an icosahedral quasi-crystalline phase for the Lu-doped alloys,which may be the origin for the enhanced GFA of the Lu-doped alloys.The compressive fracture strength and plastic strain of the bulk glassy(Zr_(0.58)Nb_(0.03)Cu_(0.16)Ni_(0.13)Al_(0.10))_(98)Lu_2 alloy are1 610 MPa and 1.5%,respectively. 展开更多
关键词 metallic glass zirconium-based alloy glass-forming ability mechanical properties
下载PDF
Chemical, mechanical, and thermal expansion properties of a carbon nanotube-reinforced aluminum nanocomposite 被引量:2
9
作者 Manjula Sharma Vimal Sharma 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2016年第2期222-233,共12页
In the present study,the chemical and mechanical properties and the thermal expansion of a carbon nanotube(CNT)-based crystalline nano-aluminum(nano Al) composite were reported.The properties of nanocomposites wer... In the present study,the chemical and mechanical properties and the thermal expansion of a carbon nanotube(CNT)-based crystalline nano-aluminum(nano Al) composite were reported.The properties of nanocomposites were tailored by incorporating CNTs into the nano Al matrix using a physical mixing method.The elastic moduli and the coefficient of thermal expansion(CTE) of the nanocomposites were also estimated to understand the effects of CNT reinforcement in the Al matrix.Microstructural characterization of the nanocomposite reveals that the CNTs are dispersed and embedded in the Al matrix.The experimental results indicate that the incorporation of CNTs into the nano Al matrix results in the increase in hardness and elastic modulus along with a concomitant decrease in the coefficient of thermal expansion The hardness and elastic modulus of the nanocomposite increase by 21%and 20%,respectively,upon CNT addition.The CTE of CNT/A1 nanocomposite decreases to 70%compared with that of nano Al. 展开更多
关键词 metal matrix composites carbon nanotubes nanocomposites chemical properties thermal expansion mechanical properties
下载PDF
Graphene-reinforced aluminum matrix composites prepared by spark plasma sintering 被引量:14
10
作者 Wen-ming Tian Song-mei Li +3 位作者 Bo Wang Xin Chen Jian-hua Liu Mei Yu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2016年第6期723-729,共7页
Graphene-reinforced 7055 aluminum alloy composites with different contents of graphene were prepared by spark plasma sintering(SPS). The structure and mechanical properties of the composites were investigated. Testi... Graphene-reinforced 7055 aluminum alloy composites with different contents of graphene were prepared by spark plasma sintering(SPS). The structure and mechanical properties of the composites were investigated. Testing results show that the hardness, compressive strength, and yield strength of the composites are improved with the addition of 1wt% graphene. A clean, strong interface is formed between the metal matrix and graphene via metallurgical bonding on atomic scale. Harmful aluminum carbide(Al_4C_3) is not formed during SPS processing. Further addition of graphene(above 1wt%) results in the deterioration in mechanical properties of the composites. The agglomeration of graphene plates is exacerbated with increasing graphene content, which is the main reason for this deterioration. 展开更多
关键词 metal matrix composites spark plasma sintering aluminum graphene mechanical properties
下载PDF
Microstructure and mechanical property of MIM 418 superalloy 被引量:3
11
作者 Fu-Bao Yang Yan-Hong Jing +3 位作者 Dan Li Lin Zhang Da-Quan Li Qiang Zhu 《Rare Metals》 SCIE EI CAS CSCD 2018年第1期35-39,共5页
In this study, the influence of hot isostatic pressing(HIP) process on the 418 alloy produced by metal injection molding(MIM) technique(named as MIM 418)was investigated based on the characteristic analysis of 4... In this study, the influence of hot isostatic pressing(HIP) process on the 418 alloy produced by metal injection molding(MIM) technique(named as MIM 418)was investigated based on the characteristic analysis of 418 alloy powder. And comparison analysis of the microstructure and mechanical property between the MIM 418 and as-cast 418 alloys was performed by scanning electron microscopy(SEM), energy-dispersive spectroscopy(EDS),and X-ray diffraction(XRD). The results show that MIM418 alloy exhibits fine grain(~30 μm) and uniform microstructure. The defects existing in MIM 418 alloy formed during sintering process can be eliminated through HIP treatment, and the relative density increases from97.0 % to 99.5 %. The mechanical property can be improved significantly because of the elimination of defects, and the tensile strength and elongation are1,271 MPa and 16.8 %, respectively, which are increased by 34.5 % and 180 % compared with K418 alloy after solution heat treatment. 展开更多
关键词 K418 superalloy metal injection molding Hot isostatic pressing Microstructure mechanical property
原文传递
In Vitro Evaluation of the Feasibility of Commercial Zn Alloys as Biodegradable Metals 被引量:24
12
作者 C.Wang H.T.Yang +1 位作者 X.Li Y.F.Zheng 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2016年第9期909-918,共10页
In this work, three widely used commercial Zn alloys (ZA4-1, ZA4-3, ZA6-1 ) were purchased and pre- pared by hot extrusion at 200℃. The microstructure, mechanical properties, corrosion behaviors, biocompatibility a... In this work, three widely used commercial Zn alloys (ZA4-1, ZA4-3, ZA6-1 ) were purchased and pre- pared by hot extrusion at 200℃. The microstructure, mechanical properties, corrosion behaviors, biocompatibility and hemocompatibility of Zn alloys were studied with pure Zn as control, Commercial Zn alloys demonstrated increased strength and superb elongation compared with pure Zn. Accelerated corrosion rates and uniform corrosion morphologies were observed in terms of commercial Zn alloys due to galvanic effects between Zn matrix and α-Al phases. 100% extracts of ZA4-1 and ZA6-1 alloys showed mild cytotoxicity while 50% extracts of all samples displayed good biocompatibility. Retardant cell cycle and inhibited stress fibers expression were observed induced by high concentration of Zn^2+ releasing during corrosion. The hemolysis ratios of Zn alloys were lower than 1% while the adhered platelets showed slightly activated morphologies. In general, commercial Zn alloys possess promising mechanical properties, appropriate corrosion rates, significantly improved biocompatibility and good hemocompatibility in comparison to pure Zn. It is feasible to develop biodegradable metals based on commercial Zn alloys. 展开更多
关键词 Commercial Zn alloys Biodegradable metals mechanical properties Corrosion behaviors Cytotoxicity Hemocompatibility
原文传递
Flexural Strength and Weibull Analysis of Bulk Metallic Glasses 被引量:2
13
作者 Jijun Zhang Diana Estevez +4 位作者 Yuan-Yun Zhao Lishan Huo Chuntao Chang Xinmin Wang Run-Wei Li 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2016年第2期129-133,共5页
The flexural strength reliability of bulk metallic glasses (BMGs) plates is analyzed using Weibull statistics. The Weibull modulus (m) and characteristic strength (σ0) of the Zr48Cu45AI7 BMG are 34 and 2630 MPa... The flexural strength reliability of bulk metallic glasses (BMGs) plates is analyzed using Weibull statistics. The Weibull modulus (m) and characteristic strength (σ0) of the Zr48Cu45AI7 BMG are 34 and 2630 MPa, respectively, which are much higher than the values of fine ceramics (m 〈 30, σ0 〈 1600 MPa). In particular, the m values obtained by flexural strength and compressive strength statistics of the Mg61Cu28Gd11 BMG are 5 and 33, respectively, indicating that the m values of BMGs are test method dependent, and only the m values obtained by flexural strength statistics can be used to make a convincible comparison with those of ceramics. 展开更多
关键词 Bulk metallic glasses Ceramics Weibu Umodulus Flexural strength mechanical properties
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部