SiCp/Al2O3-Al composites were synthesized by means of direct metal oxidation method. The composition and microstructures of the composites were investigated using X-ray diffraction (XRD), scanning electron microsco...SiCp/Al2O3-Al composites were synthesized by means of direct metal oxidation method. The composition and microstructures of the composites were investigated using X-ray diffraction (XRD), scanning electron microscopy (SEM) and metallurgical microscope. The effects of technical parameters on the properties of the product were analyzed. The results indicate that the composite possesses a dense microstructure, composed of three interpenetrated phases. Of them, SiO2 layer prohibits the powdering of the composites; Mg promotes the wetting and infiltration of the system and Si restricts the interfacial reaction while improving the wetting ability between reinforcement and matrix.展开更多
In this work,p-type Co3O4 decorated n-type ZnO(Co3O4/ZnO)nanocomposite was designed with the assistance of bacterial cellulose template.Phase composition,morphology and element distribution were investigated by XRD,SE...In this work,p-type Co3O4 decorated n-type ZnO(Co3O4/ZnO)nanocomposite was designed with the assistance of bacterial cellulose template.Phase composition,morphology and element distribution were investigated by XRD,SEM,HRTEM,EDS mapping and XPS.Volatile organic compounds(VOCs)sensing measurements indicated a noticeable improvement of response and decrease of working temperature for Co3O4/ZnO sensor,in comparison with pure ZnO,i.e.,the response towards 100 ppm acetone was 63.7(at a low working temperature of 180℃),which was 26 times higher than pure ZnO(response of 2.3 at 240℃).Excellent VOCs response characteristics could be ascribed to increased surface oxygen vacancy concentration(revealed by defect characterizations),catalytic activity of Co3O4 and the special p-n heterojunction structure,and bacterial cellulose provides a facile template for designing diverse functional heterojunctions for VOCs detection and other applications.展开更多
This review provides insight into the current research trend in transition metal oxides(TMOs)-based photocatalysis in removing the organic colouring matters from water.For easy understanding,the research progress has ...This review provides insight into the current research trend in transition metal oxides(TMOs)-based photocatalysis in removing the organic colouring matters from water.For easy understanding,the research progress has been presented in four generations according to the catalyst composition and mode of application,viz:single component TMOs(the firstgeneration),doped TMOs/binary TMOs/doped binary TMOs(the second-generation),inactive/active support-immobilized TMOs(the third-generation),and ternary/quaternary compositions(the fourth-generation).The first two generations represent suspended catalysts,the third generation is supported catalysts,and the fourth generation can be suspended or supported.The review provides an elaborated comparison between suspended and supported catalysts,their general/specific requirements,key factors controlling degradation,and the methodologies for performance evaluation.All the plausible fundamental and advanced dye degradation mechanisms involved in each generation of catalysts were demonstrated.The existing challenges in TMOs-based photocatalysis and how the researchers approach the hitch to resolve it effectively are discussed.Future research trends are also presented.展开更多
Spinel-type CuFe_(2)O_(4)nanoparticles were syn-thesized by a solvother-mal method using ethy-lene glycol as solvent and polyvinylpyrroli-done(PVP)as disper-sant.The characteriza-tion results showed that the average d...Spinel-type CuFe_(2)O_(4)nanoparticles were syn-thesized by a solvother-mal method using ethy-lene glycol as solvent and polyvinylpyrroli-done(PVP)as disper-sant.The characteriza-tion results showed that the average diameter of the hollow-spherical CuFe_(2)O_(4)was approximately 100 nm with homogeneous morphology and negligible agglomeration.CuFe_(2)O_(4)was used as the active electrode material to explore its su-percapacitive properties in different concentrations of KOH electrolytes.It was found that the CuFe_(2)O_(4)hollow-spherical nanoparticles exhibit potential electronic performance in superca-pacitor,with a specific capacitance of 368.2 F/g and capacitance stability retention of 91.0%after 2000 cycles at the current density of 5 A/g in 3 mol/L KOH electrolyte.The present findings demonstrate that the CuFe_(2)O_(4)electrode materials can have important implications with practical prospects in energy storage systems.展开更多
