Iron plays a key role in Parkinson's disease (PD). Increased iron content of the substantia nigra (SN) has been found in PD patients, and divalent metal transporter 1 (DMT1) has been shown to be up-regulated in...Iron plays a key role in Parkinson's disease (PD). Increased iron content of the substantia nigra (SN) has been found in PD patients, and divalent metal transporter 1 (DMT1) has been shown to be up-regulated in the SN of both MPTP-induced PD models and PD patients. However, the mechanisms underlying DMT1 up-regulation are largely unknown. In the present study, we observed that in the SN of 6-hydroxydopamine (6-OHDA)-induced PD rats, DMT1 with the iron responsive element (IRE, DMTI+IRE), but not DMT1 without IRE (DMTI-IRE), was up- regulated, suggesting that increased DMTI+IRE expression might account for nigral iron accumulation in PD rats. This possibility was further assessed in an in vitro study using 6-OHDA-treated and DMTl+IRE-over-expressing MES23.5 cells. In 6-OHDA-treated MES23.5 cells, increased iron regulatory protein (IRP) 1 and IRP2 expression was observed, while silencing of IRPs dramatically diminished 6-OHDA-indueed DMTI+IRE up-regulation. Pre- treatment with N-acetyl-L-cysteine fully suppressed IRPs up-regulation by inhibition of 6-OHDA-indueed oxidative stress. Increased DMTI+IRE expression resulted in increased iron influx by MES23.5 cells. Our data provide direct evidence that DMTI+IRE up-regulation can account for IRE/IRP-dependent 6-OHDA-induced iron accumulation initiated by 6-OHDA-induced intracellular oxidative stress and that increased levels of intracellular iron result in ag- gravated oxidative stress. The results of this study provide novel evidence supporting the use of anti-oxidants in the treatment of PD, with the goal of inhibiting iron accumulation by regulation of DMT1 expression.展开更多
Extensive iron deposition has been observed in the midbrain substantia nigra (SN) of Parkinson's disease (PD) patients, but the mechanisms of iron deposition in the SN remain poorly understood. The present study ...Extensive iron deposition has been observed in the midbrain substantia nigra (SN) of Parkinson's disease (PD) patients, but the mechanisms of iron deposition in the SN remain poorly understood. The present study investigated the relationship between dopaminergic neuronal damage, iron content changes, and divalent metal transporter 1 (DMT1) in the midbrain SN of PD rats to explore the relationship between time of iron deposition and DMT1 expression. Frozen midbrain SN sections from model rats were stained with Perls' iron. Results showed massive loss of tyrosine hydroxylase (TH)-positive cells in the SN and increased DMT1 expression in model group rats. No obvious iron deposition was observed in the SN during early stages after damage, but significant iron deposition was detected at 8 weeks post-injury. Results demonstrate that the loss of TH-positive cells in the SN appeared simultaneously with increased DMT1 expression. Extensive iron deposition occurred at 8 weeks post injury, which could be regarded as an early time window of iron deposition.展开更多
The amyloid beta precursor protein (APP) and its pathogenic byproduct β-amyloid peptide (Aβ) play central roles in the pathogenesis of Alzheimer’s disease (AD). Reduction in
This study demonstrates a concentration dependent inhibition of carbon fixation, O2 evolution, photosynthetic electron transport chain and ATP content of A. doliolum and C. vulgaris by Cu, Ni and Fe. Although the mode...This study demonstrates a concentration dependent inhibition of carbon fixation, O2 evolution, photosynthetic electron transport chain and ATP content of A. doliolum and C. vulgaris by Cu, Ni and Fe. Although the mode of inhibition of photosynthetic electron transport chain of both the algae was similar, PS II depicted greater sensitivity to the test metals used. The toxicity in both organisms was Cu > Ni > Fe. A. doliolum was, however, more sensitive to Cu and Ni, and C. vulgaris to Fe. Toxicity was generally dependent on metal uptake, which in turn was dependent on their concentrations in the external medium. A partial restoration of nutrient uptake, carbon fixation, and enzyme activities following supplementation of exogenous ATP suggests that ATP regulates toxicity through chelation.展开更多
The Caddo Lake watershed is located in northeastern Texas and encompasses much of Cass, Harrison, and Marion counties. The watershed is drained by major streams and tributaries flowing in an easterly direction over Eo...The Caddo Lake watershed is located in northeastern Texas and encompasses much of Cass, Harrison, and Marion counties. The watershed is drained by major streams and tributaries flowing in an easterly direction over Eocene-aged rocks and sediments of the Wilcox and Claiborne groups, and empty into the western arm of Caddo Lake. Since 1995, Caddo Lake and some of its tributaries have been included on the State of Texas Clean Water Act 303(d) list by the Texas Commission on Environmental Quality (TCEQ) for impairment due to mercury content in edible tissue, depressed dissolved oxygen, base metal concentrations, and low pH values. The purpose of this multi-year study was to characterize base metal concentrations in stream water and sediments in the Caddo Lake watershed, and document the potential watershed transport and contribution to the impairment of Caddo Lake. Recent water (n = 58) and sediment (n = 116) sampling at 29 sites revealed copper, lead, and zinc concentrations within normal limits and below EPA actionable standards. Mercury concentrations were elevated at 21 of the 29 sampling sites, which could lead to methylation and bioavailability to organisms at all trophic level.展开更多
Abnormally increased levels of iron in the brain trigger cascade amplification in Alzheimer's dis- ease patients, resulting in neuronal death. This study investigated whether components extracted from the Chinese her...Abnormally increased levels of iron in the brain trigger cascade amplification in Alzheimer's dis- ease patients, resulting in neuronal death. This study investigated whether components extracted from the Chinese herbs epimedium herb, milkvetch root and kudzuvine root could relieve the abnormal expression of iron metabolism-related protein in Alzheimer's disease patients. An APPs,~JPSI^E9 double transgenic mouse model of Alzheimer's disease was used. The intragas- tric administration of compounds from epimedium herb, milkvetch root and kudzuvine root improved pathological alterations such as neuronal edema, increased the number of neurons, downregulated divalent metal transporter 1 expression, upregulated ferroportin 1 expression, and inhibited iron overload in the cerebral cortex of mice with Alzheimer's disease. These com- pounds reduced iron overload-induced impairment of the central nervous system, indicating a new strategy for developing novel drugs for the treatment of Alzheimer's disease.展开更多
