期刊文献+
共找到12,014篇文章
< 1 2 250 >
每页显示 20 50 100
New filler metal systems for the brazing of titanium alloys
1
作者 V. F. Khorunov S. V. Maksymova V. V. Voronov 《China Welding》 EI CAS 2015年第3期1-5,共5页
It' s well known welding takes the leading role in development of titanium structures. However, in number of cases technological processes of brazing are more appropriate and, sometimes, being the single possible, in... It' s well known welding takes the leading role in development of titanium structures. However, in number of cases technological processes of brazing are more appropriate and, sometimes, being the single possible, in particular, during production of multilayer thin-wall structures. It should be noted that brazing filler metals of Ti-Cu-Ni, Ti-Zr-Cu-Ni, Zr-Ti-Ni and Cu-Zr-Ti systems in a form of plastic foils, as well as in powder form are mainly used in world practice for brazing of titanium alloys. Present work provides the results of complex investigations of brazing filler metals of Ti-Zr-Fe, Ti-Zr-Mn and Ti-Zr-Co systems using differential thermal analysis, light and scanning microscopy, X-ray microspectrum analysis. Data on melting ranges of pilot alloys were obtained, and liquidas su^Caces of given systems using simplex-lattice method were build. Brazing filler metals covering brazing temperature range of current structural titanium materials based on solid solutions as well as intermetallics were proposed. Structure, chemical inhomogeniety and strength characteristics of brazed joints were studied. It is determined that brazing of solid solution based alloys (OT4, VT6 ) using indicated brazing fiUer metals ensures strength characteristics of joints, which are not inferior to that obtained with application of known brazing filler metals even if they are received at lower brazing temperature. 展开更多
关键词 vacuum brazing titanium alloys inter-metallic alloys brazing filler metals brazed joints structure strength of brazed joints
下载PDF
Construction of Solidus Lines of Binary Metal Systems Having a Low Solubility of Components in the Solid Phase
2
作者 A. P. Shcherban O. A. Datsenko G. P. Kovtun 《Open Journal of Metal》 2014年第3期65-71,共7页
The paper presents the calculation results on the construction of solidus lines of phase diagrams for some binary metal systems based on cadmium, zinc and tellurium. The investigations have been carried out using the ... The paper presents the calculation results on the construction of solidus lines of phase diagrams for some binary metal systems based on cadmium, zinc and tellurium. The investigations have been carried out using the phase equilibrium thermodynamics and known liquidus lines. By the calculation method the solidus lines of phase diagrams of the Cd-Na, Cd-Tl, Te-Ga, Te-As, Te-Cu and Zn-Sn systems were constructed in the temperature range from the base component melting point to the eutectic transformation temperature. In the Cd-Tl, Te-As, Te-Cu and Zn-Sn systems a retrograde solubility of the second component in the solid phase was observed. The temperature and maximum solubility values at the retrograde behavior of solidus lines, as well as, the limiting solubility values of components at eutectic transformation in the systems based on Cd, Zn and Te were determined. 展开更多
关键词 BINARY metal system Cadmium Zinc TELLURIUM Phase Diagram SOLIDUS Line Eutectic Transformation RETROGRADE SOLUBILITY
下载PDF
Quantitative determination of the critical points of Mott metal–insulator transition in strongly correlated systems
3
作者 牛月坤 倪煜 +4 位作者 王建利 陈雷鸣 邢晔 宋筠 冯世平 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第1期647-652,共6页
Mottness is at the heart of the essential physics in a strongly correlated system as many novel quantum phenomena occur in the metallic phase near the Mott metal–insulator transition. We investigate the Mott transiti... Mottness is at the heart of the essential physics in a strongly correlated system as many novel quantum phenomena occur in the metallic phase near the Mott metal–insulator transition. We investigate the Mott transition in a Hubbard model by using the dynamical mean-field theory and introduce the local quantum state fidelity to depict the Mott metal–insulator transition. The local quantum state fidelity provides a convenient approach to determining the critical point of the Mott transition. Additionally, it presents a consistent description of the two distinct forms of the Mott transition points. 展开更多
关键词 critical point metal–insulator transition local quantum state fidelity strongly correlated system quasiparticle coherent weight
下载PDF
Templated synthesis of transition metal phosphide electrocatalysts for oxygen and hydrogen evolution reactions 被引量:1
4
作者 Rose Anne Acedera Alicia Theresse Dumlao +4 位作者 DJ Donn Matienzo Maricor Divinagracia Julie Anne del Rosario Paraggua Po-Ya Abel Chuang Joey Ocon 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第2期646-669,I0014,共25页
