The paper introduces a kind of full length recoverable resin metal bolts, expounds its structural principle and stress features, and gives some instances in laboratory tests and underground tests. The results show tha...The paper introduces a kind of full length recoverable resin metal bolts, expounds its structural principle and stress features, and gives some instances in laboratory tests and underground tests. The results show that full length recoverable resin metal bolts can be used for supporting the walls of class Ⅰ~Ⅲ mining gateways, that the anchoring force is 50 kN or so, and that the recoverability rate is more than 80%, thus the supporting effect is better than that of split set bolts.展开更多
In this paper, a low-cost activated carbon(AC) was prepared from deactivated resin catalyst(DRC) for methyl tert-butyl ether(MTBE) synthesis through carbonization and subsequent steam activation treatment. The activat...In this paper, a low-cost activated carbon(AC) was prepared from deactivated resin catalyst(DRC) for methyl tert-butyl ether(MTBE) synthesis through carbonization and subsequent steam activation treatment. The activated carbon was characterized in detail. After loading various transition metals, including Cu^(2+), Ag+, Co^(2+), Ni^(2+), Zn^(2+), and Fe^(3+) via the ultrasonic-assisted impregnation method, a series of metal-loaded adsorbents(xM-AC) were obtained and their dimethyl sulfide(DMS) adsorption performance was investigated in a batch system. Among these adsorbents, 15Cu-AC presented a superior DMS adsorption capacity equating to 58.986 mg/g due to the formation of S-M(σ) bonds between Cu^(2+) and sulfur atoms of DMS as confirmed by the Raman spectra and kinetic study.展开更多
Metal ion-imprintedly crosslinked chitosan resin 1 and resin 2 were prepared by theuse of Cu2+ and Ni2+ as template ions and glutaraldehyde as crosslinking agent, respectively.Through investigation on the adsorption c...Metal ion-imprintedly crosslinked chitosan resin 1 and resin 2 were prepared by theuse of Cu2+ and Ni2+ as template ions and glutaraldehyde as crosslinking agent, respectively.Through investigation on the adsorption capacities and binding constants for Cu2+, Ni2+andCo2+ ions on chitosan resins, resin 1 and resin 2 exhibit the adsorption selectivity for themixture solution of 1:1 Cu2+ and Ni2+ ions. The adsorption selectivity of metal ion-imprintedresins for their template ions is much higher than that of uncrosslinked chitosan resin.展开更多
The new chelate resins, abbreviated as PNBMZs and PBBMZs based on epoxide polymer, were synthesized by polycondensation of N,N-diglycidyl-4-glycidyloxyaniline or 1,4-bis(2,3-epoxypropyl)benzene with the primary amin...The new chelate resins, abbreviated as PNBMZs and PBBMZs based on epoxide polymer, were synthesized by polycondensation of N,N-diglycidyl-4-glycidyloxyaniline or 1,4-bis(2,3-epoxypropyl)benzene with the primary amine group of 1,3-bis(benzimidazol-2yl)propylamine (BBPAH). The ion exchangers contain 2.71-3.23 mmol of the ligand contents per gram of the resin. Batch extraction capacities were determined for the metal chloride salts in buffer solutions in the pH range from -1 to 6.0. The chelate resins were very selective for Cu^2+, Zn^2+, Cd^2+ in the presence of other divalent transition metal ions. The maximum uptake capacities of PNBMZ (synthetic molar ratio = 1:1.5) under non-competitive condition were found to be 0.94 mmol/g for Cu^2+ at pH = 2, 1.3 mmol/g for Cd^2+ at pH = 1 and 1.75 mmol/g for Zn^2+ at pH = -1 respectively. While in the case of PBBMZ, it was 1.39 mmol/g for Cd〉 at pH = 1. The metal-uptake behaviors for both of them showed strong pH dependence, and their extraction capacities increase with decreasing pH. The uptake of Cu^2+ by the resin PNBMZs at pH = 1 was found to be rather fast with t1/2 = 18 min. Metal-uptake experiments under competitive conditions also confirm that the chelate resins have a high selectivity for Cu^2+, Zn^2+, Cd^2+ and the contrary pH dependence.展开更多
