期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Catalytic behavior of Mo-Bi-Fe-Co-K-M-O(M=Ce,Gd,CeGd)catalysts for selective oxidation of isobutene
1
作者 Qinghui Li Huahua Zhao +4 位作者 Jian Yang Jun Zhao Liang Yan Huanling Song Lingjun Chou 《Journal of Rare Earths》 SCIE EI CAS CSCD 2024年第1期84-93,I0003,共11页
The further improvement of methacrolein(MAL)selectivity from isobutene(IB)oxidation is crucial and challenging.In this study,based on the typical Mo-Bi-Fe-Co-K-O mixed metal oxide,the rare earth element Gd-doped,Ce-do... The further improvement of methacrolein(MAL)selectivity from isobutene(IB)oxidation is crucial and challenging.In this study,based on the typical Mo-Bi-Fe-Co-K-O mixed metal oxide,the rare earth element Gd-doped,Ce-doped and CeGd co-doped catalysts were prepared by co-precipitation strategy to increase the selectivity of MAL from 47.9%to 49.8%,64.2% and 68.6%,respectively.In order to elucidate in-depth the promoting effect of Ce and/or Gd,various characterizations were utilized including X-ray diffraction patterns(XRD),Raman,X-ray fluorescence spectrometry(XRF),X-ray photoelectron spectroscopy(XPS),O_(2)-temperature programmed desorption(O_(2)-TPD),H2-temperature programmed reduction(H2-TPR),CO_(2)-temperature programmed desorption(CO_(2)-TPD),IB-temperature programmed desorption(i-C4-TPD)and in-situ IB-Fourier transform infrared spectroscopy(IB-FTIR).Both Ce and Gd finely regulate the bulk and surface structure of the catalyst,thus altering the redox ability,oxygen mobility and storage ability and basicity.Compared with Ce,Gd addition slightly regulates the variation of Co^(2+)/Co^(3+)redox couples,greatly enhances the interaction among the components on the catalyst,thus only increases the content of surface oxygen species and has little effect on their mobility.While Cecontaining catalyst performs stronger oxygen storage and migration ability,thus leading to the overproduction of surface Odefectspecies,which are proposed to be the active sites for the production of MAL and COx.The CeGd co-doped catalyst possesses the proper content of surface Odefectspecies,thus exhibits much higher MAL selectivity.Moreover,the promoting mechanism of Ce and/or Gd over IB oxidation is proposed.Therefore,this work is helpful for understanding the influence of rare earth elements on the structure of mixed metal oxides and the olefin selective oxidation reaction. 展开更多
关键词 Mixed metal oxide catalyst Rare earth element ISOBUTENE Selective oxidation METHACROLEIN
原文传递
Alloy strategy to synthesize Pt-early transition metal oxide interfacial catalysts
2
作者 Shi-Long Xu Hang Nan +3 位作者 Wanqun Zhang Yue Lin Sheng-Qi Chu Hai-Wei Liang 《Nano Research》 SCIE EI 2024年第4期3390-3397,共8页
Metal oxide supported metal catalysts show promising catalytic performance in many industry-relevant reactions.However,the enhancement of performance is often limited by the insufficient metal/metal oxide interface.In... Metal oxide supported metal catalysts show promising catalytic performance in many industry-relevant reactions.However,the enhancement of performance is often limited by the insufficient metal/metal oxide interface.In this work,we demonstrate a general synthesis of Pt-early transition metal oxide(Pt-MO_(x),M=Ti,Zr,V,and Y)catalysts with rich interfacial sites,which is based on the air-induced surface segregation and oxidation of M in the supported Pt-M alloy catalysts.Systematic characterizations verify the dynamic structural response of Pt-M alloy catalysts to air and the formation of Pt-MO_(x) catalysts with abundant interfacial sites.The prepared Pt-TiO_(x) interfacial catalysts exhibit improved performance in hydrogenation reactions of benzaldehyde,nitrobenzene,styrene,and furfural,as a result of the heterolytic dissociation of H_(2) at Pt-metal oxide interfacial sites. 展开更多
关键词 Pt-early transition metal oxide interfacial catalyst alloy oxidation strategy interfacial sites hydrogenation reactions heterolytic dissociation
原文传递
Tuning the local electronic structure of oxygen vacancies over copper-doped zinc oxide for efficient CO_(2) electroreduction 被引量:1
3
作者 Ke Wang Dongyu Liu +7 位作者 Limin Liu Jia Liu XiaoFei Hu Ping Li Mingtao Li Andrey S.Vasenko Chunhui Xiao Shujiang Ding 《eScience》 2022年第5期518-528,共11页
Oxygen vacancies in metal oxides can serve as electron trap centers to capture CO_(2) and lower energy barriers for the electrochemical CO_(2) reduction reaction(CO_(2)RR).Under aqueous electrolytes,however,such charg... Oxygen vacancies in metal oxides can serve as electron trap centers to capture CO_(2) and lower energy barriers for the electrochemical CO_(2) reduction reaction(CO_(2)RR).Under aqueous electrolytes,however,such charge-enriched active sites can be occupied by adsorbed hydrogen(H∗)and lose their effectiveness for the CO_(2)RR.Here,we develop an efficient catalyst consisting of Cu-doped,defect-rich ZnO(Cu–ZnO)for the CO_(2)RR,which exhibits enhanced CO Faradaic efficiency and current density compared to pristine ZnO.The introduced Cu dopants simultaneously stabilize neighboring oxygen vacancies and modulate their local electronic structure,achieving inhibition of hydrogen evolution and acceleration of the CO_(2)RR.In a flow cell test,a current density of more than 45​mA​cm^(−2) and a CO Faradaic efficiency of>80%is obtained for a Cu–ZnO electrocatalyst in the wide potential range of−0.76​V to−1.06​V vs.Reversible Hydrogen Electrode(RHE).This work opens up great opportunities for dopant-modulated metal oxide catalysts for the CO_(2)RR. 展开更多
关键词 CO_(2)electroreduction Oxygen vacancy Heteroatom doping metal oxide catalysts
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部