Transition metal phosphides(TMPs)have been regarded as alternative hydrogen evolution reaction(HER)and oxygen evolution reaction(OER)catalysts owing to their comparable activity to those of noble metal-based catalysts... Transition metal phosphides(TMPs)have been regarded as alternative hydrogen evolution reaction(HER)and oxygen evolution reaction(OER)catalysts owing to their comparable activity to those of noble metal-based catalysts.TMPs have been produced in various morphologies,including hollow and porous nanostructures,which are features deemed desirable for electrocatalytic materials.Templated synthesis routes are often responsible for such morphologies.This paper reviews the latest advances and existing challenges in the synthesis of TMP-based OER and HER catalysts through templated methods.A comprehensive review of the structure-property-performance of TMP-based HER and OER catalysts prepared using different templates is presented.The discussion proceeds according to application,first by HER and further divided among the types of templates used-from hard templates,sacrificial templates,and soft templates to the emerging dynamic hydrogen bubble template.OER catalysts are then reviewed and grouped according to their morphology.Finally,prospective research directions for the synthesis of hollow and porous TMP-based catalysts,such as improvements on both activity and stability of TMPs,design of environmentally benign templates and processes,and analysis of the reaction mechanism through advanced material characterization techniques and theoretical calculations,are suggested. 展开更多
关键词 OER HER Transition metal phosphide Templated synthesis ELECTROCATALYSTS
下载PDF
Oxygen functionalization-assisted anionic exchange toward unique construction of flower-like transition metal chalcogenide embedded carbon fabric for ultra-long life flexible energy storage and conversion 被引量:1
5
作者 Roshan M.Bhattarai Kisan Chhetri +5 位作者 Nghia Le Debendra Acharya Shirjana Saud Mai Cao Hoang Phuong Lan Nguyen Sang Jae Kim Young Sun Mok 《Carbon Energy》 SCIE EI CAS CSCD 2024年第1期72-93,共22页
The metal-organic framework(MOF)derived Ni–Co–C–N composite alloys(NiCCZ)were“embedded”inside the carbon cloth(CC)strands as opposed to the popular idea of growing them upward to realize ultrastable energy storag... The metal-organic framework(MOF)derived Ni–Co–C–N composite alloys(NiCCZ)were“embedded”inside the carbon cloth(CC)strands as opposed to the popular idea of growing them upward to realize ultrastable energy storage and conversion application.The NiCCZ was then oxygen functionalized,facilitating the next step of stoichiometric sulfur anion diffusion during hydrothermal sulfurization,generating a flower-like metal hydroxysulfide structure(NiCCZOS)with strong partial implantation inside CC.Thus obtained NiCCZOS shows an excellent capacity when tested as a supercapacitor electrode in a three-electrode configuration.Moreover,when paired with the biomass-derived nitrogen-rich activated carbon,the asymmetric supercapacitor device shows almost 100%capacity retention even after 45,000 charge–discharge cycles with remarkable energy density(59.4 Wh kg^(-1)/263.8μWh cm^(–2))owing to a uniquely designed cathode.Furthermore,the same electrode performed as an excellent bifunctional water-splitting electrocatalyst with an overpotential of 271 mV for oxygen evolution reaction(OER)and 168.4 mV for hydrogen evolution reaction(HER)at 10 mA cm−2 current density along with 30 h of unhinged chronopotentiometric stability performance for both HER and OER.Hence,a unique metal chalcogenide composite electrode/substrate configuration has been proposed as a highly stable electrode material for flexible energy storage and conversion applications. 展开更多
关键词 carbon cloth energy conversion energy storage FLEXIBLE metal embedding ultra-stable
下载PDF
Recent advances in transition metal phosphide materials:Synthesis and applications in supercapacitors 被引量:1
6
作者 Ge Li Yu Feng +3 位作者 Yi Yang Xiaoliang Wu Xiumei Song Lichao Tan 《Nano Materials Science》 EI CAS CSCD 2024年第2期174-192,共19页
Supercapacitors(SCs)are considered promising energy storge systems because of their outstanding power density,fast charge and discharge rate and long-term cycling stability.The exploitation of cheap and efficient elec... Supercapacitors(SCs)are considered promising energy storge systems because of their outstanding power density,fast charge and discharge rate and long-term cycling stability.The exploitation of cheap and efficient electrode materials is the key to improve the performance of supercapacitors.As the battery-type materials,transition metal phosphides(TMPs)possess high theoretical specific capacity,good electrical conductivity and superior structural stability,which have been extensively studied to be electrode materials for supercapacitors.In this review,we summarize the up-to-date progress on TMPs materials from diversified synthetic methods,diverse nanostructures and several prominent TMPs and their composites in application of supercapacitors.In the end,we also propose the remaining challenges toward the rational discovery and synthesis of high-performance TMP electrodes materials for energy storage. 展开更多
关键词 Transition metal phosphides Cobalt phosphide Nickel phosphides Electrode materials SUPERCAPACITOR
下载PDF
Distribution Characteristics and Controlling Factors of Heavy Metals in Surface Sediments from the Bay-Island-Estuary System(BIES):A Case Study in Coastal Waters of Fujian Province,China
7