Non-precious metal nitrogen-doped carbonaceous materials have attracted tremendous attention in the field of electrochemical energy storage and conversion.Herein,we report the designed synthesis of a novel series of C...Non-precious metal nitrogen-doped carbonaceous materials have attracted tremendous attention in the field of electrochemical energy storage and conversion.Herein,we report the designed synthesis of a novel series of Co-N-C nanocomposites and their evaluation of electrochemical properties.Novel yolkshell structured Co nanoparticles@polymer materials are fabricated from the facile coating polymer strategy on the surface of ZIF-67.After calcination in nitrogen atmosphere,the Co–N–C nanocomposites in which cobalt metal nanoparticles are embedded in the highly porous and graphitic carbon matrix are successfully achieved.The cobalt nanoparticles containing cobalt metal crystallites with an oxidized shell and/or smaller(or amorphous)cobalt-oxide deposits appear on the surface of graphitic carbons.The prepared Co–N–C nanoparticles showed favorable electrocatalytic activity for oxygen reduction reactions,which is attributed to its high graphitic degree,large surface area and the large amount existence of Co–N active sites.展开更多
Tannic acid and its related compounds are known as refractory organic pollutants, and it can create serious problems for the environment. The adsorption and desorption studies of tannic acid on commercial resins XAD-7...Tannic acid and its related compounds are known as refractory organic pollutants, and it can create serious problems for the environment. The adsorption and desorption studies of tannic acid on commercial resins XAD-7 and D-201 are performed, and all data indicates resin XAD-7 can be used as an effective adsorbent for removing tannic acid during water/wastewater treatment. Furthermore, adsorption thermodynamics studies indicate different adsorption mechanisms for TA on XAD-7 and D-201. FT-IR and solid state 13C-NMR spectroscopy are used to explain the adsorption force between XAD-7 and TA. It suggests that hydrogen bonding is the main adsorption force for TA. Finally, XAD-7's adsorption capacity in the presence of different metal ions is investigated, which indicates that heavy metal ions in solutions can decrease the adsorption capacity for TA on ester resin XAD-7.展开更多
The adsorption properties of the four precious metal ions(Ag(Ⅰ),Au(Ⅲ),Pd(Ⅱ)and Pt(Ⅳ))on the commercial Cl--form 717 strongly basic anion-exchange resin were studied in detail.The effects of the contact time,soluti...The adsorption properties of the four precious metal ions(Ag(Ⅰ),Au(Ⅲ),Pd(Ⅱ)and Pt(Ⅳ))on the commercial Cl--form 717 strongly basic anion-exchange resin were studied in detail.The effects of the contact time,solution acidity,and concentrations of Cl - and Pb 2+ ions on the adsorption properties were studied by the batch method.Then,the column method was conducted under the optimized adsorption conditions(pH=3.0).The effects of the sample loading flow rate and the length-to-diameter ratios of the columns were investigated.The precious metal ions adsorbed could not be eluted completely after the saturated adsorption because the precious metal ions were found to be reduced to their metallic states during the adsorption process.So,it is recommended that the commercial Cl--form 717 strongly basic anion-exchange resin should be decomposed directly to recovery the precious metals after the saturated adsorption.展开更多
Several kinds of novel chelating resins bearing the functional group of tartaric acid (TTA-FQ-12, TTA-FQ-23, and TTA-FQ-34) were synthesized by reacting epoxy maleic anhydride, which was prepared through the oxidizati...Several kinds of novel chelating resins bearing the functional group of tartaric acid (TTA-FQ-12, TTA-FQ-23, and TTA-FQ-34) were synthesized by reacting epoxy maleic anhydride, which was prepared through the oxidization reaction of maleic anhydride by hydrogen peroxide, with phenol-formaldehyde resin containing polyamine (FQ resins series). The effects of such factors as reaction time, reaction temperature and pH value on the loading capacity of TTA in resins were investigated. The results showed that the optimum reaction conditions are as follows: time 9-12 h; temperature 90-105'C; pH value 6-10. The loading capacities of TTA can reach 0.15, 0.14, and 0.11 mmol/g-1 when the functional group of FQ resin was - OCH2CH2NHC2H4NH2, - O(CH2CH2NH)2C2H4NH2 and - O(CH2CH2NH)3C2H4NH2), respectively. The structures of resins were characterized by FTIR spectra. The primary study on the adsorption properties of the resins for metal ions showed that there are two kinds of adsorption mechanisms i.e. ion exchange and chelate in the adsorption process. TTA-FQ resins have much higher adsorption selectivity for Pb2+and Zn2+ than for Cu2+ and Ni2+. These resins can probably be used for separating Pb2+ or Zn2+ in the mixture of metal ions or for treating wastewater containing heavy metal ions.展开更多
