Low melting point metals(Ga, In, Sn) as alloy elements were used to prepare Al-In-Sn and Al-Ga-In-Sn alloys through mechanical ball milling method. The effects of mass ratio of In to Sn and Ga content on the hydroly...Low melting point metals(Ga, In, Sn) as alloy elements were used to prepare Al-In-Sn and Al-Ga-In-Sn alloys through mechanical ball milling method. The effects of mass ratio of In to Sn and Ga content on the hydrolysis properties of aluminum alloys were investigated. X-ray diffraction(XRD) and scanning electron microscopy(SEM) with energy disperse spectroscopy(EDS) were used to analyze the compositions and morphologies of the obtained Al alloys. The results show that the phase compositions of Al-In-Sn ternary alloys are Al and two intermetallic compounds, In3 Sn and In Sn4. All Al-In-Sn ternary alloys exhibit poor hydrolysis activity at room temperature. Al-In-Sn alloy with the mass ratio of In to Sn equaling 1:4 has the highest hydrogen yield. After Ga is introduced to the ternary alloys, the hydrolysis activity of aluminum alloys at room temperature is greatly improved. It is speculated that the addition of Ga element promotes the formation of defects inside the Al alloys and Ga-In3Sn-In Sn4 eutectic alloys on the alloys surface. Al atoms can be dissolved in this eutectic phase and become the active spots during the hydrolysis process. The small size and uniform distribution of this eutectic phase may be responsible for the enhancement of hydrolysis activity.展开更多
Multi-point forming (MPF) is an advanced manufacturing technology for three-dimensional sheet metal parts. In this paper, the MPF integrated system is described that can form a variety of part shapes without the need ...Multi-point forming (MPF) is an advanced manufacturing technology for three-dimensional sheet metal parts. In this paper, the MPF integrated system is described that can form a variety of part shapes without the need for solid dies, and given only geometry and material information about the desired part. The central component of this system is a pair of matrices of punches, and the desired discrete die surface is constructed by changing the positions of punches though the CAD and control system. The basic MPF process is introduced and the typical application examples show the applicability of the MPF technology. Wrinkle and dimple are the major forming defects in MPF process, numerical simulation is a feasible way to predict forming defects in MPF. In conventional stamping, the mode to form sheet metal with blankholder is an effective way to suppress wrinkling; the same is true in MPF. A MPF press with flexible blankholder was developed, and the forming results indicated the forming stability of this technique. Based on the flexibility of MPF, varying deformation path MPF and sectional MPF were explored that cannot be realized in conventional stamping. By controlling each punch in real-time, a sheet part can be manufactured along a specific forming path. When the path of deformation in MPF is designed properly, forming defects will be avoided completely and lager deformation is achieved. A work piece can be formed section by section though the sectional MPF, and this technique makes it possible to manufacture large size parts in a small MPF press. Some critical experiments were performed that confirmed the validity of two special MPF techniques.展开更多
With the aid of a slip-disentanglemnt theory, a rheological equation has been deduced about the composite system of solid-state low melting point metal and polymer. By measuring some rheological properties of the comp...With the aid of a slip-disentanglemnt theory, a rheological equation has been deduced about the composite system of solid-state low melting point metal and polymer. By measuring some rheological properties of the composite system composed of low melt point metal and polypropylene (LMPM/PP), the results show that LMPM has a promoter flow action upon PP when using a small amount of LMPM and, if some coupled agents are added, the promoter flow action will be remarkable. Moreover, while LMPM being added into the composite, the temperature sensitivity of system will go rip. This indicates that the system's viscosity will drop further if its temperature is increased.展开更多
A meshfree method based on reproducing kernel approximation and point collocation is presented for analysis of metal ring compression. The point collocation method is a true meshfree method without the employment of a...A meshfree method based on reproducing kernel approximation and point collocation is presented for analysis of metal ring compression. The point collocation method is a true meshfree method without the employment of a background mesh. It is shown that, in a point collocation approach, the remesh problem because of the mesh distortion in FEM (finite element method) and the low efficiency in Galerkin-based meshfree method are avoided. The corrected kernel functions are introduced to the stabilization of free-surface boundary conditions. The solution of symmetric ring compression problem is compared with a conventional finite element solution, and reasonable results have been obtained.展开更多
