期刊文献+
共找到12篇文章
< 1 >
每页显示 20 50 100
Evolution of stresses in metal injection molding parts during sintering
1
作者 方伟 何新波 +2 位作者 张瑞杰 杨诗棣 曲选辉 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2015年第2期552-558,共7页
The evolution of stresses due to inhomogeneity in metal injection molding (MIM) parts during sintering was investigated. The sintering model of porous materials during densification process was developed based on th... The evolution of stresses due to inhomogeneity in metal injection molding (MIM) parts during sintering was investigated. The sintering model of porous materials during densification process was developed based on the continuum mechanics and thermal elasto-viseoplastic constitutive law. Model parameters were identified from the dilatometer sintering experiment. The real density distribution of green body was measured by X-ray computed tomography (CT), which was regarded as the initial condition of sintering model. Numerical calculation of the above sintering model was carried out with the finite element soRware Abaqus, through the user-defined material mechanical behavior (UMAT). The calculation results showed that shrinkages of low density regions were faster than those of high density regions during sintering, which led to internal stresses. Compressive stresses existed in high density regions and tensile stresses existed in low density regions. The densification of local regions depended on not only the initial density, but also the evolution of stresses during the sintering stage. 展开更多
关键词 metal injection molding CT detection SINTERING DENSIFICATION STRESS numerical simulation
下载PDF
New development of powder metallurgy in automotive industry 被引量:8
2
作者 TAN Zhao-qiang ZHANG Qing +3 位作者 GUO Xue-yi ZHAO Wei-jiang ZHOU Cheng-shang LIU Yong 《Journal of Central South University》 SCIE EI CAS CSCD 2020年第6期1611-1623,共13页
The driving force for using powder metallurgy(PM)mostly relies on its near net-shape ability and cost-performance ratio.The automotive application is a main market of PM industry,requiring parts with competitive mecha... The driving force for using powder metallurgy(PM)mostly relies on its near net-shape ability and cost-performance ratio.The automotive application is a main market of PM industry,requiring parts with competitive mechanical or functional performance in a mass production scale.As the automobile technology transforms from traditional internal combustion engine vehicles to new energy vehicles,PM technology is undergoing significant changes in manufacturing and materials development.This review outlines the challenges and opportunities generated by the changes in the automotive technology for PM.Low-cost,high-performance and light-weight are critical aspects for future PM materials development.Therefore,the studies on PM lean-alloyed steel,aluminum alloys,and titanium alloy materials were reviewed.In addition,PM soft magnetic composite applied to new energy vehicles was discussed.Then new opportunities for advanced processing,such as metal injection molding(MIM)and additive manufacturing(AM),in automotive industry were stated.In general,the change in automotive industry raises sufficient development space for PM.While,emerging technologies require more preeminent PM materials.Iron-based parts are still the main PM products due to their mechanical performance and low cost.MIM will occupy the growing market of highly flexible and complex parts.AM opens a door for fast prototyping,great flexibility and customizing at low cost,driving weight and assembling reduction. 展开更多
关键词 AUTOMOTIVE powder metallurgy lean alloy Al alloy Ti alloy metal injection molding additive manufacturing
下载PDF
Fabrication and sintering behavior of high-nitrogen nickel-free stainless steels by metal injection molding 被引量:5
3
作者 Zi-wei Xu Cheng-chang Jia +1 位作者 Chun-jiang Kuang Xuan-hui Qu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2010年第4期423-428,共6页
High-nitrogen nickel-free stainless steels were fabricated by the metal injection molding technique using high nitrogen alloying powders and a mixture of three polymers as binders.Mixtures of metal powders and binders... High-nitrogen nickel-free stainless steels were fabricated by the metal injection molding technique using high nitrogen alloying powders and a mixture of three polymers as binders.Mixtures of metal powders and binders with various proportions were also investigated, and an optimum powder loading capacity was determined as 64vol%.Intact injection molded compacts were successfully obtained by regulating the processing parameters.The debinding process for molded compacts was optimized with a combination of thermo-gravimetric analysis and differential scanning calorimetry analysis.An optimum relative density and nitrogen content of the specimens are obtained at 1360℃,which are 97.8%and 0.79wt%,respectively. 展开更多