Adsorption of humic, tannic and gallic acids by a macro weakly basic ion-exchange resin JN-01 was studied. The adsorption capacity of this resin for gallic and tannic acids is much higher than that for humic acid, whi...Adsorption of humic, tannic and gallic acids by a macro weakly basic ion-exchange resin JN-01 was studied. The adsorption capacity of this resin for gallic and tannic acids is much higher than that for humic acid, which can be explained on the basis of both their molecular size and ionization degree. Furthermore, humic acid is separated into different components with molecular weight in the range from 2000 Da to 100000 Da by ultra-filter, and their adsorption isotherms on resin JN-01 indicate that humic acid's molecular weight is an important factor which makes significant influence on adsorption. Finally, changes in the amount of Cu^2+ and Pb^2+ adsorbed on resin JN-01 as a function of the concentration of each of these three acids were studied. A large increase in the heavy metal ions uptake is observed in the presence of humic substance, such advantages are due to the interactions between the heavy metal ions and the unbound functional groups of the adsorbed organic acids.展开更多
In the current study, the extraction of heavy metal ions (Zn2+, Cu2+ and Cd2+) is suggested to be achieved by a counter-flow moving bed reactor. The studies are made at high (1 × 10-2 M) and low (1 × 10-4 M)...In the current study, the extraction of heavy metal ions (Zn2+, Cu2+ and Cd2+) is suggested to be achieved by a counter-flow moving bed reactor. The studies are made at high (1 × 10-2 M) and low (1 × 10-4 M) initial concentrations of the heavy metal ions. Theoretical and experimental studies are made on the extraction of the metal ions with impregnated Amberlite resins, prepared by sorption of an organic extractant into the resin. The study suggests structural, kinetic and hydrodynamic parameters that shall be investigated prior to the design of a moving bed reactor. The effect of these parameters on the adsorption extent is theoretically investigated through the proposed model. Analyses of the experimentally estimated external, internal and chemical rate parameters show that the process is controlled by chemical reaction in both concentrations as the chemical reaction rate parameter is significantly smaller than both the internal and the external diffusion rate parameters.展开更多
Three new resins are synthesized by the reaction of polyepichlorohydrin with benzidine, O-tolidine and O-dianisidine, respecti v,ely. Their adsorption properties for Au(III), Pd(II), Pt(IV), Hg(II), Cu(II), Pb(II) and...Three new resins are synthesized by the reaction of polyepichlorohydrin with benzidine, O-tolidine and O-dianisidine, respecti v,ely. Their adsorption properties for Au(III), Pd(II), Pt(IV), Hg(II), Cu(II), Pb(II) and Zn(II) are investigated. The resin containing O-dianisidine group selectively sorbed Au(III) in the presence of transition metal ions. The results show that synergistic effect of anchor groups plays an important role in the adsorption of metal ions.展开更多
Chelating resins with thiol as functional group were synthesized from poly (β-chloroethyl gly-cidyl ether) . and adsorption of Au ( Ⅲ) , Pd (Ⅱ) , Pt (Ⅳ ), IIg ( Ⅱ ), Cu ( Ⅱ ) and Pb (Ⅱ) on the resins was also i...Chelating resins with thiol as functional group were synthesized from poly (β-chloroethyl gly-cidyl ether) . and adsorption of Au ( Ⅲ) , Pd (Ⅱ) , Pt (Ⅳ ), IIg ( Ⅱ ), Cu ( Ⅱ ) and Pb (Ⅱ) on the resins was also inrestigated. Both resins show high affinity for Au ( Ⅲ ),Pd( Ⅱ ) , Pt ( Ⅳ ) and Hg ( Ⅱ ) withina broad range of hydrochloric acid. Results of static and dynamic tests indicate the possibility of separation of Au ( Ⅲ ) , Pd ( Ⅱ ) , Pt ( Ⅳ ) and IIg (Ⅱ) from high concentrations of acid and neutral salt from high concentrations of acid and neutral salt solution.展开更多