We had treated 102 cases of obstinate peptic ulcer and chronic gastritis with ametal ring embedded in Zusanli acupoint since October 1989 to October 1992,and got satisfactorytherapeutic effects.The total effective rat...We had treated 102 cases of obstinate peptic ulcer and chronic gastritis with ametal ring embedded in Zusanli acupoint since October 1989 to October 1992,and got satisfactorytherapeutic effects.The total effective rate is 96.08%,the cure rate of peptic ulcer is 87.32%,therecurrence rate is significantly lower than that of control group(P【0.001),and it has no side-effect.展开更多
The dispersion mechanism of low melting point metal (LMPM) particles in polymers was studied using Cox dilute emulsion model. The critical destruction shear stress sigma of LMPM droplets is sigma greater than 2 v/d. ...The dispersion mechanism of low melting point metal (LMPM) particles in polymers was studied using Cox dilute emulsion model. The critical destruction shear stress sigma of LMPM droplets is sigma greater than 2 v/d. When sigma is small, LMPM droplets were dispersed and deformed ellipsoidal or bar droplets whose orientation direction is always at an angle of 45 degree with the direction of shear rate. When sigma is very big and droplets are very fine, polymer melt elasticity behavior and big boundary tension between a polymer melt and LMPM droplets make further fining LMPM droplets become more difficult. Therefore, LMPM droplets produce tensile flow and form LMPM microfibrils in situ in polymer melt. SEM photographs have shown the results predicted using dilute emulsion model. (Author abstract) 7 Refs.展开更多
Electrical conductivities of micron-scale aluminum wires were quantitatively measured by a four-point atomic force microscope (AFM) probe. This technique is a combination of the principles of the four-point probe meth...Electrical conductivities of micron-scale aluminum wires were quantitatively measured by a four-point atomic force microscope (AFM) probe. This technique is a combination of the principles of the four-point probe method and standard AFM. This technique was applied to the 99.999% aluminum wires with 350 nm thickness and different widths of 5.0, 25.0 and 50.0μm. Since the small dimensions of the wires, the geometrical effects were discussed in details. Experiment results show that the four-point AFM probe is mechanically flexible and robust. The four-point AFM probe technique is capable of measuring surface topography together with local electrical conductivity simultaneously. The repeatable measurements indicate that this technique could be used for fast in-situ electrical properties characterization of sensors and microelectromechanical system devices.展开更多
The low melting point metallic tin powder or alloy of tin and lead was blended with polypropylene. A kind of in situ composite has been prepared. The variations of torque were studied when the composites were mixed in...The low melting point metallic tin powder or alloy of tin and lead was blended with polypropylene. A kind of in situ composite has been prepared. The variations of torque were studied when the composites were mixed in Haake torque rheogeniometer. By way of capillary extrusion, effects upon rheology of the in situ composites of the low melting point metals (LMPM) and coupling agent for their different variety and content, were investigated. From flow curves, the results indicate that in situ composites mixed with the LMPM are a kind of pseudoplastic fluid. If the LMPM were melted, the higher the content of the LMPM, the lower apparent viscosity of composites. Meanwhile, when the coupling agent is added into composites , the viscosity of composite will go up first and drop then. This shows that the LMPM have a promoter flow action on the polypropylene.展开更多
2-(pyridine-2-yl)-N-p-chlorohydrazinecarbothioamide (HCPTS) was synthesized, characterized and successfully applied for the preconcentration of Cu(II), Ni(II), Zn(II), Cd(II), Co(II), Pb(II), Fe(II), and Hg(II) in wat...2-(pyridine-2-yl)-N-p-chlorohydrazinecarbothioamide (HCPTS) was synthesized, characterized and successfully applied for the preconcentration of Cu(II), Ni(II), Zn(II), Cd(II), Co(II), Pb(II), Fe(II), and Hg(II) in water, blood, and urine samples prior to graphite furnace atomic absorption determination (GFAAS);Hg was determined by cold vapor technique. Under the optimum experimental conditions (i.e. pH = 8, 10–4 M of HCPTS, 0.05% w/v of Triton X-114), calibration graphs were linear in the range of 0.02 to 200 ng?mL–1 for Co(II), Cd(II), Pb(II) and Ni(II);0.03 to 200 ng?mL–1 for Cu(II);0.07 to 200 ng?mL–1 for Fe(II) and Zn(II) and 0.02 to 150 ng?mL–1 for Hg(II). The enrichment factors were 43, 51, 41, 46, 54, 40, 45 and 52 for Cu(II), Ni(II),Zn (II), Cd(II), Co(II), Pb(II), Fe(II), and Hg(II), respectively. The limit of detection were found to be 0.019, 0.094, 0.0514, 0.052, 0.0165, 0.047, 0.068 and 0.041 ng?mL–1 for Cu(II), Ni(II), Zn(II), Cd(II), Co(II), Pb(II), Fe(II), and Hg(II), respectively. The developed method was applied to the determination of these metal ions in water, blood and urine samples with satisfactory results.展开更多