Previous studies have shown that baicalin prevented iron accumulation after substantia nigra injury, reduced divalent metal transporter 1 expression, and increased ferroportin 1 expression in the substantia nigra of r...Previous studies have shown that baicalin prevented iron accumulation after substantia nigra injury, reduced divalent metal transporter 1 expression, and increased ferroportin 1 expression in the substantia nigra of rotenone-induced Parkinson's disease rats. In the current study, we investigated the relationship between iron accumulation and transferrin expression in C6 cells, to explore the mechanisms of the inhibitory effect of baicalin on iron accumulation observed in Parkinson's disease rats. Iron content was detected using inductively coupled plasma-atomic emission spectroscopy. Results showed that iron content decreased 41% after blocking divalent metal transporter 1 and ferroportin 1 proteins. After treatment with ferric ammonium citrate of differing concentrations (10, 50, 100, 400 ktg/mL) in C6 glioma cells, cell survival rate and ferroportin 1 expression were negatively correlated with ferric ammonium citrate concentration, but divalent metal transporter 1 expression positively correlated with ferric ammonium citrate concentration. Baicalin or deferoxamine reduced divalent metal transporter 1 expression, but increased ferroportin 1 expression in the 100 μg/mL ferric ammonium citrate-loaded C6 cells. These results indicate that baicalin down-regulated iron concentration, which positively regulat- ed divalent metal transporter 1 expression and negatively regulated ferroportin 1 expression, and decreased iron accumulation in the substantia nigra.展开更多
Objective To investigate the potential involvement of DMT1(IRE) protein in the brain vascular system in vivo during Pb exposure. Methods Three groups of male Sprague-Dawley rats were exposed to Pb in drinking water,...Objective To investigate the potential involvement of DMT1(IRE) protein in the brain vascular system in vivo during Pb exposure. Methods Three groups of male Sprague-Dawley rats were exposed to Pb in drinking water, among which two groups were concurrently administered by oral gavage once every other day as the low and high Fe treatment group, respectively, for 6 weeks. At the same time, the group only supplied with high Fe was also set as a reference. The animals were decapitated, then brain capillary-rich fraction was isolate from cerebral cortex. Western blot method was used to identify protein expression, and RT-PCR to detect the change of the m RNA. Results Pb exposure significantly increased Pb concentrations in cerebral cortex. Low Fe dose significantly reduced the cortex Pb levels, However, high Fe dose increased the cortex Pb levels. Interestingly, changes of DMT1(IRE) protein in brain capillary-rich fraction were highly related to the Pb level, but those of DMT1(IRE) m RNA were not significantly different. Moreover, the consistent changes in the levels of p-ERK1/2 or IRP1 with the changes in the levels of DMT1(IRE). Conclusion These results suggest that Pb is transported into the brain through DMT1(IRE), and the ERK MAPK pathway is involved in DMT1(IRE)-mediated transport regulation in brain vascular system in vivo.展开更多
Glutamic acid and gamma-aminobutyric acid (GABA) influence iron content in the substantia nigra and globus pallidus, although the mechanisms of action remain unclear. The present study measured iron content and chan...Glutamic acid and gamma-aminobutyric acid (GABA) influence iron content in the substantia nigra and globus pallidus, although the mechanisms of action remain unclear. The present study measured iron content and changes in divalent metal transporter 1 (DMT1) and hephaestin expression in the substantia nigra and caudate putamen, and explored the effects of GABA and glutamic acid on iron metabolism. Results demonstrated that iron content and DMT1 non iron response element [DMT1 (-IRE)] expression were significantly greater but hephaestin expression was significantly lower in the caudate putamen of the monosodium glutamate group compared with the control group. No significant difference in iron content was detected between the GABA and control groups. DMT1 (-IRE) expression was significantly reduced, but hephaestin expressiori was significantly increased in the GABA group compared with the control group. In addition, there was no significant difference in tyrosine hydroxylase expression between monosodium glutamate and GABA groups and the control group. These results suggested that glutamate affected iron metabolism in the caudate putamen by increasing DMTI(-IRE) and decreasing hephaestin expression. In addition, GABA decreased DMT1 (-IRE) expression in the caudate putamen.展开更多
This study focuses on experiments of Au and Cu dissolved in vapor phase in hydrothermal fluids. Experiments prove that Au and Cu can re-distribute in vapor phase and liquid phase during separation of Au- and Cu-bearin...This study focuses on experiments of Au and Cu dissolved in vapor phase in hydrothermal fluids. Experiments prove that Au and Cu can re-distribute in vapor phase and liquid phase during separation of Au- and Cu-bearing supercritical fluids to vapor and liquid phases. These experimental results can illustrate some ore geneses, where boiling phenomena of ore fluids were found. Au- and Cubearing NaHCO3-HCl solutions were heated up to more than 350℃ in the main vessel, and then passed through a phase separator in a temperature range from 250℃ to 300℃, separated into vapor and liquid phases. We collected and analyzed the liquid and vapor samples separately, and found that Au and Cu dissolved and distributed in vapor phase. In some cases, the concentrations of Au and Cu in vapor are higher than those in liquid phase. Those experiments are used to interpret field observations of fluid inclusion data of some Au and Cu deposits, and demonstrate that some Au and Cu ore deposits are derived from metals transportation in vapor phase.展开更多