p-block metal composite oxides Sr_(1.36)Sb_(2)O_(6) and Sr_(2)Sb_(2)O_(7) synthesized by a hydrothermal method as photocatalysts in the degradation of tetracycline hydrochloride under UV light irradiation have been ex...p-block metal composite oxides Sr_(1.36)Sb_(2)O_(6) and Sr_(2)Sb_(2)O_(7) synthesized by a hydrothermal method as photocatalysts in the degradation of tetracycline hydrochloride under UV light irradiation have been extensively studied.The effects of synthesis conditions on the photocatalytic activity were discussed.The Sr_(1.36)Sb_(2)O_(6)-100°C-24 h-5 and Sr_(2)Sb_(2)O_(7)-150℃-24 h^(-2) samples prepared under optimal conditions exhibited remarkably different photocatalytic activities.The essential factors influencing the difference of photocatalytic performance were revealed.The results showed that the different photocatalytic activities observed for Sr_(1.36)Sb_(2)O_(6)and Sr_(2)Sb_(2)O_(7) could be attributed to their different electronic and crystal structures.Our work will provide a new perspective for the screening and design of p-block metal composite oxide photocatalysts to enhance the removal of organic pollutants in the environment.展开更多
A natural mineral, lindgrenite Cu3 ( MoO4 )2 ( OH)2, was synthesized from a mixture of sodium molybdate, copper sulfate, and morpholine in water under autogenous pressure at 170 ℃. The crystal structure of the mi...A natural mineral, lindgrenite Cu3 ( MoO4 )2 ( OH)2, was synthesized from a mixture of sodium molybdate, copper sulfate, and morpholine in water under autogenous pressure at 170 ℃. The crystal structure of the mineral was determined and the final refinement for 791 observed reflections with Ⅰ 〉 2σ(Ⅰ) gave R1 = 0. 0205 and wR2 = 0. 0496. The thermal stability of the mineral was investigated by using TG-DTA and variable-temperature in situ X-ray diffraction(XRD) techniques. The crystalline Cu3Mo2O9 was obtained when the mineral underwent thermal dehydration at a temperature ranging from 300 to 400 ℃, and the mixture of MoO3 and CuO was formed through decomposition of Cu3Mo2O9 at a temperature ranging from 650 to 700 ℃. Therefore, the structure of the mineral was thermally unstable at above 300 ℃, suggesting that Lindgrenite was likely formed via the hydrothermal route occurring in the nature.展开更多
Two types of alumina dispersion-strengthened copper(ADSC) alloys were fabricated by a novel in-situ reactive synthesis(IRS) and a traditional internal oxidation(IO) process. The features of alumina dispersoids i...Two types of alumina dispersion-strengthened copper(ADSC) alloys were fabricated by a novel in-situ reactive synthesis(IRS) and a traditional internal oxidation(IO) process. The features of alumina dispersoids in these ADSC alloys were investigated by X-ray diffraction, scanning electron microscopy, and high-resolution transmission electron microscopy. It is found that nano-sized γ-Al2O3 particles of approximately 10 nm in diameter are homogeneously distributed in the IRS-ADSC composites. Meanwhile, larger-sized, mixed crystal structure alumina with rod-shaped morphology is embedded in the IO-ADSC alloy. The IRS-ADSC composites can obtain better mechanical and physical properties than the IO-ADSC composites; the tensile strength of the IRS-ADSC alloy can reach 570 MPa at room temperature, its electrical conductivity is 85% IACS, and the Rockwell hardness can reach 86 HRB.展开更多