Conifer needles bioaccumulate atmospheric pollutants, including trace metals, and may be used to monitor variations in atmospheric concentration. Needles were analyzed to determine whether a correlation exists between...Conifer needles bioaccumulate atmospheric pollutants, including trace metals, and may be used to monitor variations in atmospheric concentration. Needles were analyzed to determine whether a correlation exists between elevations and trace metal concentrations in proximity to roadways and other non-point sources. Composite samples of white spruce (Picea glauca) and balsam fir (Abies balsamea) needles were collected along hillsides in eastern and western Calgary, respectively. A combined total of 11 sites was sampled along two transects of increasing elevation. Qualitative and quantitative analysis of trace metal concentrations was completed using inductively coupled plasma-mass spectrometry (ICP-MS) and synthesized using regression analysis. The concentrations of cobalt, nickel, and calcium in the samples were found to exhibit a significant (P < 0.05) relationship with respect to elevation and proximity to roadways.展开更多
The exceptional point(EP) is a significant and attractive phenomenon in an open quantum system. The scattering properties of light are similar to those in the open quantum system, which makes it possible to achieve ...The exceptional point(EP) is a significant and attractive phenomenon in an open quantum system. The scattering properties of light are similar to those in the open quantum system, which makes it possible to achieve EP in the optic system. Here we investigate the EP in a Fabry–P′erot(F–P) resonant coupling structure. The coupling between different types of F–P resonances leads to a near zero reflection, which results in a degeneration of eigenstates and thus the appearing of EP. Furthermore, the multi-wavelength EPs and unidirectional invisibility can be achieved which may be used in integrated photonics systems.展开更多
This paper presents the evaluation of the capacitance of an isolated elliptical plate and two parallel elliptical plates. Integral equations are formed by relating the previously unknown charges on the elliptical plat...This paper presents the evaluation of the capacitance of an isolated elliptical plate and two parallel elliptical plates. Integral equations are formed by relating the previously unknown charges on the elliptical plates and the potential on the metallic plates. The integral equations are solved by applying the method of moments based on the pulse function and point matching. The elements of the matrix in the method of moments are found by dividing the structure into triangular subsections. The matrix equation is solved in order to compute the unknown charges on each subsection. Numerical results on the capacitance as a function of the geometrical parameters of the ellipse are presented.展开更多
Complementary metal-oxide-semiconductor(CMOS) sensors can convert X-rays into detectable signals; therefore, they are powerful tools in X-ray detection applications. Herein, we explore the physics behind X-ray detecti...Complementary metal-oxide-semiconductor(CMOS) sensors can convert X-rays into detectable signals; therefore, they are powerful tools in X-ray detection applications. Herein, we explore the physics behind X-ray detection performed using CMOS sensors. X-ray measurements were obtained using a simulated positioner based on a CMOS sensor, while the X-ray energy was modified by changing the voltage, current, and radiation time. A monitoring control unit collected video data of the detected X-rays. The video images were framed and filtered to detect the effective pixel points(radiation spots).The histograms of the images prove there is a linear relationship between the pixel points and X-ray energy. The relationships between the image pixel points, voltage, and current were quantified, and the resultant correlations were observed to obey some physical laws.展开更多