Phytoremediation has gained increased attention as a cost-effective method for the remediation of heavy metal-contaminated sites. Because some plants possess a range of potential mechanisms that may be involved in the...Phytoremediation has gained increased attention as a cost-effective method for the remediation of heavy metal-contaminated sites. Because some plants possess a range of potential mechanisms that may be involved in the detoxification of heavy metals, they manage to survive under metal stresses. High tolerance to heavy metal toxicity could rely either on reduced uptake or increased plant internal sequestration, which is manifested by an interaction between a genotype and its environment. The growing application of molecular genetic technologies has led to increased understanding of mechanisms of heavy metal tolerance/accumulation in plants and, subsequently, many transgenic plants with increased heavy metal resistance, as well as increased uptake of heavy metals, have been developed for the purpose of phytoremediation. In the present review, our major objective is to concisely evaluate the progress made so far in understanding the molecular/cellular mechanisms and genetic basis that control the uptake and detoxification of metals by plants.展开更多
Plant phosphate transporter (PT) genes comprise a large family with important roles in various physiological and biochemical processes. In this study, a database search yielded 26 potential PT family genes in rice ...Plant phosphate transporter (PT) genes comprise a large family with important roles in various physiological and biochemical processes. In this study, a database search yielded 26 potential PT family genes in rice (Oryza sativa). Analysis of these genes led to identification of eight conserved motifs and 5-12 trans-membrane segments, most of them conserved. A total of 237 putative cis elements were found in the 2-kbupstream region of these genes. Of these, a majority were Pi-response and other stress-related cis regulatory elements, such as PHO-like, TATA-box-like, PHR1, or Helix-loop- helix elements, and WRKY1 and ABRE elements, suggesting gene regulation by these signals. Comprehensive expression analysis of these genes was performed using data from microarrays hybridized with RNA from 27 tissues covering the entire lifecycle from three rice genotypes: Minghui 63, Zhenshan 97, and Shanyou 63. Real-time PCR analysis confirmed that three rice PT genes are preferentially expressed in stamen at I d before flowering, two in panicle at the heading stage, and two in flag leaf at 14 d after the heading stage. Hormone-treatment experiments revealed differential up-regulation or down-regulation of 11 rice PT genes in seedlings exposed to five hormones, respectively. These results will be useful for elucidating the roles of these genes in the growth, development, and stress response of the rice plant.展开更多
This review will discuss recent progress in understanding the many roles of transporters in the whole-plant physiological processes that maintain iron (Fe) homeostasis. These processes include uptake from the soil v...This review will discuss recent progress in understanding the many roles of transporters in the whole-plant physiological processes that maintain iron (Fe) homeostasis. These processes include uptake from the soil via roots, control of transport from roots to above-ground parts of the plant, unloading of Fe from the xylem in above-ground parts, loading of Fe into mitochondria and plastids, transport of Fe to reproductive parts of the plant, and Fe mobilization during seed germination. In addition, we will discuss the mechanisms that plants use to cope with an apparently unintended conse- quence of Fe acquisition: the uptake of toxic heavy metals via Fe transporters. Rapid progress has been made in under- standing the transport processes involved in each of these areas in the last 5 years and this review will focus on this recent progress. We will also highlight the key questions regarding transport steps that remain to be elucidated.展开更多
Manganese (Mn) is an essential catalytic metal in the Mn-cluster that oxidizes water to produce oxygen dur- ing photosynthesis. However, the transport protein(s) responsible for Mn2+ import into the chloroplast r...Manganese (Mn) is an essential catalytic metal in the Mn-cluster that oxidizes water to produce oxygen dur- ing photosynthesis. However, the transport protein(s) responsible for Mn2+ import into the chloroplast re- mains unknown. Here, we report the characterization ofArabidopsis CMT1 (Chloroplast Manganese Trans- porter 1), an evolutionarily conserved protein in the Uncharacterized Protein Family 0016 (UPFO016), that is required for manganese accumulation into the chloroplast. CMT1 is expressed primarily in green tissues, and its encoded product is localized in the inner envelope membrane of the chloroplast. Disruption of CMT1 in the T-DNA insertional mutant cmtl-1 resulted in stunted plant growth, defective thylakoid stacking, and severe reduction of photosystem II complexes and photosynthetic activity. Consistent with reduced oxy- gen evolution capacity, the mutant chloroplasts contained less manganese than the wild-type ones. In sup- port of its function as a Mn transporter, CMT1 protein supported the growth and enabled Mn2+ accumula- tion in the yeast cells of Mn2+-uptake deficient mutant (3smfl). Taken together, our results indicate that CMT1 functions as an inner envelope Mn transporter responsible for chloroplast Mn2+ uptake.展开更多
Genes in the Oligopeptide Transport family encode integral membrane proteins that are believed to trans- locate their substrates from either the extracellular environment or an organelle into the cytosol. Phylogenetic...Genes in the Oligopeptide Transport family encode integral membrane proteins that are believed to trans- locate their substrates from either the extracellular environment or an organelle into the cytosol. Phylogenetic analyses of plant transporters have revealed two distant clades. the Yellow Stripe-Like (YSL) proteins and the so-called Oligopeptide Transporters (OPTs), for which the family was named. Three categories of substrates have been identified for this family: small peptides, secondary amino acids bound to metals, and glutathione. Notably, the YSL transporters are involved in metal homeostasis through the translocation of metal-chelates, indicating a level of conservation both in biological func- tion as well as substrates. In contrast, the functions of OPT proteins seem to be less defined and, in this review, I will examine the supporting and contradictory evidence for the proposed roles of OPTs in such diverse functions as long-dis- tance sulfur distribution, nitrogen mobilization, metal homeostasis, and heavy metal sequestration through the transport of glutathione, metal-chelates, and peptides.展开更多