Aqueous multivalent-metal-ion intercalation chemistries hold genuine promise to develop safe and powerful microbatteries for potential use in many miniaturized electronics.However,their development is beset by state-o...Aqueous multivalent-metal-ion intercalation chemistries hold genuine promise to develop safe and powerful microbatteries for potential use in many miniaturized electronics.However,their development is beset by state-of-the-art electrode materials having practical capacities far below their theoretical values.Here we demonstrate that high compatibility between layered transition-metal oxide hosts and hydrated cation guests substantially boost their multi-electron-redox reactions to offer higher capacities and rate capability,based on typical bipolar vanadium oxides preintercalated with hydrated cations(M_(x)V_(2)O_(5)).When seamlessly integrated on Au current microcollectors with a three-dimensional bicontinuous nanoporous architecture that offers high pathways of electron transfer and ion transport,the constituent Zn_(x)V_(2)O_(5) exhibits specific capacity of as high as∼527 mAh g^(−1) at 5 mV s^(−1) and retains∼300 mAh g^(−1) at 200 mV s^(−1) in 1 M ZnSO_(4) aqueous electrolyte,outperforming the M_(x)V_(2)O_(5)(M=Li,Na,K,Mg).This allows aqueous rechargeable zinc-ion microbatteries constructed with symmetric nanoporous Zn_(x)V_(2)O_(5)/Au interdigital microelectrodes as anode and cathode to show high-density energy of∼358 mWh cm^(−3)(a value that is forty-fold higher than that of 4 V/500μAh Li thin film battery)at high levels of power delivery.展开更多
Pt-free counter electrode(CE) composed of La2 MoO(LaO-MoO) was successfully synthesized by simple pyrolysis of lanthanum acetate(CHOLa·xHO) and hexaammonium heptamolybdate tetrahydrate((NH4)6 MoO·4 HO). Furt...Pt-free counter electrode(CE) composed of La2 MoO(LaO-MoO) was successfully synthesized by simple pyrolysis of lanthanum acetate(CHOLa·xHO) and hexaammonium heptamolybdate tetrahydrate((NH4)6 MoO·4 HO). Furthermore,three proportions composites catalysts of La2 MoO@MWCNTs based on La2 MoOand multiwall carbon nanotubes(MWCNTs) were prepared and characterized as Ptfree catalyst for CE in dye-sensitized solar cells(DSSCs). The morphology and structure of La2 MoO@MWCNTs composites were determined by scanning electron microscopy, transmission electron microscope and X-ray diffraction. The electrochemical performance of La2 MoO@MWCNTs composite catalysts for CEs was determined by photocurrent-voltage measurements, cyclic voltammetry,electrochemical impedance spectroscopy, and Tafel polarization. The power conversion efficiencies of4.68%, 4.87% and 5.06% are obtained for La2 MoO:MWCNTs with the mass ratios of 5:1, 3:1 and 1:1 towards the reduction of I~-to I~-under the same conditions,respectively,which are superior to those of MWCNTs(3,94%) and La2 MoO(1.71%) electrodes. The experimental results reveal that the presence of MWCNTs results in an augmented active catalytic surface area and enhanced charge transfer from CE to the electrolyte.展开更多
基金National Natural Science Foundation of China (50372037)Scientific Research Foundations of Shaanxi University of Science and Technology (SUST-B14)
文摘SiCp/Al2O3-Al composites were synthesized by means of direct metal oxidation method. The composition and microstructures of the composites were investigated using X-ray diffraction (XRD), scanning electron microscopy (SEM) and metallurgical microscope. The effects of technical parameters on the properties of the product were analyzed. The results indicate that the composite possesses a dense microstructure, composed of three interpenetrated phases. Of them, SiO2 layer prohibits the powdering of the composites; Mg promotes the wetting and infiltration of the system and Si restricts the interfacial reaction while improving the wetting ability between reinforcement and matrix.
文摘In this work,p-type Co3O4 decorated n-type ZnO(Co3O4/ZnO)nanocomposite was designed with the assistance of bacterial cellulose template.Phase composition,morphology and element distribution were investigated by XRD,SEM,HRTEM,EDS mapping and XPS.Volatile organic compounds(VOCs)sensing measurements indicated a noticeable improvement of response and decrease of working temperature for Co3O4/ZnO sensor,in comparison with pure ZnO,i.e.,the response towards 100 ppm acetone was 63.7(at a low working temperature of 180℃),which was 26 times higher than pure ZnO(response of 2.3 at 240℃).Excellent VOCs response characteristics could be ascribed to increased surface oxygen vacancy concentration(revealed by defect characterizations),catalytic activity of Co3O4 and the special p-n heterojunction structure,and bacterial cellulose provides a facile template for designing diverse functional heterojunctions for VOCs detection and other applications.