关键词 metal injection molding DEBINDING stainless steel sintering behavior sintered density nitrogen content
下载PDF
Biocompatibility of vascular stents manufactured using metal injection molding in animal experiments 被引量:3
4
作者 Chang SHU Hao HE +5 位作者 Bo-wen FAN Jie-hua LI Tun WANG Dong-yang LI Yi-min LI Hao HE 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2022年第2期569-580,共12页
This study aimed to evaluate the feasibility and safety of a novel stent manufactured by metal injection molding(MIM)in clinical practice through animal experiments.Vessel stents were prepared using powder injection m... This study aimed to evaluate the feasibility and safety of a novel stent manufactured by metal injection molding(MIM)in clinical practice through animal experiments.Vessel stents were prepared using powder injection molding technology to considerably improve material utilization.The influence of MIM carbon impurity variation on the mechanical properties and corrosion resistance of 316L stainless steel was studied.In vitro cytotoxicity and animal transplantation tests were also carried out to evaluate the safety of MIM stents.The results showed that the performance of 316L stainless steel was very sensitive to the carbon content.Carbon fluctuations should be precisely controlled during MIM.All MIM stents were successfully implanted into the aortas of the dogs,and the MIM 316L stents had no significant cytotoxicity.The novel intravascular stent manufactured using MIM can maintain a stable form and structure with fast endothelialization of the luminal surface of the stent and ensure long-term patency in an animal model.The novel intravascular stent manufactured using MIM demonstrates favorable structural,physical,and chemical stability,as well as biocompatibility,offering promising application in clinical practice. 展开更多
关键词 vascular stent metal injection molding cytotoxicity test animal experiment BIOCOMPATIBILITY
下载PDF
Antioxidation Study of Sm(Co, Cu, Fe, Zr)_z-Sintered Permanent Magnets by Metal Injection Molding 被引量:2
5
作者 张深根 田建军 +1 位作者 曲选辉 陶斯武 《Journal of Rare Earths》 SCIE EI CAS CSCD 2006年第5期569-573,共5页
Antioxidation effects on Sm (Co, Cu, Fe, Zr)z-sintered magnets treated by different methods were studied through TGA and DTA. Microstructure of Sm(Co, Cu, Fe, Zr)z-sintered magnets was analyzed through SEM and EDS... Antioxidation effects on Sm (Co, Cu, Fe, Zr)z-sintered magnets treated by different methods were studied through TGA and DTA. Microstructure of Sm(Co, Cu, Fe, Zr)z-sintered magnets was analyzed through SEM and EDS. The results indicate that the antioxidation effect of the alloy powder treated in silane solution is better than that of the other methods. The alloy powders treated in stearic acid (SA) solution and polymethyl methacrylate (PMMA) solution can prevent powders from oxidation for a short period of time. Silane solution is not suitable for metal injection molding (MIM) because it severely damages the magnetic properties and microstructure of Sm(Co, Cu, Fe, Zr)z-sintered magnets. SA solution can not only prevent powders from oxidizing in MIM, but also does not damage magnetic properties and microstructure of Sm(Co, Cu, Fe, Zr)z magnets. The oxygen content of Sm(Co, Cu, Fe, Zr)z-sintered magnets by MIM is 3300μg·g^-1. 展开更多
关键词 metal injection molding Sm(Co Cu Fe Zr)z permanent magnets ANTIOXIDATION rare earths
下载PDF
Phase Behaviors in Bi-phase Simulation of Powder Segregation in Metal Injection Molding 被引量:1
6
作者 柳葆生 范小欣 成志强 《Journal of Southwest Jiaotong University(English Edition)》 2006年第4期363-371,共9页
Powder segregation induced by mold filling is an important phenomenon that affects the final quality of metal injection molding (MIM). The prediction of segregation in MIM requires a bi-phase flow model to describe ... Powder segregation induced by mold filling is an important phenomenon that affects the final quality of metal injection molding (MIM). The prediction of segregation in MIM requires a bi-phase flow model to describe distinctly the flows of metallic powder and polymer binder. Viscous behaviors for the flows of each phase should hence be determined. The coefficient of interaction between the flows of two phases should also be evaluated. However, only viscosity of the mixed feedstock is measurable by capillary tests. Wall sticking is supposed in the traditional model for capillary tests, while the wall slip is important to be taken into account in MIM injection. Objective of the present paper is to introduce the slip effect in bi-phase simulation, and search the suitable way to determine the viscous behaviors for each phase with the consideration of wall slip in capillary tests. Analytical and numerical methods were proposed to realize such a specific purpose. The proposed method is based on the mass conservation between the capillary flows in mono-phase model for the mixed feedstock and in bi-phase model for the flows of two phases. Examples of the bi-phase simulation in MIM were realized with the software developed by research team. The results show evident segregation, which is valuable for improving the mould designs. 展开更多