Experimental studies to demonstrate self healing potentials of Al-Mg-Si alloy were undertaken in this research work. Self healing exploring secondary precipitation in the Al-Mg-Si alloy and use of low melting metallic...Experimental studies to demonstrate self healing potentials of Al-Mg-Si alloy were undertaken in this research work. Self healing exploring secondary precipitation in the Al-Mg-Si alloy and use of low melting metallic alloy reinforcement (60Sn-40Pb alloy) were used as basis for the investigation. For the precipitation study, the Al-Mg-Si alloy was under-aged at temperature of 160oC for 10 minutes and then subjected to second step ageing treatment at four different temperatures within the range of 25oC and 70oC. In the 60Sn-40Pb alloy reinforced Al-Mg-Si alloy study, the samples were prepared in pre-cracked state and then subjected to healing heat-treatment at 250oC. For all cases tensile test and healing efficiency was used to analyze the results generated. It was observed that a second step thermal ageing at 50oC resulted in peak improvement in tensile strength, yield strength, toughness and percent elongation while ageing above this temperature lead to a drop in the tensile properties in comparison to that of the sample not subjected to a second ageing treatment. Also the use of 60Sn-40Pb alloy as reinforcement in the Al-Mg-Si alloy resulted in a healing efficiency of 91% after pre-cracking and heat-treatment. The satisfactory bonding between the 60Sn-40Pb alloy and the Al-Mg-Si alloy matrix contributed to the high healing efficiency observed.展开更多
With the aid of thermomagnetic analysis (TMA) up to 800ºС the composition and distribution of particles of native iron and Fe-Ni alloy was studied in 15 sections, Gams (Austria), Verhorechie and Selbuhra (Cr...With the aid of thermomagnetic analysis (TMA) up to 800ºС the composition and distribution of particles of native iron and Fe-Ni alloy was studied in 15 sections, Gams (Austria), Verhorechie and Selbuhra (Crimea), Kvirinaki and Tetritskaro (Georgia), Aimaki, Bass, Dzhengutaj, Madzhalis and Gergebil (North Caucasus, Russia), Klyuchi and Tep-lovka (Volga Region, Russia), Koshak (Kazakhstan), Kara-Kala and Khalats (Turkmenistan). The age of sediments varies from Miocene to Early Cretaceous. Iron particles are present at 521samples out of 921studied. Their percentage varies from 10-5% to 0.05%. The distribution consists of two groups: 1) “zero” group (iron is not found by TMA);2) group of logarithmic normal distribution with a differing modes. The global enrichment by iron particles in synchronous deposits of Miocene, Maastrichtian-Danian, Santonian and Cenomanian was discovered. With respect to nickel content, the iron particles fall into two groups: 1) nearly pure iron without nickel;and 2) iron with nickel content up to 20%, with modal value of 5%. The source of iron particles is the cosmic dust. Particles of pure nickel and the alloy containing more of 20% of nickel are very rare. Possibly, such particles are related mainly with impact events. A peak of elevated iron content with nearly constant nickel of 5-6% was found in almost all studied sections. It is a global effect which is not dependent of place and time of deposition of iron particles.展开更多
基金Project(2010CB635107) supported by the Major State Basic Research Development Program of ChinaProjects(51202064,51472081) supported by the National Natural Science Foundation of China+2 种基金Project(2013CFA085) supported by the Natural Science Foundation of Hubei Province,ChinaProject(2013070104010016) supported by Wuhan Youth Chenguang Program of Science and Technology,ChinaProject([2013]2-22) supported by the Open Fund of Key Laboratory of Green Materials for Light Industry of Hubei Province,China
文摘Low melting point metals(Ga, In, Sn) as alloy elements were used to prepare Al-In-Sn and Al-Ga-In-Sn alloys through mechanical ball milling method. The effects of mass ratio of In to Sn and Ga content on the hydrolysis properties of aluminum alloys were investigated. X-ray diffraction(XRD) and scanning electron microscopy(SEM) with energy disperse spectroscopy(EDS) were used to analyze the compositions and morphologies of the obtained Al alloys. The results show that the phase compositions of Al-In-Sn ternary alloys are Al and two intermetallic compounds, In3 Sn and In Sn4. All Al-In-Sn ternary alloys exhibit poor hydrolysis activity at room temperature. Al-In-Sn alloy with the mass ratio of In to Sn equaling 1:4 has the highest hydrogen yield. After Ga is introduced to the ternary alloys, the hydrolysis activity of aluminum alloys at room temperature is greatly improved. It is speculated that the addition of Ga element promotes the formation of defects inside the Al alloys and Ga-In3Sn-In Sn4 eutectic alloys on the alloys surface. Al atoms can be dissolved in this eutectic phase and become the active spots during the hydrolysis process. The small size and uniform distribution of this eutectic phase may be responsible for the enhancement of hydrolysis activity.