作者 LIU Bo HU Rijun +4 位作者 WANG Yonghong LI Yi ZHU Longhai ZHANG Xiaodong YUAN Xiaodong 《Journal of Ocean University of China》 SCIE CAS CSCD 2023年第5期1253-1268,共16页
Based on the contents of six heavy metal elements in surface sediments from coastal areas of Fujian Province,the distribution characteristics and controlling factors of six heavy metals in a bay-island-estuary system(... Based on the contents of six heavy metal elements in surface sediments from coastal areas of Fujian Province,the distribution characteristics and controlling factors of six heavy metals in a bay-island-estuary system(BIES)were studied.This paper focuses on the influence of the hydrodynamic environment,and systematically discusses how grain size compositions,chemical environment,tidal current,ocean circulation and human activities influence the distribution and transportation of the heavy metals.The results indicated that the distribution and migration of Cu,Pb,Zn and Cr elements were mainly controlled by natural factors such as regional geological background,grain size compositions,and tidal residual currents.In contrast,As and Hg was mainly affected by human factors such as agriculture and industrial manufacturing.In the BIES,where the chemical environment exerted limited influence,the accumulation and migration of heavy metals are mainly influenced by human activities and enhanced by estuary processes as well as the complex sedimentary dynamic environment caused by many bays and islands. 展开更多
关键词 heavy metals sediments source to sink controlling factors hydrodynamic environment
下载PDF
Lumen-apposing-metal stent misdeployment in endoscopic ultrasound-guided drainages:A systematic review focusing on issues and rescue management
8
作者 Elia Armellini Flavio Metelli +4 位作者 Andrea Anderloni Anna Cominardi Giovanni Aragona Michele Marini FabioPace 《World Journal of Gastroenterology》 SCIE CAS 2023年第21期3341-3361,共21页
BACKGROUND The introduction of lumen-apposing metal stents(LAMS)for endoscopic ultrasound(EUS)-guided drainages has marked a turning point in the field of interventional ultrasound and it is gathering worldwide diffus... BACKGROUND The introduction of lumen-apposing metal stents(LAMS)for endoscopic ultrasound(EUS)-guided drainages has marked a turning point in the field of interventional ultrasound and it is gathering worldwide diffusion in different clinical settings.Nevertheless,the procedure may conceal unexpected pitfalls.LAMS misdeployment is the most frequent cause of technical failure and it can be considered a procedure-related adverse event when it hampers the conclusion of the planned procedure or results in significant clinical consequences.Stent misdeployment can be managed successfully by endoscopic rescue maneuvers to allow the completion of the procedure.To date,no standardized indication is available to guide an appropriate rescue strategy depending on the type of procedure or of misdeployment.AIM To evaluate the incidence of LAMS misdeployment during EUS-guided choledochoduodenostomy(EUS-CDS),gallbladder drainage(EUS-GBD)and pancreatic fluid collections drainage(EUS-PFC)and to describe the endoscopic rescue strategies adopted under the circumstance.METHODS We conducted a systematic review of the literature on PubMed by searching for studies published up to October 2022.The search was carried out using the exploded medical subject heading terms“lumen apposing metal stent”,“LAMS”,“endoscopic ultrasound”and“choledochoduodenostomy”or“gallbladder”or“pancreatic fluid collections”.We included in the review on-label EUS-guided procedures namely EUS-CDS,EUS-GBD and EUS-PFC.Only those publications reporting EUS-guided LAMS positioning were considered.The studies reporting a technical success rate of 100%and other procedure-related adverse events were considered to calculate the overall rate of LAMS misdeployment,while studies not reporting the causes of technical failure were excluded.Case reports were considered only for the extraction of data regarding the issues of misdeployment and rescue techniques.The following data were collected from each study:Author,year of publication,study design,study population,clinical indication,technical success,reported number of misdeployment,stent type and size,flange misdeployed and type of rescue strategy.RESULTS The overall technical success rate of EUS-CDS,EUS-GBD and EUS-PFC was 93.7%,96.1%,and 98.1%respectively.Significant rates of LAMS misdeployment have been reported for EUS-CDS,EUS-GBD and EUS-PFC drainage,respectively 5.8%,3.4%,and 2.0%.Endoscopic rescue treatment was feasible in 86.8%,80%,and 96.8%of cases.Non endoscopic rescue strategies were required only in 10.3%,16%and 3.2%for EUS-CDS,EUS-GBD,and EUS-PFC.The endoscopic rescue techniques described were over-the-wire deployment of a new stent through the created fistula tract in 44.1%,8%and 64.5%and stent-in-stent in 23.5%,60%,and 12.9%,respectively for EUSCDS,EUS-GBD,and EUS-PFC.Further therapeutic option were endoscopic rendezvous in 11.8%of EUS-CDS and repeated procedure of EUS-guided drainage in 16.1%of EUS-PFC.CONCLUSION LAMS misdeployment is a relatively common adverse event in EUS-guided drainages.There is no consensus on the best rescue approach in these cases and the choice is often made by the endoscopist relying upon the clinical scenario,anatomical characteristics,and local expertise.In this review,we investigated the misdeployment of LAMS for each of the on-label indications focusing on the rescue therapies used,with the aim of providing useful data for endoscopists and to improve patient outcomes. 展开更多