基金supporting us by providing technical facilities(access to journals)。
文摘This review provides insight into the current research trend in transition metal oxides(TMOs)-based photocatalysis in removing the organic colouring matters from water.For easy understanding,the research progress has been presented in four generations according to the catalyst composition and mode of application,viz:single component TMOs(the firstgeneration),doped TMOs/binary TMOs/doped binary TMOs(the second-generation),inactive/active support-immobilized TMOs(the third-generation),and ternary/quaternary compositions(the fourth-generation).The first two generations represent suspended catalysts,the third generation is supported catalysts,and the fourth generation can be suspended or supported.The review provides an elaborated comparison between suspended and supported catalysts,their general/specific requirements,key factors controlling degradation,and the methodologies for performance evaluation.All the plausible fundamental and advanced dye degradation mechanisms involved in each generation of catalysts were demonstrated.The existing challenges in TMOs-based photocatalysis and how the researchers approach the hitch to resolve it effectively are discussed.Future research trends are also presented.
基金supported by Henan Province Key Research and Development and Promotion of Science and Technology Project(No.222102320336)Applica-tion Research Plan of Key Scientific Research Projects of Higher Education Institutions of Henan Province(No.22B150018)the National Natural Science Foundation of China(No.92061203)。
文摘Spinel-type CuFe_(2)O_(4)nanoparticles were syn-thesized by a solvother-mal method using ethy-lene glycol as solvent and polyvinylpyrroli-done(PVP)as disper-sant.The characteriza-tion results showed that the average diameter of the hollow-spherical CuFe_(2)O_(4)was approximately 100 nm with homogeneous morphology and negligible agglomeration.CuFe_(2)O_(4)was used as the active electrode material to explore its su-percapacitive properties in different concentrations of KOH electrolytes.It was found that the CuFe_(2)O_(4)hollow-spherical nanoparticles exhibit potential electronic performance in superca-pacitor,with a specific capacitance of 368.2 F/g and capacitance stability retention of 91.0%after 2000 cycles at the current density of 5 A/g in 3 mol/L KOH electrolyte.The present findings demonstrate that the CuFe_(2)O_(4)electrode materials can have important implications with practical prospects in energy storage systems.
基金financially supported by the National Natural Science Foundation of China(21875037,51502036)the National Key Research and Development Program of China(2016YFB0302303,2019YFC1908203)the Natural Science Foundation of Distinguished Young Scholars of Fujian Province(2019J06015)。
文摘p-block metal composite oxides Sr_(1.36)Sb_(2)O_(6) and Sr_(2)Sb_(2)O_(7) synthesized by a hydrothermal method as photocatalysts in the degradation of tetracycline hydrochloride under UV light irradiation have been extensively studied.The effects of synthesis conditions on the photocatalytic activity were discussed.The Sr_(1.36)Sb_(2)O_(6)-100°C-24 h-5 and Sr_(2)Sb_(2)O_(7)-150℃-24 h^(-2) samples prepared under optimal conditions exhibited remarkably different photocatalytic activities.The essential factors influencing the difference of photocatalytic performance were revealed.The results showed that the different photocatalytic activities observed for Sr_(1.36)Sb_(2)O_(6)and Sr_(2)Sb_(2)O_(7) could be attributed to their different electronic and crystal structures.Our work will provide a new perspective for the screening and design of p-block metal composite oxide photocatalysts to enhance the removal of organic pollutants in the environment.
基金Supported by the National Natural Science Foundation of China(No. 20371013, 20421303),National Key Basic ResearchProgram of China(No. 2003CB615807) the State Key Laboratory Base of Novel Functional Materials and Preparation Science(Ningbo University).
文摘A natural mineral, lindgrenite Cu3 ( MoO4 )2 ( OH)2, was synthesized from a mixture of sodium molybdate, copper sulfate, and morpholine in water under autogenous pressure at 170 ℃. The crystal structure of the mineral was determined and the final refinement for 791 observed reflections with Ⅰ 〉 2σ(Ⅰ) gave R1 = 0. 0205 and wR2 = 0. 0496. The thermal stability of the mineral was investigated by using TG-DTA and variable-temperature in situ X-ray diffraction(XRD) techniques. The crystalline Cu3Mo2O9 was obtained when the mineral underwent thermal dehydration at a temperature ranging from 300 to 400 ℃, and the mixture of MoO3 and CuO was formed through decomposition of Cu3Mo2O9 at a temperature ranging from 650 to 700 ℃. Therefore, the structure of the mineral was thermally unstable at above 300 ℃, suggesting that Lindgrenite was likely formed via the hydrothermal route occurring in the nature.