A series of new chelating resins with incorporating heterocyclic functional groups: pyridine, thiadizole, benzothizole into macroporous chloromethylated polystyrene were synthesized via hydrophilic spacer arm of poly...A series of new chelating resins with incorporating heterocyclic functional groups: pyridine, thiadizole, benzothizole into macroporous chloromethylated polystyrene were synthesized via hydrophilic spacer arm of polyethylene glycol containing sulfur. These chelating resins were found to show high adsorption capacities for Ag^+, Hg^2+, Au^3+ and Pd^2+, and the presence of spacer arm can enhance adsorption ability due to increase the hydrophilicity of the chelating resins.展开更多
Several of new chelating resins containing sulfoxide and heterocyclic functional groups (3-aminopyridine and 2-mercaptobenzothiazole) based on macroporous chloromethylated polystyrene were synthesized and characteri...Several of new chelating resins containing sulfoxide and heterocyclic functional groups (3-aminopyridine and 2-mercaptobenzothiazole) based on macroporous chloromethylated polystyrene were synthesized and characterized by elemental analysis and infrared spectra. Their adsorption capacities towards Zn^2+, Cu^2+, Pb^2+, Hg^2+ and Ag^+ at pH 3.0 and 6.0 were investigated in detail. It was found that the adsorption capacities of the resins containing bis[(3-pyridylaminoethyl)sulfoxide or (2-benzothiazolylthioethyl)sulfoxide for the above ions were higher than that on ones containing single above-mentioned groups.展开更多
A new type of bead crosslinked chelating resins containing coordinate atoms N and S were synthesized by the reaction of polyethyleneimine with chlorometbylthiirane in suitable sovent at temperature of 2080C. These c...A new type of bead crosslinked chelating resins containing coordinate atoms N and S were synthesized by the reaction of polyethyleneimine with chlorometbylthiirane in suitable sovent at temperature of 2080C. These chelating resins exhibited excellent adsorption properties for precious metal ions.展开更多
文摘The paper introduces a kind of full length recoverable resin metal bolts, expounds its structural principle and stress features, and gives some instances in laboratory tests and underground tests. The results show that full length recoverable resin metal bolts can be used for supporting the walls of class Ⅰ~Ⅲ mining gateways, that the anchoring force is 50 kN or so, and that the recoverability rate is more than 80%, thus the supporting effect is better than that of split set bolts.
基金financially supported by the National Natural Science Foundation of China (No. 21276086)
文摘In this paper, a low-cost activated carbon(AC) was prepared from deactivated resin catalyst(DRC) for methyl tert-butyl ether(MTBE) synthesis through carbonization and subsequent steam activation treatment. The activated carbon was characterized in detail. After loading various transition metals, including Cu^(2+), Ag+, Co^(2+), Ni^(2+), Zn^(2+), and Fe^(3+) via the ultrasonic-assisted impregnation method, a series of metal-loaded adsorbents(xM-AC) were obtained and their dimethyl sulfide(DMS) adsorption performance was investigated in a batch system. Among these adsorbents, 15Cu-AC presented a superior DMS adsorption capacity equating to 58.986 mg/g due to the formation of S-M(σ) bonds between Cu^(2+) and sulfur atoms of DMS as confirmed by the Raman spectra and kinetic study.
文摘Metal ion-imprintedly crosslinked chitosan resin 1 and resin 2 were prepared by theuse of Cu2+ and Ni2+ as template ions and glutaraldehyde as crosslinking agent, respectively.Through investigation on the adsorption capacities and binding constants for Cu2+, Ni2+andCo2+ ions on chitosan resins, resin 1 and resin 2 exhibit the adsorption selectivity for themixture solution of 1:1 Cu2+ and Ni2+ ions. The adsorption selectivity of metal ion-imprintedresins for their template ions is much higher than that of uncrosslinked chitosan resin.