文摘Multi-point forming (MPF) is an advanced manufacturing technology for three-dimensional sheet metal parts. In this paper, the MPF integrated system is described that can form a variety of part shapes without the need for solid dies, and given only geometry and material information about the desired part. The central component of this system is a pair of matrices of punches, and the desired discrete die surface is constructed by changing the positions of punches though the CAD and control system. The basic MPF process is introduced and the typical application examples show the applicability of the MPF technology. Wrinkle and dimple are the major forming defects in MPF process, numerical simulation is a feasible way to predict forming defects in MPF. In conventional stamping, the mode to form sheet metal with blankholder is an effective way to suppress wrinkling; the same is true in MPF. A MPF press with flexible blankholder was developed, and the forming results indicated the forming stability of this technique. Based on the flexibility of MPF, varying deformation path MPF and sectional MPF were explored that cannot be realized in conventional stamping. By controlling each punch in real-time, a sheet part can be manufactured along a specific forming path. When the path of deformation in MPF is designed properly, forming defects will be avoided completely and lager deformation is achieved. A work piece can be formed section by section though the sectional MPF, and this technique makes it possible to manufacture large size parts in a small MPF press. Some critical experiments were performed that confirmed the validity of two special MPF techniques.
文摘With the aid of a slip-disentanglemnt theory, a rheological equation has been deduced about the composite system of solid-state low melting point metal and polymer. By measuring some rheological properties of the composite system composed of low melt point metal and polypropylene (LMPM/PP), the results show that LMPM has a promoter flow action upon PP when using a small amount of LMPM and, if some coupled agents are added, the promoter flow action will be remarkable. Moreover, while LMPM being added into the composite, the temperature sensitivity of system will go rip. This indicates that the system's viscosity will drop further if its temperature is increased.
基金the National Natural Science Foundation of China (No. 50275059).
文摘A meshfree method based on reproducing kernel approximation and point collocation is presented for analysis of metal ring compression. The point collocation method is a true meshfree method without the employment of a background mesh. It is shown that, in a point collocation approach, the remesh problem because of the mesh distortion in FEM (finite element method) and the low efficiency in Galerkin-based meshfree method are avoided. The corrected kernel functions are introduced to the stabilization of free-surface boundary conditions. The solution of symmetric ring compression problem is compared with a conventional finite element solution, and reasonable results have been obtained.
文摘We had treated 102 cases of obstinate peptic ulcer and chronic gastritis with ametal ring embedded in Zusanli acupoint since October 1989 to October 1992,and got satisfactorytherapeutic effects.The total effective rate is 96.08%,the cure rate of peptic ulcer is 87.32%,therecurrence rate is significantly lower than that of control group(P【0.001),and it has no side-effect.
文摘The dispersion mechanism of low melting point metal (LMPM) particles in polymers was studied using Cox dilute emulsion model. The critical destruction shear stress sigma of LMPM droplets is sigma greater than 2 v/d. When sigma is small, LMPM droplets were dispersed and deformed ellipsoidal or bar droplets whose orientation direction is always at an angle of 45 degree with the direction of shear rate. When sigma is very big and droplets are very fine, polymer melt elasticity behavior and big boundary tension between a polymer melt and LMPM droplets make further fining LMPM droplets become more difficult. Therefore, LMPM droplets produce tensile flow and form LMPM microfibrils in situ in polymer melt. SEM photographs have shown the results predicted using dilute emulsion model. (Author abstract) 7 Refs.