关键词 Viscous behaviors Bi-phases simulation Powder segregation metal injection molding Wall slip
下载PDF
Oxygen variation in titanium powder and metal injection molding
7
作者 Junping Shen Chang Liu +7 位作者 Muhammad Dilawer Hayat Jianan Chen Hanqing Tian Fusheng Xin Gang Chen Fei Yang Mingli Qin Xuanhui Qu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS 2024年第12期2706-2713,共8页
The control of oxygen is paramount in achieving high-performance titanium(Ti)parts by powder metallurgy such as metal in-jection molding(MIM).In this study,we purposely selected the Ti and Ti-6Al-4V powders as the ref... The control of oxygen is paramount in achieving high-performance titanium(Ti)parts by powder metallurgy such as metal in-jection molding(MIM).In this study,we purposely selected the Ti and Ti-6Al-4V powders as the reference materials since these two are the most representative Ti materials in the industry.Herein,hydride-dehydride(HDH)Ti powders were pre-oxidized to examine the ef-fect of oxygen variation on the characteristics of oxide layer on the particle surface and its resultant color feature.The results indicate that the thickness and Ti oxide level(Ti^(0)→Ti^(4+))of the oxide layer on the HDH Ti powders increased as the oxygen content increased,lead-ing to the transition of color appearance from grey,brown to blue.This work aids in the powder feedstock selection at the initial stage in powder metallurgy.In addition,the development of oxygen content was comprehensively studied during the MIM process using the gas-atomized(GA)Ti-6Al-4V powders.Particularly,the oxygen variation in the form of oxide layer,the change of oxygen content in the powders,and the relevant parts were investigated during the processes of kneading,injection,debinding,and sintering.The oxygen vari-ation was mainly concentrated in the sintering stage,and the content increased with the increase of sintering temperature.The variation of oxygen content during the MIM process demonstrates the crucial role of powder feedstock and sintering stage in controlling oxygen con-tent.This work provides a piece of valuable information on oxygen detecting,control,and manipulation for the powder and processing in the industry of Ti and its alloys by powder metallurgy. 展开更多
关键词 titanium alloys oxygen metal injection molding powder metallurgy
下载PDF
Preparation of Ti-Mo getters by injection molding 被引量:2
8
作者 Zhao, Zhenmei Wei, Xiuying +1 位作者 Xiong, Yuhua Mao, Changhui 《Rare Metals》 SCIE EI CAS CSCD 2009年第2期147-150,共4页
Ti-Mo getters have been fabricated via metal injection molding (MIM) using three kinds of Ti powders with different mean particle sizes of 46 μm,35 μm and 26 μm,respectively. The surface morphology,porosity,and hyd... Ti-Mo getters have been fabricated via metal injection molding (MIM) using three kinds of Ti powders with different mean particle sizes of 46 μm,35 μm and 26 μm,respectively. The surface morphology,porosity,and hydrogen sorption properties of Ti-Mo getters formed by MIM using paraffin wax as a principal binder constituent were examined. It has been proven that the powder injection molding is a viable forming technique for porous Ti-Mo getters. The particle size of Ti powders and the powder loading influence... 展开更多
关键词 materials physics and chemistry metal injection molding Ti-Mo getter sorption capacity loading POROSITY
下载PDF
Characterization of 17-4PH stainless steel powders produced by supersonic gas atomization 被引量:2
9
作者 Xin-ming Zhao Jun Xu +3 位作者 Xue-xin Zhu Shao-ming Zhang Wen-dong Zhao Guo-liang Yuan 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2012年第1期83-88,共6页
17-4PH stainless steel powders were prepared using a supersonic nozzle in a close-coupled gas atomization system. The characteristics of powder particles were carried out by means of a laser particle size analyzer, sc... 17-4PH stainless steel powders were prepared using a supersonic nozzle in a close-coupled gas atomization system. The characteristics of powder particles were carried out by means of a laser particle size analyzer, scanning electron microscopy (SEM), and the X-ray diffraction (XRD) technique. The results show that the mass median particle diameter is about 19.15 prn. Three main types of surface microstructures are observed in the powders: well-developed dendrite, cellular, and cellular dendrite structure. The XRD measurements show that, as the particle size decreases, the amount of fcc phase gradually decreases and that of bcc phase increases. The cooling rate is inversely related to the particle size, i.e., it decreases with an increase in particle size. 展开更多
关键词 gas atomization metal powder stainless steel metal injection molding