关键词 Lams misdeployment Endoscopic ultrasound-guided drainage Lams maldeployment Biliary drainage Gallbladder drainage Pancreatic fluid collections Lumen-apposing metal stents
下载PDF
Distribution of 26 Metals in the Waters of the Aquatic Ecosystems of the Cotonou Channel and Lake Nokoué, Benin
9
作者 Alassane Youssao Abdou Karim Acakpo Nonvignon Magloire Gbaguidi +7 位作者 Kpessou Martin Vitus Mickael Saizonou Léonce Firmin Dovonon Gabin Laly Abdoul Kader Alassane Moussa Emmanuel Azokpota Fabienne Seby Olivier Donard Houénoukpo Henri Soclo 《Journal of Materials Science and Chemical Engineering》 CAS 2023年第2期13-28,共16页
Metallic elements have various origins: natural and anthropogenic sources as geochemical, marine and atmospheric sources resulting from the fallout of pollutants emitted or dust raised and which are transported by wat... Metallic elements have various origins: natural and anthropogenic sources as geochemical, marine and atmospheric sources resulting from the fallout of pollutants emitted or dust raised and which are transported by water and air currents. Thus marine, brackish and fresh continental waters may have high metal concentrations. In addition, some essential metals can become toxic above certain concentration values in aquatic environments. The aquatic ecosystems of Cotonou channel and lake Nokoué receive the pollutants charges from the town cities of Cotonou, Abomey-Calavi and town hall of So Ava. The aim of this study is to analyze waters from Eighteen (18) stations identified in the two ecosystems (nine by ecosystem). The concentrations of magnesium (Mg), calcium (Ca), vanadium (V), chromium (Cr), manganese (Mn), iron (Fe), cobalt (Co), nickel (Ni), copper (Cu), zinc (Zn), arsenic (As), selenium (Se), cadmium (Cd), beryllium (Be), aluminum (Al), strontium (Sr), molybdenum (Mo), silver (Ag), tin (Sn), barium (Ba), platinum (Pt), mercury (Hg), thallium (Tl), lead (Pb), thorium (Th) and uranium (U) were measured after acid digestion of the water samples using the inductively coupled plasma source mass spectrometer (ICP-MS). The results of the analyses indicate an unequal distribution of metals in the different ecosystems. However, atypical concentrations were observed at some stations of the lake and the channel. Magnesium, calcium and manganese have very high values in Lake Nokoué respectively at Ganvié market station GAN_M (2990 ± 105 mg/L), Ganvié center, station GAN_C (4991 ± 177 mg/L) and Lake middle station MLak4 (10662 ± 17.03 μg/L). On the other hand, iron, aluminum and strontium have very high concentrations in the Cotonou Channel respectively at Agbato station AGB (5236 ± 103 and 8289 ± 519 μg/L) and at the estuary station EST (6118 ± 68 μg/L). The concentrations were compared to wells and cborehole waters in sixth neighborhood of Cotonou. We have used statistical analyzers such as MANOVA which have made it possible to classify the waters and metals in the ecosystems studied compared to groundwater and Well water waters. We use hierarchical clustering on principal components to identify similarities between stations based on metal concentration with R software packages “FactoMineR” and “factoextra”. In general, we can conclude that most of the metals have an anthropogenic source except strontium and major elements (Ca and Mg) which could respectively provide from marine waters and geochemical sources. 展开更多
关键词 metalS Water MANOVA R Software Packages Nokoué Lake Cotonou Channel
下载PDF
Stent fracture after transjugular intrahepatic portosystemic shunt placement using the bare metal stent/stent-graft combination technique
10
作者 Qi-Jia Liu Xiao-Feng Cao +3 位作者 Yun Pei Xuan Li Guo-Xiang Dong Chang-Ming Wang 《World Journal of Gastrointestinal Surgery》 SCIE 2023年第10期2133-2141,共9页
BACKGROUND A transjugular intrahepatic portosystemic shunt(TIPS)is widely placed to treat portal hypertension.Because the Viatorr®stent(W.L.Gore and Associates,Flagstaff,AZ,United States)is not available in all h... BACKGROUND A transjugular intrahepatic portosystemic shunt(TIPS)is widely placed to treat portal hypertension.Because the Viatorr®stent(W.L.Gore and Associates,Flagstaff,AZ,United States)is not available in all hospitals in China,the bare metal stent(BMS)/stent-graft combination technique is still popular for TIPS construction.Stent fracture is a complication after TIPS placement using this technique,with limited available literature focusing on it.AIM To assess the incidence of stent fracture after TIPS placement using the BMS/stent-graft combination technique and to identify the risk factors for stent fracture.We proposed technique modifications to improve the clinical results of TIPS placement with the BMS/stent-graft combination technique.METHODS We retrospectively analyzed the computed tomography(CT)data of all patients with portal hypertension who underwent the TIPS procedure between June 2011 and December 2021 in a single center.Patients