In this paper, controlling chaos when chaotic ferroresonant oscillations occur in a voltage transformer with nonlin- ear core loss model is performed. The effect of a parallel metal oxide surge arrester on the ferrore...In this paper, controlling chaos when chaotic ferroresonant oscillations occur in a voltage transformer with nonlin- ear core loss model is performed. The effect of a parallel metal oxide surge arrester on the ferroresonance oscillations of voltage transformers is studied. The metal oxide arrester (MOA) is found to be effective in reducing ferroresonance chaotic oscillations. Also the multiple scales method is used to analyze the chaotic behavior and different types of fixed points in ferroresonance of voltage transformers considering core loss. This phenomenon has nonlinear chaotic dynamics and includes sub-harmonic, quasi-periodic, and also chaotic oscillations. In this paper, the chaotic behavior and various ferroresonant oscillation modes of the voltage transformer is studied. This phenomenon consists of different types of bifur- cations such as period doubling bifurcation (PDB), saddle node bifurcation (SNB), Hopf bifurcation (HB), and chaos. The dynamic analysis of ferroresonant circuit is based on bifurcation theory. The bifurcation and phase plane diagrams are il- lustrated using a continuous method and linear and nonlinear models of core loss. To analyze ferroresonance phenomenon, the Lyapunov exponents are calculated via the multiple scales method to obtain Feigenbaum numbers. The bifurcation diagrams illustrate the variation of the control parameter. Therefore, the chaos is created and increased in the system.展开更多
The surge arrester with excellent protection characteristics would decrease the overvoltage level ap- plied on the power apparatus to reduce their insulation levels and manufacturing bottleneck. The arrester for the 1...The surge arrester with excellent protection characteristics would decrease the overvoltage level ap- plied on the power apparatus to reduce their insulation levels and manufacturing bottleneck. The arrester for the 1000-kV ultra-high voltage ac power transmission system is designed as tank-type structure. The field-circuit combination numerical method combining the three-dimensional finite element method with circuit is proposed to analyze the potential distribution of GIS arrester. By comparing several design schemes, the most effective method to improve the potential distribution along the varistor column is to increase the voltage gradient of the ZnO varistor. Synthesizing several influential factors, the suitable voltage gradient of ZnO varistor should be controlled to 435 V/mm, and the resulted nonuniform degree of the potential distribution along the varistor column inside the GIS arrester would be controlled smaller than 10%. The result in this paper provides the fundamental technical index for the study of the high voltage gradient ZnO varistors.展开更多
文摘In this paper, controlling chaos when chaotic ferroresonant oscillations occur in a voltage transformer with nonlin- ear core loss model is performed. The effect of a parallel metal oxide surge arrester on the ferroresonance oscillations of voltage transformers is studied. The metal oxide arrester (MOA) is found to be effective in reducing ferroresonance chaotic oscillations. Also the multiple scales method is used to analyze the chaotic behavior and different types of fixed points in ferroresonance of voltage transformers considering core loss. This phenomenon has nonlinear chaotic dynamics and includes sub-harmonic, quasi-periodic, and also chaotic oscillations. In this paper, the chaotic behavior and various ferroresonant oscillation modes of the voltage transformer is studied. This phenomenon consists of different types of bifur- cations such as period doubling bifurcation (PDB), saddle node bifurcation (SNB), Hopf bifurcation (HB), and chaos. The dynamic analysis of ferroresonant circuit is based on bifurcation theory. The bifurcation and phase plane diagrams are il- lustrated using a continuous method and linear and nonlinear models of core loss. To analyze ferroresonance phenomenon, the Lyapunov exponents are calculated via the multiple scales method to obtain Feigenbaum numbers. The bifurcation diagrams illustrate the variation of the control parameter. Therefore, the chaos is created and increased in the system.
基金Supported by the National Nature Science Foundation of China (Grant Nos.50425721,5073001)the 11th Five-year National S&T Supporting Plan (Grant No.2006BAA02A16)
文摘The surge arrester with excellent protection characteristics would decrease the overvoltage level ap- plied on the power apparatus to reduce their insulation levels and manufacturing bottleneck. The arrester for the 1000-kV ultra-high voltage ac power transmission system is designed as tank-type structure. The field-circuit combination numerical method combining the three-dimensional finite element method with circuit is proposed to analyze the potential distribution of GIS arrester. By comparing several design schemes, the most effective method to improve the potential distribution along the varistor column is to increase the voltage gradient of the ZnO varistor. Synthesizing several influential factors, the suitable voltage gradient of ZnO varistor should be controlled to 435 V/mm, and the resulted nonuniform degree of the potential distribution along the varistor column inside the GIS arrester would be controlled smaller than 10%. The result in this paper provides the fundamental technical index for the study of the high voltage gradient ZnO varistors.