基金Project( 17206011) supported by the Japan Society for the Promotion of Science
文摘Electrical conductivities of micron-scale aluminum wires were quantitatively measured by a four-point atomic force microscope (AFM) probe. This technique is a combination of the principles of the four-point probe method and standard AFM. This technique was applied to the 99.999% aluminum wires with 350 nm thickness and different widths of 5.0, 25.0 and 50.0μm. Since the small dimensions of the wires, the geometrical effects were discussed in details. Experiment results show that the four-point AFM probe is mechanically flexible and robust. The four-point AFM probe technique is capable of measuring surface topography together with local electrical conductivity simultaneously. The repeatable measurements indicate that this technique could be used for fast in-situ electrical properties characterization of sensors and microelectromechanical system devices.
基金Supported by Foundation for University Key Teacher by the Ministry of Education
文摘The low melting point metallic tin powder or alloy of tin and lead was blended with polypropylene. A kind of in situ composite has been prepared. The variations of torque were studied when the composites were mixed in Haake torque rheogeniometer. By way of capillary extrusion, effects upon rheology of the in situ composites of the low melting point metals (LMPM) and coupling agent for their different variety and content, were investigated. From flow curves, the results indicate that in situ composites mixed with the LMPM are a kind of pseudoplastic fluid. If the LMPM were melted, the higher the content of the LMPM, the lower apparent viscosity of composites. Meanwhile, when the coupling agent is added into composites , the viscosity of composite will go up first and drop then. This shows that the LMPM have a promoter flow action on the polypropylene.
文摘2-(pyridine-2-yl)-N-p-chlorohydrazinecarbothioamide (HCPTS) was synthesized, characterized and successfully applied for the preconcentration of Cu(II), Ni(II), Zn(II), Cd(II), Co(II), Pb(II), Fe(II), and Hg(II) in water, blood, and urine samples prior to graphite furnace atomic absorption determination (GFAAS);Hg was determined by cold vapor technique. Under the optimum experimental conditions (i.e. pH = 8, 10–4 M of HCPTS, 0.05% w/v of Triton X-114), calibration graphs were linear in the range of 0.02 to 200 ng?mL–1 for Co(II), Cd(II), Pb(II) and Ni(II);0.03 to 200 ng?mL–1 for Cu(II);0.07 to 200 ng?mL–1 for Fe(II) and Zn(II) and 0.02 to 150 ng?mL–1 for Hg(II). The enrichment factors were 43, 51, 41, 46, 54, 40, 45 and 52 for Cu(II), Ni(II),Zn (II), Cd(II), Co(II), Pb(II), Fe(II), and Hg(II), respectively. The limit of detection were found to be 0.019, 0.094, 0.0514, 0.052, 0.0165, 0.047, 0.068 and 0.041 ng?mL–1 for Cu(II), Ni(II), Zn(II), Cd(II), Co(II), Pb(II), Fe(II), and Hg(II), respectively. The developed method was applied to the determination of these metal ions in water, blood and urine samples with satisfactory results.
文摘Conifer needles bioaccumulate atmospheric pollutants, including trace metals, and may be used to monitor variations in atmospheric concentration. Needles were analyzed to determine whether a correlation exists between elevations and trace metal concentrations in proximity to roadways and other non-point sources. Composite samples of white spruce (Picea glauca) and balsam fir (Abies balsamea) needles were collected along hillsides in eastern and western Calgary, respectively. A combined total of 11 sites was sampled along two transects of increasing elevation. Qualitative and quantitative analysis of trace metal concentrations was completed using inductively coupled plasma-mass spectrometry (ICP-MS) and synthesized using regression analysis. The concentrations of cobalt, nickel, and calcium in the samples were found to exhibit a significant (P < 0.05) relationship with respect to elevation and proximity to roadways.
基金financially supported by the High-Tech Research and Development Program of China(No.SS2013AA031305)the Key Technologies R&D Program of Tianjin(No.12ZCDGGX49100)
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61377054 and 61675140)
文摘The exceptional point(EP) is a significant and attractive phenomenon in an open quantum system. The scattering properties of light are similar to those in the open quantum system, which makes it possible to achieve EP in the optic system. Here we investigate the EP in a Fabry–P′erot(F–P) resonant coupling structure. The coupling between different types of F–P resonances leads to a near zero reflection, which results in a degeneration of eigenstates and thus the appearing of EP. Furthermore, the multi-wavelength EPs and unidirectional invisibility can be achieved which may be used in integrated photonics systems.