implanted with the BMS/stent graft and had follow-up imaging data available were included.We identified patients with stent fracture and analyzed their characteristics.Multivariable logistic regression was applied to identify the potential predictors of stent fracture.RESULTS Of the 68 included patients,stent fracture occurred in seven(10.3%)patients.Based on CT images,the stent fractures were categorized into three types.Our study consisted of four(57.1%)type I fractures,one(14.3%)type II fracture,one(14.3%)type IIIa fracture,and one(14.3%)type IIIb fracture.After adjusting for covariates,multivariable logistic regression revealed that the risk factors for stent fracture were the implantation of a greater number of stents[adjusted odds ratio(aOR)=22.2,95%confidence interval(CI):1.2-415.4,P=0.038]and a larger proximal sagittal stent bending angle(aOR=1.1,95%CI:1.0-1.3,P=0.020).CONCLUSION Stent fracture occurred in approximately 10%of patients with portal hypertension who underwent TIPS with the BMS/stent-graft combination technique.The number of implanted stents and stent bending angle at the inferior vena cava end were predictors of stent fracture,which suggests that the incidence of stent fracture could potentially be reduced by procedural modifications. 展开更多
关键词 Portal hypertension Transjugular intrahepatic portosystemic shunt Stent fracture Bare metal stent/stent-graft combination Risk factor Fracture types
下载PDF
Effect of Interface Form on Creep Failure and Life of Dissimilar Metal Welds Involving Nickel-Based Weld Metal and Ferritic Base Metal
11
作者 Xiaogang Li Junfeng Nie +2 位作者 Xin Wang Kejian Li Haiquan Zhang 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2024年第1期265-285,共21页
For dissimilar metal welds(DMWs)involving nickel-based weld metal(WM)and ferritic heat resistant steel base metal(BM)in power plants,there must be an interface between WM and BM,and this interface suffers mechanical a... For dissimilar metal welds(DMWs)involving nickel-based weld metal(WM)and ferritic heat resistant steel base metal(BM)in power plants,there must be an interface between WM and BM,and this interface suffers mechanical and microstructure mismatches and is often the rupture location of premature failure.In this study,a new form of WM/BM interface form,namely double Y-type interface was designed for the DMWs.Creep behaviors and life of DMWs containing double Y-type interface and conventional I-type interface were compared by finite element analysis and creep tests,and creep failure mechanisms were investigated by stress-strain analysis and microstructure characterization.By applying double Y-type interface instead of conventional I-type interface,failure location of DMW could be shifted from the WM/ferritic heat-affected zone(HAZ)interface into the ferritic HAZ or even the ferritic BM,and the failure mode change improved the creep life of DMW.The interface premature failure of I-type interface DMW was related to the coupling effect of microstructure degradation,stress and strain concentrations,and oxide notch on the WM/HAZ interface.The creep failure of double Y-type interface DMW was the result of Type IV fracture due to the creep voids and micro-cracks on fine-grain boundaries in HAZ,which was a result of the matrix softening of HAZ and lack of precipitate pinning at fine-grain boundaries.The double Y-type interface form separated the stress and strain concentrations in DMW from the WM/HAZ interface,preventing the trigger effect of oxide notch on interface failure and inhibiting the interfacial microstructure cracking.It is a novel scheme to prolong creep life and enhance reliability of DMW,by means of optimizing the interface form,decoupling the damage factors from WM/HAZ interface,and then changing the failure mechanism and shifting the failure location. 展开更多
关键词 Dissimilar metal weld Nickel-based weld metal Ferritic heat resistant steel INTERFACE Creep strain MICROSTRUCTURE Failure mechanism Creep life
下载PDF
Regulating zinc ion transport behavior and solvated structure towards stable aqueous Zn metal batteries
12
作者 Qiang Ma Aoen Ma +6 位作者 Shanguang Lv Bowen Qin Yali Xu Xianxiang Zeng Wei Ling Yuan Liu Xiongwei Wu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第6期609-626,I0015,共19页
Aqueous Zn metal batteries(AZMBs)with intrinsic safety,high energy density and low cost have been regarded as promising electrochemical energy storage devices.However,the parasitic reaction on metallic Zn anode and th... Aqueous Zn metal batteries(AZMBs)with intrinsic safety,high energy density and low cost have been regarded as promising electrochemical energy storage devices.However,the parasitic reaction on metallic Zn anode and the incompatibility between electrode and electrolytes lead to the deterioration of electrochemical performance of AZMBs during the cycling.The critical point to achieve the stable cycling of AZMBs is to properly regulate the zinc ion solvated structure and transfer behavior between metallic Zn anode and electrolyte.In recent years,numerous achievements have been made to resolve the formation of Zn dendrite and interface incompatible issues faced by AZMBs via optimizing the sheath structure and transport capability of zinc ions at electrode-electrolyte interface.In this review,the challenges for metallic Zn anode and electrode-electrolyte interface in AZMBs including dendrite formation and interface characteristics are presented.Following the influences of different strategies involving designing advanced electrode structu re,artificial solid electrolyte interphase(SEI)on Zn anode and electrolyte engineering to regulate zinc ion solvated sheath structure and transport behavior are summarized and discussed.Finally,the perspectives for the future development of design strategies for dendrite-free Zn metal anode and long lifespan AZMBs are also given. 展开更多