下载PDF
Effect of different casting methods on microstructure and mechanical properties of Mg-10Gd-3Y-0.6Zr alloy 被引量:1
10
作者 DING Zhi-bing LU Ruo-peng +1 位作者 HOU Hua ZHAO Yu-hong 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2018年第2期194-198,共5页
The effects of two different casting methods on the microstructures and mechanical properties of as-cast and T6-cast states of Mg-10Gd-3Y-0.6Zr alloy were studied by using metal mold casting and squeeze casting.The re... The effects of two different casting methods on the microstructures and mechanical properties of as-cast and T6-cast states of Mg-10Gd-3Y-0.6Zr alloy were studied by using metal mold casting and squeeze casting.The results show that the microstructure of Mg-10Gd-3Y-0.6Zr alloy is mainly composed ofα-Mg primary phase and Mg 24(Gd,Y)5 eutectic phase.The squeeze cast grains are small with a dendrite like morphology,and the tensile strength of the alloy in T6 state can reach 285 MPa.While the metal grains are coarse,the eutectic phases are distributed in the grain boundary,and the tensile strength of the alloy in T6 state is only 250 MPa. 展开更多
关键词 squeeze casting metal mold casting Mg-10Gd-3Y-0.6Zr alloy microstructure mechanical property
下载PDF
Effective metal mold method for the production of bionic adhesives based on electrochemical modifications
11
作者 Cong YUAN Keju JI +4 位作者 Yiqiang TANG Zizhuo WANG Enhua CUI Jian CHEN Zhendong DAI 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2021年第4期332-340,共9页
Bionic adhesives with tip-expanded microstructural arrays have attracted considerable interest owing to their high adhesive performance at low preloads.Their mainstream manufacturing method is molding.Due to most mold... Bionic adhesives with tip-expanded microstructural arrays have attracted considerable interest owing to their high adhesive performance at low preloads.Their mainstream manufacturing method is molding.Due to most molds are made of silicon or silicon-based soft templates,and have poor wear resistant or vulnerability to high temperature,limiting their use in large-scale manufacturing.Nickel is widely used as an embossing mold in the micro/nano-imprint industrial process owing to its good mechanical properties.However,the processing of metal molds for the fabrication of tip-expanded microstructural arrays is extremely challenging.In this study,using electrodeposition techniques,the shape of the micropores is modified to obtain end-controlled pores.The effect of the non-uniformity of the electric field on the microporous morphology in the electrodeposition process is systematically investigated.Furthermore,the mechanism of non-uniformity evolution of the microporous morphology is revealed.The optimized microporous metal array is used as a mold to investigate the cavity evolution laws of the elastic cushions under pre-load during the manufacturing process.As a result,typical bionic adhesives with tip-expansion are obtained.Moreover,corresponding adhesion mechanics are analyzed.The results show that electrochemical modifications have broad application prospects in the fabrication of tip-expanded microstructures,providing a new method for the large-scale fabrication of bionic adhesives based on metal molds. 展开更多
关键词 Bionic adhesive Dry adhesion ELECTRO-DEPOSITION metal mold Micro/nano-imprint Micro-porous
原文传递
Microstructure and mechanical property of MIM 418 superalloy 被引量:3
12
作者 Fu-Bao Yang Yan-Hong Jing +3 位作者 Dan Li Lin Zhang Da-Quan Li Qiang Zhu 《Rare Metals》 SCIE EI CAS CSCD 2018年第1期35-39,共5页
In this study, the influence of hot isostatic pressing(HIP) process on the 418 alloy produced by metal injection molding(MIM) technique(named as MIM 418)was investigated based on the characteristic analysis of 4... In this study, the influence of hot isostatic pressing(HIP) process on the 418 alloy produced by metal injection molding(MIM) technique(named as MIM 418)was investigated based on the characteristic analysis of 418 alloy powder. And comparison analysis of the microstructure and mechanical property between the MIM 418 and as-cast 418 alloys was performed by scanning electron microscopy(SEM), energy-dispersive spectroscopy(EDS),and X-ray diffraction(XRD). The results show that MIM418 alloy exhibits fine grain(~30 μm) and uniform microstructure. The defects existing in MIM 418 alloy formed during sintering process can be eliminated through HIP treatment, and the relative density increases from97.0 % to 99.5 %. The mechanical property can be improved significantly because of the elimination of defects, and the tensile strength and elongation are1,271 MPa and 16.8 %, respectively, which are increased by 34.5 % and 180 % compared with K418 alloy after solution heat treatment. 展开更多
关键词 K418 superalloy metal injection molding Hot isostatic pressing Microstructure Mechanical property
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部