A preliminary survey of silver isotopic composition in four polymetallic ores in eastern China shows a larger variation inδ^(109)Ag from-0.014‰to+0.983‰,which is within the total ranges for the entire respective or...A preliminary survey of silver isotopic composition in four polymetallic ores in eastern China shows a larger variation inδ^(109)Ag from-0.014‰to+0.983‰,which is within the total ranges for the entire respective ore deposit types worldwide.The diversity of silver isotopic compositions in oredeposits reported here and previous studies seemed to preclude simple isotopic links to particular sources,but reflected the silver isotope fractionation in transport-and deposit-related processes instead.Theδ^(109)Ag values in supergene samples from the Qixiashan Pb-Zn-Ag polymetallic deposit are more positive,in consistent with the statistical δ^(109)Ag distribution from-0.4‰to+2.2‰in 36 pieces of supergene ore samples around the World,which reflects the diverse controls on silver isotope fractionation from the first-order thermodynamic effect,reduction-mediated reaction,remobilization of silver with surficial low-temperature weathering processes.The hypogene samples in Dazhuangzi orogenic Au-Ag ore deposit,have δ^(109)Ag values close to 0,which implies that equilibrium partitioning associated with metal sources at the high-temperature does not result in a resolvable difference in silver isotopic compositions.By contrast,the hypogene samples which are dominated by pyrite without visible silver minerals (i.e.,skarn iron ore deposit in Edongnan) have shown the largest variation range of δ^(109)Ag,followed by that from the porphyry copper ore in Zijinshan.It could be concluded that the surface adsorption and/or lattice substitution are important factors to control Ag isotope fractionation in oreforming processes,especially for skarn deposits with only pyrite.The perspective of silver isotope shows great potentials to understand the processes that lead to the concentrations of metals to economic levels and to constrain the physicochemical conditions during ore-mineralization in metallic ore-deposits.展开更多
By combining laboratorial experiments,theoretical analysis and mathematical model,theeffect of sediment motion on transport-transformation of heavy-metal pollutants is studied. (1)Previous studies on adsorption-desorp...By combining laboratorial experiments,theoretical analysis and mathematical model,theeffect of sediment motion on transport-transformation of heavy-metal pollutants is studied. (1)Previous studies on adsorption-desorption of heavy-metal pollutants by sedimentparticles are systematically summarized.Based on this summary,subjects that need to be furtherstudied are put forward. In rivers most heavy-metal pollutants concentrate on sediment particles.In order tocontrolling water pollution aused by heavy-metal pollutants following topics should beemphasized:studies on the effect of suspended matter and deposit on transport-transformation of展开更多
Although vein-type silver-lead-zinc ore deposits have been extensively studied,the factors controlling their formation are still poorly understood and their genesis is a matter of ongoing debate.In this contribution,I...Although vein-type silver-lead-zinc ore deposits have been extensively studied,the factors controlling their formation are still poorly understood and their genesis is a matter of ongoing debate.In this contribution,I present new mineralogical data and the results of thermodynamic modeling that constrain the conditions of metal transport and deposition for the Aerhada epithermal Pb-Zn-Ag deposit(reserves of>1,000 t Ag@58 g/t and 1.0 Mt Pb+Zn@5.2%)in NE China.Three primary paragenetic stages have been identified,the second of which(Stage II)is the main base metal and silver mineralization.Freibergite,argentite,pyrargyrite,and canfieldite are the main Ag-bearing minerals and are spatially associated with an alteration assemblage of quartz-muscovite±chlorite±epidote.Dissolution textures and evidence of compositional heterogeneity for freibergite suggest that its decomposition may have redistributed the Ag and contributed in part to the high Ag grade ores in the deposit.Thermodynamic calculations indicate that there was extensive silver ore deposition from a strongly reducing(e.g.,∆log fO_(2)(HM)of<-8.6 to-2.4)and nearly neutral to weakly alkaline(e.g.,pH of 5.5 to 6.8)aqueous fluid at temperatures between 220℃ and 170℃.These calculations reveal that a reduction in fO_(2)and decreasing temperature,both as a result of fluid-rock interactions,were the key factors leading to silver and base metal mineral deposition.Further path modeling showed that the sole evolution of a magmatic-derived fluid is capable of forming the large Ag-Pb-Zn veins via fluid-rock interactions,which is contrary to the conclusions of some other studies that the mixture of an externally derived fluid is required to explain their formation.The genetic model for Ag-Pb-Zn ore formation developed in this study is applicable to other polymetallic vein-type deposits in comparable geological settings elsewhere.展开更多
Cadmium (Cd) is one of the most toxic elements and can be accumulated in plants easily; meanwhile, eIF5A is a highly conserved protein in all eukaryotic organisms. The present work tried to investigate whether eIF5A i...Cadmium (Cd) is one of the most toxic elements and can be accumulated in plants easily; meanwhile, eIF5A is a highly conserved protein in all eukaryotic organisms. The present work tried to investigate whether eIF5A is involved in Cd accumulation and sensitivity in Arabidopsis (Arabidopsis thaliana L.) by comparing the wild-type Columbia-0 (Col-0) with a knockdown mutant of AteIF5A-2, fbr12-3 under Cd stress conditions. The results showed that the mutant fbr12-3 accumulated more Cd in roots and shoots and had significantly lower chlorophyll content, shorter root length, and smaller biomass, suggesting that downregulation of AteIF5A-2 makes the mutant more Cd sensitive. Real-time polymerase chain reaction revealed that the expressions of metal transporters involved in Cd uptake and translocation including IRT1, ZIP1, AtNramp3, and AtHMA4 were significantly increased but the expressions of PCS1 and PCS2 related to Cd detoxification were decreased notably in fbr12-3 compared with Col-0. As a result, an increase in MDA and H<sub>2</sub>O<sub>2</sub> content but decrease in root trolox, glutathione and proline content under Cd stress was observed, indicating that a severer oxidative stress occurs in the mutant. All these results demonstrated for the first time that AteIF5A influences Cd sensitivity by affecting Cd uptake, accumulation, and detoxification in Arabidopsis.展开更多
基金We thank Dr Wei-dong Le for providing the MES23.5 cell line. This work was supported by grants from the National Program of Basic Research sponsored by the Ministry of Science and Tech- nology of China (2006CB500704), the National Natural Science Foundation of China (30930036, 30770757, 30870858) and the Natural Science Fund of Shandong Province for Distinguished Young Scholars (JQ200807).