关键词 aqueous Zn metal batteries Zn metal anode Transport behavior Solvated structure Dendrite-free
下载PDF
From Liquid to Solid‑State Lithium Metal Batteries:Fundamental Issues and Recent Developments
13
作者 Zhao Zhang Wei‑Qiang Han 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第2期68-125,共58页
The widespread adoption of lithium-ion batteries has been driven by the proliferation of portable electronic devices and electric vehicles,which have increasingly stringent energy density requirements.Lithium metal ba... The widespread adoption of lithium-ion batteries has been driven by the proliferation of portable electronic devices and electric vehicles,which have increasingly stringent energy density requirements.Lithium metal batteries(LMBs),with their ultralow reduction potential and high theoretical capacity,are widely regarded as the most promising technical pathway for achieving high energy density batteries.In this review,we provide a comprehensive overview of fundamental issues related to high reactivity and migrated interfaces in LMBs.Furthermore,we propose improved strategies involving interface engineering,3D current collector design,electrolyte optimization,separator modification,application of alloyed anodes,and external field regulation to address these challenges.The utilization of solid-state electrolytes can significantly enhance the safety of LMBs and represents the only viable approach for advancing them.This review also encompasses the variation in fundamental issues and design strategies for the transition from liquid to solid electrolytes.Particularly noteworthy is that the introduction of SSEs will exacerbate differences in electrochemical and mechanical properties at the interface,leading to increased interface inhomogeneity—a critical factor contributing to failure in all-solidstate lithium metal batteries.Based on recent research works,this perspective highlights the current status of research on developing high-performance LMBs. 展开更多
关键词 Lithium metal batteries All-solid-state lithium metal battery Li dendrite Solid electrolyte Interface
下载PDF
Towards advanced zinc anodes by interfacial modification strategies for efficient aqueous zinc metal batteries
14
作者 Changchun Fan Weijia Meng Jiaye Ye 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第6期79-110,I0003,共33页
Developing sustainable and clean energy sources(e.g.,solar,wind,and tide energy)is essential to achieve the goal of carbon neutrality.Due to the discontinuous and inco nsistent nature of common clean energy sources,hi... Developing sustainable and clean energy sources(e.g.,solar,wind,and tide energy)is essential to achieve the goal of carbon neutrality.Due to the discontinuous and inco nsistent nature of common clean energy sources,high-performance energy storage technologies are a critical part of achieving this target.Aqueous zinc metal batteries(AZMBs)with inherent safety,low cost,and competitive performance are regarded as one of the promising candidates for grid-scale energy storage.However,zinc metal anodes(ZMAs)with irreversible problems of dendrite growth,hydrogen evolution reaction,self-corrosio n,and other side reactions have seriously hindered the development and commercialization of AZMBs.An increasing number of researchers are focusing on the stability of ZMAs,so assessing the effectiveness of existing research strategies is critical to the development of AZMBs.This review aims to provide a comprehensive overview of the fundamentals and challenges of AZMBs.Resea rch strategies for interfacial modification of ZMAs are systematically presented.The features of artificial interfacial coating and in-situ interfacial coating of ZMAs are compared and discussed in detail,as well as the effect of modified interfacial ZMA on the full-battery performance.Finally,perspectives are provided on the problems and challenges of ZMAs.This review is expected to offer a constructive reference for the further development and commercialization of AZMBs. 展开更多
关键词 Aqueous zinc metal batteries Zinc metal anode Interfacial modification Artificial interfacial coating In-situ interfacial coating
下载PDF
A Review on Engineering Transition Metal Compound Catalysts to Accelerate the Redox Kinetics of Sulfur Cathodes for Lithium–Sulfur Batteries
15
作者 Liping Chen Guiqiang Cao +8 位作者 Yong Li Guannan Zu Ruixian Duan Yang Bai Kaiyu Xue Yonghong Fu Yunhua Xu Juan Wang Xifei Li 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第5期300-332,共33页