文摘The new chelate resins, abbreviated as PNBMZs and PBBMZs based on epoxide polymer, were synthesized by polycondensation of N,N-diglycidyl-4-glycidyloxyaniline or 1,4-bis(2,3-epoxypropyl)benzene with the primary amine group of 1,3-bis(benzimidazol-2yl)propylamine (BBPAH). The ion exchangers contain 2.71-3.23 mmol of the ligand contents per gram of the resin. Batch extraction capacities were determined for the metal chloride salts in buffer solutions in the pH range from -1 to 6.0. The chelate resins were very selective for Cu^2+, Zn^2+, Cd^2+ in the presence of other divalent transition metal ions. The maximum uptake capacities of PNBMZ (synthetic molar ratio = 1:1.5) under non-competitive condition were found to be 0.94 mmol/g for Cu^2+ at pH = 2, 1.3 mmol/g for Cd^2+ at pH = 1 and 1.75 mmol/g for Zn^2+ at pH = -1 respectively. While in the case of PBBMZ, it was 1.39 mmol/g for Cd〉 at pH = 1. The metal-uptake behaviors for both of them showed strong pH dependence, and their extraction capacities increase with decreasing pH. The uptake of Cu^2+ by the resin PNBMZs at pH = 1 was found to be rather fast with t1/2 = 18 min. Metal-uptake experiments under competitive conditions also confirm that the chelate resins have a high selectivity for Cu^2+, Zn^2+, Cd^2+ and the contrary pH dependence.
基金the support of Chinese Government 1000 young talent planthe support of Curtin Strategic International Research Scholarship+8 种基金Curtin University Mobility ScholarshipChinese Government Award for Outstanding Self-Financed Students Abroadthe support from ATN Seed fundARC Future Fellowship (FT180100705)Discovery Project (DP180102297)the facilities, scientific and technical assistance of the Curtin University Electron Microscope Laboratories, a facility partially funded by the University, State and Commonwealth GovernmentsThe use of equipment, scientific and technical assistance of the WA X-Ray Surface Analysis Facility, funded by the Australian Research Council LIEF grant LE120100026the facilities, and the scientific and technical assistance of the Australian Microscopy & Microanalysis Research Facility at the Centre for Microscopy, Characterization & Analysis (CMCA), the University of Western Australia (UWA), a facility funded by the University, State and Commonwealth Governmentsthe support from the Australian Research Council Future Fellowship (FT12100178)
文摘Non-precious metal nitrogen-doped carbonaceous materials have attracted tremendous attention in the field of electrochemical energy storage and conversion.Herein,we report the designed synthesis of a novel series of Co-N-C nanocomposites and their evaluation of electrochemical properties.Novel yolkshell structured Co nanoparticles@polymer materials are fabricated from the facile coating polymer strategy on the surface of ZIF-67.After calcination in nitrogen atmosphere,the Co–N–C nanocomposites in which cobalt metal nanoparticles are embedded in the highly porous and graphitic carbon matrix are successfully achieved.The cobalt nanoparticles containing cobalt metal crystallites with an oxidized shell and/or smaller(or amorphous)cobalt-oxide deposits appear on the surface of graphitic carbons.The prepared Co–N–C nanoparticles showed favorable electrocatalytic activity for oxygen reduction reactions,which is attributed to its high graphitic degree,large surface area and the large amount existence of Co–N active sites.
基金supported by the National Natural Science Fundation of China(No.50778088)China National Funds for Distinguished Young Scientists(No.50825802)
文摘Tannic acid and its related compounds are known as refractory organic pollutants, and it can create serious problems for the environment. The adsorption and desorption studies of tannic acid on commercial resins XAD-7 and D-201 are performed, and all data indicates resin XAD-7 can be used as an effective adsorbent for removing tannic acid during water/wastewater treatment. Furthermore, adsorption thermodynamics studies indicate different adsorption mechanisms for TA on XAD-7 and D-201. FT-IR and solid state 13C-NMR spectroscopy are used to explain the adsorption force between XAD-7 and TA. It suggests that hydrogen bonding is the main adsorption force for TA. Finally, XAD-7's adsorption capacity in the presence of different metal ions is investigated, which indicates that heavy metal ions in solutions can decrease the adsorption capacity for TA on ester resin XAD-7.