文摘Iron plays a key role in Parkinson's disease (PD). Increased iron content of the substantia nigra (SN) has been found in PD patients, and divalent metal transporter 1 (DMT1) has been shown to be up-regulated in the SN of both MPTP-induced PD models and PD patients. However, the mechanisms underlying DMT1 up-regulation are largely unknown. In the present study, we observed that in the SN of 6-hydroxydopamine (6-OHDA)-induced PD rats, DMT1 with the iron responsive element (IRE, DMTI+IRE), but not DMT1 without IRE (DMTI-IRE), was up- regulated, suggesting that increased DMTI+IRE expression might account for nigral iron accumulation in PD rats. This possibility was further assessed in an in vitro study using 6-OHDA-treated and DMTl+IRE-over-expressing MES23.5 cells. In 6-OHDA-treated MES23.5 cells, increased iron regulatory protein (IRP) 1 and IRP2 expression was observed, while silencing of IRPs dramatically diminished 6-OHDA-indueed DMTI+IRE up-regulation. Pre- treatment with N-acetyl-L-cysteine fully suppressed IRPs up-regulation by inhibition of 6-OHDA-indueed oxidative stress. Increased DMTI+IRE expression resulted in increased iron influx by MES23.5 cells. Our data provide direct evidence that DMTI+IRE up-regulation can account for IRE/IRP-dependent 6-OHDA-induced iron accumulation initiated by 6-OHDA-induced intracellular oxidative stress and that increased levels of intracellular iron result in ag- gravated oxidative stress. The results of this study provide novel evidence supporting the use of anti-oxidants in the treatment of PD, with the goal of inhibiting iron accumulation by regulation of DMT1 expression.
基金the Scientific Research Common Program of Beijing Municipal Commission of Education,No.KM200610025008
文摘Extensive iron deposition has been observed in the midbrain substantia nigra (SN) of Parkinson's disease (PD) patients, but the mechanisms of iron deposition in the SN remain poorly understood. The present study investigated the relationship between dopaminergic neuronal damage, iron content changes, and divalent metal transporter 1 (DMT1) in the midbrain SN of PD rats to explore the relationship between time of iron deposition and DMT1 expression. Frozen midbrain SN sections from model rats were stained with Perls' iron. Results showed massive loss of tyrosine hydroxylase (TH)-positive cells in the SN and increased DMT1 expression in model group rats. No obvious iron deposition was observed in the SN during early stages after damage, but significant iron deposition was detected at 8 weeks post-injury. Results demonstrate that the loss of TH-positive cells in the SN appeared simultaneously with increased DMT1 expression. Extensive iron deposition occurred at 8 weeks post injury, which could be regarded as an early time window of iron deposition.
基金Supported by"2009 Clinical and Basic Clinical Research Contest"of the Bureau for Clinical Research Support from the University of Chile Clinical Hospital
文摘AIM: To describe the variation that divalent metal transporter 1 (DMT1) shows in patients after Roux-en-Y gastric bypass (RYGB) surgery.
文摘The amyloid beta precursor protein (APP) and its pathogenic byproduct β-amyloid peptide (Aβ) play central roles in the pathogenesis of Alzheimer’s disease (AD). Reduction in
文摘This study demonstrates a concentration dependent inhibition of carbon fixation, O2 evolution, photosynthetic electron transport chain and ATP content of A. doliolum and C. vulgaris by Cu, Ni and Fe. Although the mode of inhibition of photosynthetic electron transport chain of both the algae was similar, PS II depicted greater sensitivity to the test metals used. The toxicity in both organisms was Cu > Ni > Fe. A. doliolum was, however, more sensitive to Cu and Ni, and C. vulgaris to Fe. Toxicity was generally dependent on metal uptake, which in turn was dependent on their concentrations in the external medium. A partial restoration of nutrient uptake, carbon fixation, and enzyme activities following supplementation of exogenous ATP suggests that ATP regulates toxicity through chelation.
文摘The Caddo Lake watershed is located in northeastern Texas and encompasses much of Cass, Harrison, and Marion counties. The watershed is drained by major streams and tributaries flowing in an easterly direction over Eocene-aged rocks and sediments of the Wilcox and Claiborne groups, and empty into the western arm of Caddo Lake. Since 1995, Caddo Lake and some of its tributaries have been included on the State of Texas Clean Water Act 303(d) list by the Texas Commission on Environmental Quality (TCEQ) for impairment due to mercury content in edible tissue, depressed dissolved oxygen, base metal concentrations, and low pH values. The purpose of this multi-year study was to characterize base metal concentrations in stream water and sediments in the Caddo Lake watershed, and document the potential watershed transport and contribution to the impairment of Caddo Lake. Recent water (n = 58) and sediment (n = 116) sampling at 29 sites revealed copper, lead, and zinc concentrations within normal limits and below EPA actionable standards. Mercury concentrations were elevated at 21 of the 29 sampling sites, which could lead to methylation and bioavailability to organisms at all trophic level.
