The single solid source precursor, cobalt (Ⅱ) acetylacetonate was prepared and characterized by infrared spectroscopy. Thin films of cobalt oxide were deposited on soda lime glass substrates through the pyrolysis ...The single solid source precursor, cobalt (Ⅱ) acetylacetonate was prepared and characterized by infrared spectroscopy. Thin films of cobalt oxide were deposited on soda lime glass substrates through the pyrolysis (metal organic chemical vapour deposition (MOCVD)) of single solid source precursor, cobalt acetylacetonate, Co[C5H7O2]2 at a temperature of 420℃. The compositional characterization carried out by rutherford backscattering spectroscopy and X-ray diffraction (XRD), showed that the films have a stoichiometry of Co2O3 and an average thickness of 227±0.2 nm. A direct energy gap of 2,15±0.01 eV was calculated by the data obtained by optical absorption spectroscopy. The morphology of the films obtained by scanning electron microscopy, showed that the grains were continuous and uniformly distributed at various magnifications, while the average grain size was less than i micron for the deposited thin films of cobalt oxide.展开更多
This paper studied the low-resistance ohmic contacts on InAlN/GaN with metal–organic chemical vapor deposition(MOCVD)regrowth technique.The 150-nm regrown n-InGaN exhibits a low sheet resistance of 31Ω/□,resulting ...This paper studied the low-resistance ohmic contacts on InAlN/GaN with metal–organic chemical vapor deposition(MOCVD)regrowth technique.The 150-nm regrown n-InGaN exhibits a low sheet resistance of 31Ω/□,resulting in an extremely low contact resistance of 0.102Ω·mm between n^(+)-InGaN and InAlN/GaN channels.Mask-free regrowth process was also used to significantly improve the sheet resistance of InAlN/GaN with MOCVD regrown ohmic contacts.Then,the diffusion mechanism between n^(+)-InGaN and InAlN during regrowth process was investigated with electrical and structural characterizations,which could benefit the further process optimization.展开更多
Molybdenum oxodithiocarbamate was prepared as thin films which were deposited on sodalime glass a single solid source precursor for molybdenum oxysulphide substrates using metal organic chemical vapour deposition (MO...Molybdenum oxodithiocarbamate was prepared as thin films which were deposited on sodalime glass a single solid source precursor for molybdenum oxysulphide substrates using metal organic chemical vapour deposition (MOCVD) technique at a temperature of 420~C. Rutherford backscattering spectroscopy (RBS) was used to determine the elemental composition of the film which showed that the films contained large amounts of oxygen. The large amount of oxygen was attributed to the large abundance of oxygen in the starting material. A direct optical energy gap of 3.31 eV was obtained from the analysis of the absorption spectrum. The scanning electron microscopy (SEM) micrographs of the films showed that the films were continuous and porous. An estimated average size of the grains was below 5 #m. X-ray diffraction (XRD) showed that the deposited films were crystalline in nature.展开更多
基金the Third World Academy of Science (TWAS, Grant #93-058 R6/PHYS/AF/AC)Obafemi Awolowo University(University Research Committee URC) for supporting this project
文摘The single solid source precursor, cobalt (Ⅱ) acetylacetonate was prepared and characterized by infrared spectroscopy. Thin films of cobalt oxide were deposited on soda lime glass substrates through the pyrolysis (metal organic chemical vapour deposition (MOCVD)) of single solid source precursor, cobalt acetylacetonate, Co[C5H7O2]2 at a temperature of 420℃. The compositional characterization carried out by rutherford backscattering spectroscopy and X-ray diffraction (XRD), showed that the films have a stoichiometry of Co2O3 and an average thickness of 227±0.2 nm. A direct energy gap of 2,15±0.01 eV was calculated by the data obtained by optical absorption spectroscopy. The morphology of the films obtained by scanning electron microscopy, showed that the grains were continuous and uniformly distributed at various magnifications, while the average grain size was less than i micron for the deposited thin films of cobalt oxide.
基金the Fundamental Research Funds for the National Key Research and Development Project of China(Grant No.2020YFB1807403)the National Natural Science Foundation of China(Grant Nos.62174125 and 62131014)+1 种基金the Fundamental Research Funds for the Central Universities(Grant Nos.QTZX22022 and YJS2213)the Innovation Fund of Xidian University.
文摘This paper studied the low-resistance ohmic contacts on InAlN/GaN with metal–organic chemical vapor deposition(MOCVD)regrowth technique.The 150-nm regrown n-InGaN exhibits a low sheet resistance of 31Ω/□,resulting in an extremely low contact resistance of 0.102Ω·mm between n^(+)-InGaN and InAlN/GaN channels.Mask-free regrowth process was also used to significantly improve the sheet resistance of InAlN/GaN with MOCVD regrown ohmic contacts.Then,the diffusion mechanism between n^(+)-InGaN and InAlN during regrowth process was investigated with electrical and structural characterizations,which could benefit the further process optimization.
基金the Third World Academy of Science (TWAS,No.93-058R6/PHYS/AF/AC) Italy and Obafemi Awolowo University (University Research Committee (URC)) for support-ing this project
文摘Molybdenum oxodithiocarbamate was prepared as thin films which were deposited on sodalime glass a single solid source precursor for molybdenum oxysulphide substrates using metal organic chemical vapour deposition (MOCVD) technique at a temperature of 420~C. Rutherford backscattering spectroscopy (RBS) was used to determine the elemental composition of the film which showed that the films contained large amounts of oxygen. The large amount of oxygen was attributed to the large abundance of oxygen in the starting material. A direct optical energy gap of 3.31 eV was obtained from the analysis of the absorption spectrum. The scanning electron microscopy (SEM) micrographs of the films showed that the films were continuous and porous. An estimated average size of the grains was below 5 #m. X-ray diffraction (XRD) showed that the deposited films were crystalline in nature.