文摘The adsorption properties of the four precious metal ions(Ag(Ⅰ),Au(Ⅲ),Pd(Ⅱ)and Pt(Ⅳ))on the commercial Cl--form 717 strongly basic anion-exchange resin were studied in detail.The effects of the contact time,solution acidity,and concentrations of Cl - and Pb 2+ ions on the adsorption properties were studied by the batch method.Then,the column method was conducted under the optimized adsorption conditions(pH=3.0).The effects of the sample loading flow rate and the length-to-diameter ratios of the columns were investigated.The precious metal ions adsorbed could not be eluted completely after the saturated adsorption because the precious metal ions were found to be reduced to their metallic states during the adsorption process.So,it is recommended that the commercial Cl--form 717 strongly basic anion-exchange resin should be decomposed directly to recovery the precious metals after the saturated adsorption.
基金This work was supported by the Postdoctoral Science Foundation of China (No. 2003034330), the Science Foundation forElite of Middle Age and Youth of Shandong Province, the Natural Science Foundation of Shandong Province (No. Q99B15)and the National Natural Science Foundation of China (No. 29906008).
文摘Several kinds of novel chelating resins bearing the functional group of tartaric acid (TTA-FQ-12, TTA-FQ-23, and TTA-FQ-34) were synthesized by reacting epoxy maleic anhydride, which was prepared through the oxidization reaction of maleic anhydride by hydrogen peroxide, with phenol-formaldehyde resin containing polyamine (FQ resins series). The effects of such factors as reaction time, reaction temperature and pH value on the loading capacity of TTA in resins were investigated. The results showed that the optimum reaction conditions are as follows: time 9-12 h; temperature 90-105'C; pH value 6-10. The loading capacities of TTA can reach 0.15, 0.14, and 0.11 mmol/g-1 when the functional group of FQ resin was - OCH2CH2NHC2H4NH2, - O(CH2CH2NH)2C2H4NH2 and - O(CH2CH2NH)3C2H4NH2), respectively. The structures of resins were characterized by FTIR spectra. The primary study on the adsorption properties of the resins for metal ions showed that there are two kinds of adsorption mechanisms i.e. ion exchange and chelate in the adsorption process. TTA-FQ resins have much higher adsorption selectivity for Pb2+and Zn2+ than for Cu2+ and Ni2+. These resins can probably be used for separating Pb2+ or Zn2+ in the mixture of metal ions or for treating wastewater containing heavy metal ions.
基金supported by the State Key Program of National Natural Science(No.50938004)the National Nature Science Fund(No.50778088)China National Funds for Distinguished Young Scientists (No.50825802)
文摘Adsorption of humic, tannic and gallic acids by a macro weakly basic ion-exchange resin JN-01 was studied. The adsorption capacity of this resin for gallic and tannic acids is much higher than that for humic acid, which can be explained on the basis of both their molecular size and ionization degree. Furthermore, humic acid is separated into different components with molecular weight in the range from 2000 Da to 100000 Da by ultra-filter, and their adsorption isotherms on resin JN-01 indicate that humic acid's molecular weight is an important factor which makes significant influence on adsorption. Finally, changes in the amount of Cu^2+ and Pb^2+ adsorbed on resin JN-01 as a function of the concentration of each of these three acids were studied. A large increase in the heavy metal ions uptake is observed in the presence of humic substance, such advantages are due to the interactions between the heavy metal ions and the unbound functional groups of the adsorbed organic acids.