基金supported by the National Natural Science Foundation of China,No.81273983the Natural Science Foundation of Hebei Province in China,No.C2010001471+1 种基金the Scientific and Technological Research Youth Foundation of Colleges and Universities in Hebei Province of China,No.Q2012036the Hebei Provincial Food and Drug Administration in China,No.PT2014053
文摘Abnormally increased levels of iron in the brain trigger cascade amplification in Alzheimer's dis- ease patients, resulting in neuronal death. This study investigated whether components extracted from the Chinese herbs epimedium herb, milkvetch root and kudzuvine root could relieve the abnormal expression of iron metabolism-related protein in Alzheimer's disease patients. An APPs,~JPSI^E9 double transgenic mouse model of Alzheimer's disease was used. The intragas- tric administration of compounds from epimedium herb, milkvetch root and kudzuvine root improved pathological alterations such as neuronal edema, increased the number of neurons, downregulated divalent metal transporter 1 expression, upregulated ferroportin 1 expression, and inhibited iron overload in the cerebral cortex of mice with Alzheimer's disease. These com- pounds reduced iron overload-induced impairment of the central nervous system, indicating a new strategy for developing novel drugs for the treatment of Alzheimer's disease.
基金supported by the Scientific Research Common Program of Beijing Municipal Commission of Education,No.KM20110025010
文摘Previous studies have shown that baicalin prevented iron accumulation after substantia nigra injury, reduced divalent metal transporter 1 expression, and increased ferroportin 1 expression in the substantia nigra of rotenone-induced Parkinson's disease rats. In the current study, we investigated the relationship between iron accumulation and transferrin expression in C6 cells, to explore the mechanisms of the inhibitory effect of baicalin on iron accumulation observed in Parkinson's disease rats. Iron content was detected using inductively coupled plasma-atomic emission spectroscopy. Results showed that iron content decreased 41% after blocking divalent metal transporter 1 and ferroportin 1 proteins. After treatment with ferric ammonium citrate of differing concentrations (10, 50, 100, 400 ktg/mL) in C6 glioma cells, cell survival rate and ferroportin 1 expression were negatively correlated with ferric ammonium citrate concentration, but divalent metal transporter 1 expression positively correlated with ferric ammonium citrate concentration. Baicalin or deferoxamine reduced divalent metal transporter 1 expression, but increased ferroportin 1 expression in the 100 μg/mL ferric ammonium citrate-loaded C6 cells. These results indicate that baicalin down-regulated iron concentration, which positively regulat- ed divalent metal transporter 1 expression and negatively regulated ferroportin 1 expression, and decreased iron accumulation in the substantia nigra.
基金supported by National Natural Science Foundation of China(No.81472478)Medical Science Youth Breeding Project of PLA(13QNP161)
文摘Objective To investigate the potential involvement of DMT1(IRE) protein in the brain vascular system in vivo during Pb exposure. Methods Three groups of male Sprague-Dawley rats were exposed to Pb in drinking water, among which two groups were concurrently administered by oral gavage once every other day as the low and high Fe treatment group, respectively, for 6 weeks. At the same time, the group only supplied with high Fe was also set as a reference. The animals were decapitated, then brain capillary-rich fraction was isolate from cerebral cortex. Western blot method was used to identify protein expression, and RT-PCR to detect the change of the m RNA. Results Pb exposure significantly increased Pb concentrations in cerebral cortex. Low Fe dose significantly reduced the cortex Pb levels, However, high Fe dose increased the cortex Pb levels. Interestingly, changes of DMT1(IRE) protein in brain capillary-rich fraction were highly related to the Pb level, but those of DMT1(IRE) m RNA were not significantly different. Moreover, the consistent changes in the levels of p-ERK1/2 or IRP1 with the changes in the levels of DMT1(IRE). Conclusion These results suggest that Pb is transported into the brain through DMT1(IRE), and the ERK MAPK pathway is involved in DMT1(IRE)-mediated transport regulation in brain vascular system in vivo.
基金the National Natural Science Foundation of China, No. 30570957the Natural Science Foundation of Hebei Province, No. C2006000152, C2007000251
文摘Glutamic acid and gamma-aminobutyric acid (GABA) influence iron content in the substantia nigra and globus pallidus, although the mechanisms of action remain unclear. The present study measured iron content and changes in divalent metal transporter 1 (DMT1) and hephaestin expression in the substantia nigra and caudate putamen, and explored the effects of GABA and glutamic acid on iron metabolism. Results demonstrated that iron content and DMT1 non iron response element [DMT1 (-IRE)] expression were significantly greater but hephaestin expression was significantly lower in the caudate putamen of the monosodium glutamate group compared with the control group. No significant difference in iron content was detected between the GABA and control groups. DMT1 (-IRE) expression was significantly reduced, but hephaestin expressiori was significantly increased in the GABA group compared with the control group. In addition, there was no significant difference in tyrosine hydroxylase expression between monosodium glutamate and GABA groups and the control group. These results suggested that glutamate affected iron metabolism in the caudate putamen by increasing DMTI(-IRE) and decreasing hephaestin expression. In addition, GABA decreased DMT1 (-IRE) expression in the caudate putamen.