Engineering transition metal compounds(TMCs)catalysts with excellent adsorption-catalytic ability has been one of the most effec-tive strategies to accelerate the redox kinetics of sulfur cathodes.Herein,this review f... Engineering transition metal compounds(TMCs)catalysts with excellent adsorption-catalytic ability has been one of the most effec-tive strategies to accelerate the redox kinetics of sulfur cathodes.Herein,this review focuses on engineering TMCs catalysts by cation doping/anion doping/dual doping,bimetallic/bi-anionic TMCs,and TMCs-based heterostructure composites.It is obvious that introducing cations/anions to TMCs or constructing heterostructure can boost adsorption-catalytic capacity by regulating the electronic structure including energy band,d/p-band center,electron filling,and valence state.Moreover,the elec-tronic structure of doped/dual-ionic TMCs are adjusted by inducing ions with different electronegativity,electron filling,and ion radius,resulting in electron redistribution,bonds reconstruction,induced vacancies due to the electronic interaction and changed crystal structure such as lat-tice spacing and lattice distortion.Different from the aforementioned two strategies,heterostructures are constructed by two types of TMCs with different Fermi energy levels,which causes built-in electric field and electrons transfer through the interface,and induces electron redistribution and arranged local atoms to regulate the electronic structure.Additionally,the lacking studies of the three strategies to comprehensively regulate electronic structure for improving catalytic performance are pointed out.It is believed that this review can guide the design of advanced TMCs catalysts for boosting redox of lithium sulfur batteries. 展开更多
关键词 Lithium–sulfur battery Redox kinetic Transition metal compounds catalyst Multiple metals/anions
下载PDF
Arbitrary skin metallization by pencil-writing inspired solid-ink rubbing for advanced energy storage and harvesting
16
作者 Yonghan Zhou Zhongfeng Ji +5 位作者 Wenrui Cai Xuewei He Ruiying Bao Xuewei Fu Wei Yang Yu Wang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第1期592-602,I0013,共12页
The development of a durable metallic coating on diverse substrates is both intriguing and challenging,particularly in the research of metal-conductive materials for applications such as batteries,soft electronics,and... The development of a durable metallic coating on diverse substrates is both intriguing and challenging,particularly in the research of metal-conductive materials for applications such as batteries,soft electronics,and beyond.Herein,by learning from the pencil-writing process,a facile solid-ink rubbing technology(SIR-tech)is invented to address the above challenge.The solid-ink is exampled by rational combination of liquid metal and graphite particles.By harnessing the synergistic effects between rubbing and adhesion,controllable metallic skin is successfully formed onto metals,woods,ceramics,and plastics without limitation in size and shape.Moreover,outperforming pure liquid-metal coating,the composite metallic skin by SIR-tech is very robust due to the self-lamination of graphite nanoplate exfoliated by liquid-metal rubbing.The critical factors controlling the structures-properties of the composite metallic skin have been systematically investigated as well.For applications,the SIR-tech is demonstrated to fabricate high-performance composite current collectors for next-generation batteries without traditional metal foils.Meanwhile,advanced skin-electrodes are further demonstrated for stable triboelectricity generation even under temperature fluctuation from-196 to 120℃.This facile and highly-flexible SIR-tech may work as a powerful platform for the studies on functional coatings by liquid metals and beyond. 展开更多
关键词 Microadhesion guided technology Skin metallization by solid-ink rubbing Liquid metal composites Composite current collector Batteries and triboelectric nanogenerators
下载PDF
Preparation and characterization of pH-responsive metal-polyphenol structure coated nanoparticles
17
作者 Qile Xia Yan Liang +2 位作者 Ailing Cao Yan Cao Luyun Cai 《Food Science and Human Wellness》 SCIE CSCD 2024年第3期1303-1310,共8页
In this paper,tannic acid(TA)and Fe~(3+)were added to form a layer of metal-polyphenol network structure on the surface of the nanoparticles which were fabricated by zein and carbon quantum dots(CQDs)encapsulating phl... In this paper,tannic acid(TA)and Fe~(3+)were added to form a layer of metal-polyphenol network structure on the surface of the nanoparticles which were fabricated by zein and carbon quantum dots(CQDs)encapsulating phlorotannins(PTN).pH-Responsive nanoparticles were prepared successfully(zein-PTN-CQDs-Fe-~Ⅲ).Further,the formation of composite nanoparticles was confirmed by a series of characterization methods.The zeta-potential and Fourier transform infrared spectroscopy data proved that electrostatic interaction and hydrogen bonding are dominant forces to form nanoparticles.The encapsulation efficiency(EE)revealed that metal-polyphenol network structure could improve the EE of PTN.Thermogravimetric analysis and differential scanning calorimetry experiment indicated the thermal stability of zein-PTN-CQDs-Fe~Ⅲnanoparticles increased because of metal-polyphenol network structure.The pH-responsive nanoparticles greatly increased the release rate of active substances and achieved targeted release. 展开更多