文摘In the current study, the extraction of heavy metal ions (Zn2+, Cu2+ and Cd2+) is suggested to be achieved by a counter-flow moving bed reactor. The studies are made at high (1 × 10-2 M) and low (1 × 10-4 M) initial concentrations of the heavy metal ions. Theoretical and experimental studies are made on the extraction of the metal ions with impregnated Amberlite resins, prepared by sorption of an organic extractant into the resin. The study suggests structural, kinetic and hydrodynamic parameters that shall be investigated prior to the design of a moving bed reactor. The effect of these parameters on the adsorption extent is theoretically investigated through the proposed model. Analyses of the experimentally estimated external, internal and chemical rate parameters show that the process is controlled by chemical reaction in both concentrations as the chemical reaction rate parameter is significantly smaller than both the internal and the external diffusion rate parameters.
文摘Three new resins are synthesized by the reaction of polyepichlorohydrin with benzidine, O-tolidine and O-dianisidine, respecti v,ely. Their adsorption properties for Au(III), Pd(II), Pt(IV), Hg(II), Cu(II), Pb(II) and Zn(II) are investigated. The resin containing O-dianisidine group selectively sorbed Au(III) in the presence of transition metal ions. The results show that synergistic effect of anchor groups plays an important role in the adsorption of metal ions.
文摘Chelating resins with thiol as functional group were synthesized from poly (β-chloroethyl gly-cidyl ether) . and adsorption of Au ( Ⅲ) , Pd (Ⅱ) , Pt (Ⅳ ), IIg ( Ⅱ ), Cu ( Ⅱ ) and Pb (Ⅱ) on the resins was also inrestigated. Both resins show high affinity for Au ( Ⅲ ),Pd( Ⅱ ) , Pt ( Ⅳ ) and Hg ( Ⅱ ) withina broad range of hydrochloric acid. Results of static and dynamic tests indicate the possibility of separation of Au ( Ⅲ ) , Pd ( Ⅱ ) , Pt ( Ⅳ ) and IIg (Ⅱ) from high concentrations of acid and neutral salt from high concentrations of acid and neutral salt solution.
基金The authors are grateful to the financial support by the Postdoctoral Science Foundation of China(No.2003034330)the Science Foundation for mid-youth elite of Shangdong Province+1 种基金the Natural Science Foundation of Shangdong Province(No.Q99B15)the National Natural Science Foundation of China(No.2906008)
文摘A series of new chelating resins with incorporating heterocyclic functional groups: pyridine, thiadizole, benzothizole into macroporous chloromethylated polystyrene were synthesized via hydrophilic spacer arm of polyethylene glycol containing sulfur. These chelating resins were found to show high adsorption capacities for Ag^+, Hg^2+, Au^3+ and Pd^2+, and the presence of spacer arm can enhance adsorption ability due to increase the hydrophilicity of the chelating resins.
基金The authors are grateful for the financial support by the Postdoctoral Science Foundation of China (No. 2003034330)the Science Foundation for mld-youth elite of Shandong Province+3 种基金the Nature Science Foundation of Shandong Province (No. Y2005F11 and No. 2005BS11010)the Nature Science Foundation of Yantai Normal University (No. 032912, 20052901, 042920) Educational Project for Postgraduate of Yantai Normal University (No. YD05001)Applied Project of Educational Bureau of Shandong Province (No. J05D03, J04B02).
文摘Several of new chelating resins containing sulfoxide and heterocyclic functional groups (3-aminopyridine and 2-mercaptobenzothiazole) based on macroporous chloromethylated polystyrene were synthesized and characterized by elemental analysis and infrared spectra. Their adsorption capacities towards Zn^2+, Cu^2+, Pb^2+, Hg^2+ and Ag^+ at pH 3.0 and 6.0 were investigated in detail. It was found that the adsorption capacities of the resins containing bis[(3-pyridylaminoethyl)sulfoxide or (2-benzothiazolylthioethyl)sulfoxide for the above ions were higher than that on ones containing single above-mentioned groups.
基金the National Nature Science Foundation of China!2880193
文摘A new type of bead crosslinked chelating resins containing coordinate atoms N and S were synthesized by the reaction of polyethyleneimine with chlorometbylthiirane in suitable sovent at temperature of 2080C. These chelating resins exhibited excellent adsorption properties for precious metal ions.