文摘This study focuses on experiments of Au and Cu dissolved in vapor phase in hydrothermal fluids. Experiments prove that Au and Cu can re-distribute in vapor phase and liquid phase during separation of Au- and Cu-bearing supercritical fluids to vapor and liquid phases. These experimental results can illustrate some ore geneses, where boiling phenomena of ore fluids were found. Au- and Cubearing NaHCO3-HCl solutions were heated up to more than 350℃ in the main vessel, and then passed through a phase separator in a temperature range from 250℃ to 300℃, separated into vapor and liquid phases. We collected and analyzed the liquid and vapor samples separately, and found that Au and Cu dissolved and distributed in vapor phase. In some cases, the concentrations of Au and Cu in vapor are higher than those in liquid phase. Those experiments are used to interpret field observations of fluid inclusion data of some Au and Cu deposits, and demonstrate that some Au and Cu ore deposits are derived from metals transportation in vapor phase.
文摘Phytoremediation has gained increased attention as a cost-effective method for the remediation of heavy metal-contaminated sites. Because some plants possess a range of potential mechanisms that may be involved in the detoxification of heavy metals, they manage to survive under metal stresses. High tolerance to heavy metal toxicity could rely either on reduced uptake or increased plant internal sequestration, which is manifested by an interaction between a genotype and its environment. The growing application of molecular genetic technologies has led to increased understanding of mechanisms of heavy metal tolerance/accumulation in plants and, subsequently, many transgenic plants with increased heavy metal resistance, as well as increased uptake of heavy metals, have been developed for the purpose of phytoremediation. In the present review, our major objective is to concisely evaluate the progress made so far in understanding the molecular/cellular mechanisms and genetic basis that control the uptake and detoxification of metals by plants.
文摘Plant phosphate transporter (PT) genes comprise a large family with important roles in various physiological and biochemical processes. In this study, a database search yielded 26 potential PT family genes in rice (Oryza sativa). Analysis of these genes led to identification of eight conserved motifs and 5-12 trans-membrane segments, most of them conserved. A total of 237 putative cis elements were found in the 2-kbupstream region of these genes. Of these, a majority were Pi-response and other stress-related cis regulatory elements, such as PHO-like, TATA-box-like, PHR1, or Helix-loop- helix elements, and WRKY1 and ABRE elements, suggesting gene regulation by these signals. Comprehensive expression analysis of these genes was performed using data from microarrays hybridized with RNA from 27 tissues covering the entire lifecycle from three rice genotypes: Minghui 63, Zhenshan 97, and Shanyou 63. Real-time PCR analysis confirmed that three rice PT genes are preferentially expressed in stamen at I d before flowering, two in panicle at the heading stage, and two in flag leaf at 14 d after the heading stage. Hormone-treatment experiments revealed differential up-regulation or down-regulation of 11 rice PT genes in seedlings exposed to five hormones, respectively. These results will be useful for elucidating the roles of these genes in the growth, development, and stress response of the rice plant.
文摘This review will discuss recent progress in understanding the many roles of transporters in the whole-plant physiological processes that maintain iron (Fe) homeostasis. These processes include uptake from the soil via roots, control of transport from roots to above-ground parts of the plant, unloading of Fe from the xylem in above-ground parts, loading of Fe into mitochondria and plastids, transport of Fe to reproductive parts of the plant, and Fe mobilization during seed germination. In addition, we will discuss the mechanisms that plants use to cope with an apparently unintended conse- quence of Fe acquisition: the uptake of toxic heavy metals via Fe transporters. Rapid progress has been made in under- standing the transport processes involved in each of these areas in the last 5 years and this review will focus on this recent progress. We will also highlight the key questions regarding transport steps that remain to be elucidated.
文摘Manganese (Mn) is an essential catalytic metal in the Mn-cluster that oxidizes water to produce oxygen dur- ing photosynthesis. However, the transport protein(s) responsible for Mn2+ import into the chloroplast re- mains unknown. Here, we report the characterization ofArabidopsis CMT1 (Chloroplast Manganese Trans- porter 1), an evolutionarily conserved protein in the Uncharacterized Protein Family 0016 (UPFO016), that is required for manganese accumulation into the chloroplast. CMT1 is expressed primarily in green tissues, and its encoded product is localized in the inner envelope membrane of the chloroplast. Disruption of CMT1 in the T-DNA insertional mutant cmtl-1 resulted in stunted plant growth, defective thylakoid stacking, and severe reduction of photosystem II complexes and photosynthetic activity. Consistent with reduced oxy- gen evolution capacity, the mutant chloroplasts contained less manganese than the wild-type ones. In sup- port of its function as a Mn transporter, CMT1 protein supported the growth and enabled Mn2+ accumula- tion in the yeast cells of Mn2+-uptake deficient mutant (3smfl). Taken together, our results indicate that CMT1 functions as an inner envelope Mn transporter responsible for chloroplast Mn2+ uptake.
文摘Genes in the Oligopeptide Transport family encode integral membrane proteins that are believed to trans- locate their substrates from either the extracellular environment or an organelle into the cytosol. Phylogenetic analyses of plant transporters have revealed two distant clades. the Yellow Stripe-Like (YSL) proteins and the so-called Oligopeptide Transporters (OPTs), for which the family was named. Three categories of substrates have been identified for this family: small peptides, secondary amino acids bound to metals, and glutathione. Notably, the YSL transporters are involved in metal homeostasis through the translocation of metal-chelates, indicating a level of conservation both in biological func- tion as well as substrates. In contrast, the functions of OPT proteins seem to be less defined and, in this review, I will examine the supporting and contradictory evidence for the proposed roles of OPTs in such diverse functions as long-dis- tance sulfur distribution, nitrogen mobilization, metal homeostasis, and heavy metal sequestration through the transport of glutathione, metal-chelates, and peptides.