关键词 metal PHLOROTANNINS NANOPARTICLES PH-RESPONSIVE CHARACTERIZATION
下载PDF
Loosely coordinating diluted highly concentrated electrolyte toward -60℃ Li metal batteries
18
作者 Han Zhang Ziqi Zeng +5 位作者 Qiang Wu Xinlan Wang Mingsheng Qin Sheng Lei Shijie Cheng Jia Xie 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第3期380-387,I0009,共9页
Lithium metal batteries(LMBs) promise energy density over 400 Wh kg^(-1).However,they suffer severe electrochemical performance deterioration at sub-zero temperatures.Such failure behavior highly correlates to inferio... Lithium metal batteries(LMBs) promise energy density over 400 Wh kg^(-1).However,they suffer severe electrochemical performance deterioration at sub-zero temperatures.Such failure behavior highly correlates to inferior lithium metal anode(LMA) compatibility and sluggish Li^(+) desolvation.Here,we demonstrate that cyclopentylmethyl ether(CPME) based diluted high-concentration electrolyte(DHCE)enables-60℃ LMBs operation.By leveraging the loose coordination between Li^(+) and CPME,such developed electrolyte boosts the formation of ion clusters to derive anion-dominant interfacial chemistry for enhancing LMA compatibility and greatly accelerates Li^(+) desolvation kinetics.The resulting electrolyte demonstrates high Coulombic efficiencies(CE),providing over 99.5%,99.1%,98.5% and 95% at 25,-20,-40,and-60℃respectively.The assembled Li-S battery exhibits remarkable cyclic stability in-20,and-40℃ at 0.2 C charging and 0.5 C discharging.Even at-60℃,Li-S cell with this designed electrolyte retains> 70% of the initial capacity over 170 cycles.Besides,lithium metal coin cell and pouch cell with10 mg cm^(-2) high S cathode loading exhibit cycling stability at-20℃.This work offers an opportunity for rational designing electrolytes toward low temperature LMBs. 展开更多
关键词 Lithium metal batteries -60℃operation Lithium metal anode compatibility Li^(+) desolvation kinetics
下载PDF
An effective strategy of constructing multi-metallic oxides of ZnO/ CoNiO_(2)/CoO/C microflowers for improved supercapacitive performance
19
作者 Wei Guo Yan Zhang +1 位作者 Xiaxin Lei Shuang Wang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第3期1-8,共8页
In this work,a new ZnO/CoNiO_(2)/CoO/C metal oxides composite is prepared by cost-effective hydrothermal method coupled with annealing process under N_(2) atmosphere.Notably,the oxidation-defect annealing environment ... In this work,a new ZnO/CoNiO_(2)/CoO/C metal oxides composite is prepared by cost-effective hydrothermal method coupled with annealing process under N_(2) atmosphere.Notably,the oxidation-defect annealing environment is conducive to both morphology and component of the composite,which flower-like ZnO/CoNiO_(2)/CoO/C is obtained.Benefited from good chemical stability of ZnO,high energy capacity of CoNiO_(2) and CoO and good conductivity of C,the as-prepared sample shows promising electrochemical behavior,including the specific capacity of 1435 C·g^(-1) at 1 A·g^(-1),capacity retention of 87.3%at 20 A·g^(-1),and cycling stability of 90.5%for 3000 cycles at 5 A·g^(-1),respectively.Furthermore,the prepared ZnO/CoNiO_(2)/CoO/C/NF//AC aqueous hybrid supercapacitors device delivers the best specific energy of 55.9 W·h·kg^(-1) at 850 W·kg^(-1).The results reflect that the as-prepared ZnO/CoNiO_(2)/CoO/C microflowers are considered as high performance electrode materials for supercapacitor,and the strategy mentioned in this paper is benefit to prepare mixed metal oxides composite for energy conversion and storage. 展开更多
关键词 Composites ELECTROCHEMISTRY HYDROTHERMAL Transition metal oxides Structural control SUPERCAPACITORS
下载PDF
Pyrometallurgical recycling of end-of-life lithium-ion batteries
20
作者 Juheon Lee Kwang Won Park +1 位作者 Il Sohn Sanghoon Lee 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第7期1554-1571,共18页
The global importance of lithium-ion batteries(LIBs)has been increasingly underscored with the advancement of high-performance energy storage technologies.However,the end-of-life of these batteries poses significant c... The global importance of lithium-ion batteries(LIBs)has been increasingly underscored with the advancement of high-performance energy storage technologies.However,the end-of-life of these batteries poses significant challenges from environmental,economic,and resource management perspectives.This review paper focuses on the pyrometallurgy-based recycling process of lithium-ion batteries,exploring the fundamental understanding of this process and the importance of its optimization.Centering on the high energy consumption and emission gas issues of the pyrometallurgical recycling process,we systematically analyzed the capital-intensive nature of this process and the resulting technological characteristics.Furthermore,we conducted an in-depth discussion on the future research directions to overcome the existing technological barriers and limitations.This review will provide valuable insights for researchers and industry stakeholders in the battery recycling field. 展开更多
关键词 spent lithium-ion batteries RECYCLING SUSTAINABILITY LITHIUM valuable metal
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部