文摘This paper presents the evaluation of the capacitance of an isolated elliptical plate and two parallel elliptical plates. Integral equations are formed by relating the previously unknown charges on the elliptical plates and the potential on the metallic plates. The integral equations are solved by applying the method of moments based on the pulse function and point matching. The elements of the matrix in the method of moments are found by dividing the structure into triangular subsections. The matrix equation is solved in order to compute the unknown charges on each subsection. Numerical results on the capacitance as a function of the geometrical parameters of the ellipse are presented.
基金supported by the Plan for Science Innovation Talent of Henan Province(No.154100510007)the Natural and Science Foundation in Henan Province(No.162300410179)the Cultivation Foundation of Henan Normal University National Project(No.2017PL04)
文摘Complementary metal-oxide-semiconductor(CMOS) sensors can convert X-rays into detectable signals; therefore, they are powerful tools in X-ray detection applications. Herein, we explore the physics behind X-ray detection performed using CMOS sensors. X-ray measurements were obtained using a simulated positioner based on a CMOS sensor, while the X-ray energy was modified by changing the voltage, current, and radiation time. A monitoring control unit collected video data of the detected X-rays. The video images were framed and filtered to detect the effective pixel points(radiation spots).The histograms of the images prove there is a linear relationship between the pixel points and X-ray energy. The relationships between the image pixel points, voltage, and current were quantified, and the resultant correlations were observed to obey some physical laws.
文摘Experimental studies to demonstrate self healing potentials of Al-Mg-Si alloy were undertaken in this research work. Self healing exploring secondary precipitation in the Al-Mg-Si alloy and use of low melting metallic alloy reinforcement (60Sn-40Pb alloy) were used as basis for the investigation. For the precipitation study, the Al-Mg-Si alloy was under-aged at temperature of 160oC for 10 minutes and then subjected to second step ageing treatment at four different temperatures within the range of 25oC and 70oC. In the 60Sn-40Pb alloy reinforced Al-Mg-Si alloy study, the samples were prepared in pre-cracked state and then subjected to healing heat-treatment at 250oC. For all cases tensile test and healing efficiency was used to analyze the results generated. It was observed that a second step thermal ageing at 50oC resulted in peak improvement in tensile strength, yield strength, toughness and percent elongation while ageing above this temperature lead to a drop in the tensile properties in comparison to that of the sample not subjected to a second ageing treatment. Also the use of 60Sn-40Pb alloy as reinforcement in the Al-Mg-Si alloy resulted in a healing efficiency of 91% after pre-cracking and heat-treatment. The satisfactory bonding between the 60Sn-40Pb alloy and the Al-Mg-Si alloy matrix contributed to the high healing efficiency observed.
文摘With the aid of thermomagnetic analysis (TMA) up to 800ºС the composition and distribution of particles of native iron and Fe-Ni alloy was studied in 15 sections, Gams (Austria), Verhorechie and Selbuhra (Crimea), Kvirinaki and Tetritskaro (Georgia), Aimaki, Bass, Dzhengutaj, Madzhalis and Gergebil (North Caucasus, Russia), Klyuchi and Tep-lovka (Volga Region, Russia), Koshak (Kazakhstan), Kara-Kala and Khalats (Turkmenistan). The age of sediments varies from Miocene to Early Cretaceous. Iron particles are present at 521samples out of 921studied. Their percentage varies from 10-5% to 0.05%. The distribution consists of two groups: 1) “zero” group (iron is not found by TMA);2) group of logarithmic normal distribution with a differing modes. The global enrichment by iron particles in synchronous deposits of Miocene, Maastrichtian-Danian, Santonian and Cenomanian was discovered. With respect to nickel content, the iron particles fall into two groups: 1) nearly pure iron without nickel;and 2) iron with nickel content up to 20%, with modal value of 5%. The source of iron particles is the cosmic dust. Particles of pure nickel and the alloy containing more of 20% of nickel are very rare. Possibly, such particles are related mainly with impact events. A peak of elevated iron content with nearly constant nickel of 5-6% was found in almost all studied sections. It is a global effect which is not dependent of place and time of deposition of iron particles.