基金supported by the National Natural Science Foundations of China(Nos.41973005,41673001)China National Space Administration(CNSA)(No.D020205)。
文摘A preliminary survey of silver isotopic composition in four polymetallic ores in eastern China shows a larger variation inδ^(109)Ag from-0.014‰to+0.983‰,which is within the total ranges for the entire respective ore deposit types worldwide.The diversity of silver isotopic compositions in oredeposits reported here and previous studies seemed to preclude simple isotopic links to particular sources,but reflected the silver isotope fractionation in transport-and deposit-related processes instead.Theδ^(109)Ag values in supergene samples from the Qixiashan Pb-Zn-Ag polymetallic deposit are more positive,in consistent with the statistical δ^(109)Ag distribution from-0.4‰to+2.2‰in 36 pieces of supergene ore samples around the World,which reflects the diverse controls on silver isotope fractionation from the first-order thermodynamic effect,reduction-mediated reaction,remobilization of silver with surficial low-temperature weathering processes.The hypogene samples in Dazhuangzi orogenic Au-Ag ore deposit,have δ^(109)Ag values close to 0,which implies that equilibrium partitioning associated with metal sources at the high-temperature does not result in a resolvable difference in silver isotopic compositions.By contrast,the hypogene samples which are dominated by pyrite without visible silver minerals (i.e.,skarn iron ore deposit in Edongnan) have shown the largest variation range of δ^(109)Ag,followed by that from the porphyry copper ore in Zijinshan.It could be concluded that the surface adsorption and/or lattice substitution are important factors to control Ag isotope fractionation in oreforming processes,especially for skarn deposits with only pyrite.The perspective of silver isotope shows great potentials to understand the processes that lead to the concentrations of metals to economic levels and to constrain the physicochemical conditions during ore-mineralization in metallic ore-deposits.
文摘By combining laboratorial experiments,theoretical analysis and mathematical model,theeffect of sediment motion on transport-transformation of heavy-metal pollutants is studied. (1)Previous studies on adsorption-desorption of heavy-metal pollutants by sedimentparticles are systematically summarized.Based on this summary,subjects that need to be furtherstudied are put forward. In rivers most heavy-metal pollutants concentrate on sediment particles.In order tocontrolling water pollution aused by heavy-metal pollutants following topics should beemphasized:studies on the effect of suspended matter and deposit on transport-transformation of
基金This research was supported financially by the National Natural Science Foundation of China(42122012 and 41973038)。
文摘Although vein-type silver-lead-zinc ore deposits have been extensively studied,the factors controlling their formation are still poorly understood and their genesis is a matter of ongoing debate.In this contribution,I present new mineralogical data and the results of thermodynamic modeling that constrain the conditions of metal transport and deposition for the Aerhada epithermal Pb-Zn-Ag deposit(reserves of>1,000 t Ag@58 g/t and 1.0 Mt Pb+Zn@5.2%)in NE China.Three primary paragenetic stages have been identified,the second of which(Stage II)is the main base metal and silver mineralization.Freibergite,argentite,pyrargyrite,and canfieldite are the main Ag-bearing minerals and are spatially associated with an alteration assemblage of quartz-muscovite±chlorite±epidote.Dissolution textures and evidence of compositional heterogeneity for freibergite suggest that its decomposition may have redistributed the Ag and contributed in part to the high Ag grade ores in the deposit.Thermodynamic calculations indicate that there was extensive silver ore deposition from a strongly reducing(e.g.,∆log fO_(2)(HM)of<-8.6 to-2.4)and nearly neutral to weakly alkaline(e.g.,pH of 5.5 to 6.8)aqueous fluid at temperatures between 220℃ and 170℃.These calculations reveal that a reduction in fO_(2)and decreasing temperature,both as a result of fluid-rock interactions,were the key factors leading to silver and base metal mineral deposition.Further path modeling showed that the sole evolution of a magmatic-derived fluid is capable of forming the large Ag-Pb-Zn veins via fluid-rock interactions,which is contrary to the conclusions of some other studies that the mixture of an externally derived fluid is required to explain their formation.The genetic model for Ag-Pb-Zn ore formation developed in this study is applicable to other polymetallic vein-type deposits in comparable geological settings elsewhere.
基金supported by Program for Innovative Research Team in Universities (IRT1185)the Fundamental Research Funds for the Central Universities
文摘Cadmium (Cd) is one of the most toxic elements and can be accumulated in plants easily; meanwhile, eIF5A is a highly conserved protein in all eukaryotic organisms. The present work tried to investigate whether eIF5A is involved in Cd accumulation and sensitivity in Arabidopsis (Arabidopsis thaliana L.) by comparing the wild-type Columbia-0 (Col-0) with a knockdown mutant of AteIF5A-2, fbr12-3 under Cd stress conditions. The results showed that the mutant fbr12-3 accumulated more Cd in roots and shoots and had significantly lower chlorophyll content, shorter root length, and smaller biomass, suggesting that downregulation of AteIF5A-2 makes the mutant more Cd sensitive. Real-time polymerase chain reaction revealed that the expressions of metal transporters involved in Cd uptake and translocation including IRT1, ZIP1, AtNramp3, and AtHMA4 were significantly increased but the expressions of PCS1 and PCS2 related to Cd detoxification were decreased notably in fbr12-3 compared with Col-0. As a result, an increase in MDA and H<sub>2</sub>O<sub>2</sub> content but decrease in root trolox, glutathione and proline content under Cd stress was observed, indicating that a severer oxidative stress occurs in the mutant. All these results demonstrated for the first time that AteIF5A influences Cd sensitivity by affecting Cd uptake, accumulation, and detoxification in Arabidopsis.