基金financially supported by the National Natural Science Foundation of China(NO.51464013)the Dr.Initialization Fund of Jiangxi University of Science and Technology(No.jxxjbs14013)
文摘Two types of alumina dispersion-strengthened copper(ADSC) alloys were fabricated by a novel in-situ reactive synthesis(IRS) and a traditional internal oxidation(IO) process. The features of alumina dispersoids in these ADSC alloys were investigated by X-ray diffraction, scanning electron microscopy, and high-resolution transmission electron microscopy. It is found that nano-sized γ-Al2O3 particles of approximately 10 nm in diameter are homogeneously distributed in the IRS-ADSC composites. Meanwhile, larger-sized, mixed crystal structure alumina with rod-shaped morphology is embedded in the IO-ADSC alloy. The IRS-ADSC composites can obtain better mechanical and physical properties than the IO-ADSC composites; the tensile strength of the IRS-ADSC alloy can reach 570 MPa at room temperature, its electrical conductivity is 85% IACS, and the Rockwell hardness can reach 86 HRB.
基金supported by the National Natural Science Foundation of China (Nos. 51871107, 52130101, 51631004)Top-notch Young Talent Program of China (W02070051)+2 种基金Chang Jiang Scholar Program of China (Q2016064)the Program for JLU Science and Technology Innovative Research Team (JLUSTIRT, 2017TD-09)the Fundamental Research Funds for the Central Universities, the Program for Innovative Research Team (in Science and Technology) in University of Jilin Province。
文摘Aqueous multivalent-metal-ion intercalation chemistries hold genuine promise to develop safe and powerful microbatteries for potential use in many miniaturized electronics.However,their development is beset by state-of-the-art electrode materials having practical capacities far below their theoretical values.Here we demonstrate that high compatibility between layered transition-metal oxide hosts and hydrated cation guests substantially boost their multi-electron-redox reactions to offer higher capacities and rate capability,based on typical bipolar vanadium oxides preintercalated with hydrated cations(M_(x)V_(2)O_(5)).When seamlessly integrated on Au current microcollectors with a three-dimensional bicontinuous nanoporous architecture that offers high pathways of electron transfer and ion transport,the constituent Zn_(x)V_(2)O_(5) exhibits specific capacity of as high as∼527 mAh g^(−1) at 5 mV s^(−1) and retains∼300 mAh g^(−1) at 200 mV s^(−1) in 1 M ZnSO_(4) aqueous electrolyte,outperforming the M_(x)V_(2)O_(5)(M=Li,Na,K,Mg).This allows aqueous rechargeable zinc-ion microbatteries constructed with symmetric nanoporous Zn_(x)V_(2)O_(5)/Au interdigital microelectrodes as anode and cathode to show high-density energy of∼358 mWh cm^(−3)(a value that is forty-fold higher than that of 4 V/500μAh Li thin film battery)at high levels of power delivery.
基金Project supported by the National Natural Science Foundation of China(21473048 and 21303039)the Natural Science Foundation of Hebei Province(B2015205163,B2016205161)the 2015 Hebei Province Undergraduate Training Programs for Innovation and Entrepreneurship
文摘Pt-free counter electrode(CE) composed of La2 MoO(LaO-MoO) was successfully synthesized by simple pyrolysis of lanthanum acetate(CHOLa·xHO) and hexaammonium heptamolybdate tetrahydrate((NH4)6 MoO·4 HO). Furthermore,three proportions composites catalysts of La2 MoO@MWCNTs based on La2 MoOand multiwall carbon nanotubes(MWCNTs) were prepared and characterized as Ptfree catalyst for CE in dye-sensitized solar cells(DSSCs). The morphology and structure of La2 MoO@MWCNTs composites were determined by scanning electron microscopy, transmission electron microscope and X-ray diffraction. The electrochemical performance of La2 MoO@MWCNTs composite catalysts for CEs was determined by photocurrent-voltage measurements, cyclic voltammetry,electrochemical impedance spectroscopy, and Tafel polarization. The power conversion efficiencies of4.68%, 4.87% and 5.06% are obtained for La2 MoO:MWCNTs with the mass ratios of 5:1, 3:1 and 1:1 towards the reduction of I~-to I~-under the same conditions,respectively,which are superior to those of MWCNTs(3,94%) and La2 MoO(1.71%) electrodes. The experimental results reveal that the presence of MWCNTs results in an augmented active catalytic surface area and enhanced charge transfer from CE to the electrolyte.