Experimental results on the primary carburization reaction between the tungsten powder and methane in the induction plasma, and the secondary carburization of the deposit on substrate at high temperature are reported....Experimental results on the primary carburization reaction between the tungsten powder and methane in the induction plasma, and the secondary carburization of the deposit on substrate at high temperature are reported. Optical microscopy and scanning electron microscopy were used to examine the microstructures of starting tungsten powder, carburized powder, and deposit. X-ray diffraction analysis, thermal gravimetric analysis and microhardness measurement were used to characterize the structures and properties of the powder and the deposit. It is found that the primary carburization reaction in the induction plasma starts from the surface of tungsten particles when the particles are melted. Tungsten particles are partially carburized inside the reactive plasma. Complete carburization is achieved through the secondary carburization reaction of the deposit on substrate at high temperature.展开更多
Scandia and rhenium doped tungsten powders were prepared by solid-liquid doping combined with two-step reduction method. The particle size of doped tungsten and distribution of scandia and rhenium were studied by SEM,...Scandia and rhenium doped tungsten powders were prepared by solid-liquid doping combined with two-step reduction method. The particle size of doped tungsten and distribution of scandia and rhenium were studied by SEM, EDS, XRD and granularity analysis. Experimental results showed that scandia distributed evenly on the surface of tungsten particles. Addition of scandia and rhenium decreased the particle size of doped tungsten, and the more the content of scandia and rhenium, the smaller the doped tungsten particles. Tungsten powders doped with 3 % Sc2O3 and 3 % Re (mass fraction) had an average size of about 80 nm in diameter. The mechanism of the decrease in the tungsten particle size was discussed.展开更多
The mixture of 90 wt%W, 7 wt%Ni and 3 wt%Fe elemental powders was milled in a planetary high-energy ball mill. The evolution of the structure during milling and the sintering behavior of the milled powders were tested...The mixture of 90 wt%W, 7 wt%Ni and 3 wt%Fe elemental powders was milled in a planetary high-energy ball mill. The evolution of the structure during milling and the sintering behavior of the milled powders were tested. The results showed that by mechanical alloying W(Ni, Fe) supersaturated solid solution with nano-meter size formed, which can enhance the sintering process. Fully dense alloy from the milled powders was obtained through solid state sintering. The tensile strength of the obtained alloy is over 900 MPa which is comparable to that of the alloy sintered by traditional liquid-phase sintering from un-milled powders of the same composition.展开更多
文摘Experimental results on the primary carburization reaction between the tungsten powder and methane in the induction plasma, and the secondary carburization of the deposit on substrate at high temperature are reported. Optical microscopy and scanning electron microscopy were used to examine the microstructures of starting tungsten powder, carburized powder, and deposit. X-ray diffraction analysis, thermal gravimetric analysis and microhardness measurement were used to characterize the structures and properties of the powder and the deposit. It is found that the primary carburization reaction in the induction plasma starts from the surface of tungsten particles when the particles are melted. Tungsten particles are partially carburized inside the reactive plasma. Complete carburization is achieved through the secondary carburization reaction of the deposit on substrate at high temperature.
基金Project supported by the National Natural Science Foundation of China (50571001)the National "863"Project(2006AA03Z524)
文摘Scandia and rhenium doped tungsten powders were prepared by solid-liquid doping combined with two-step reduction method. The particle size of doped tungsten and distribution of scandia and rhenium were studied by SEM, EDS, XRD and granularity analysis. Experimental results showed that scandia distributed evenly on the surface of tungsten particles. Addition of scandia and rhenium decreased the particle size of doped tungsten, and the more the content of scandia and rhenium, the smaller the doped tungsten particles. Tungsten powders doped with 3 % Sc2O3 and 3 % Re (mass fraction) had an average size of about 80 nm in diameter. The mechanism of the decrease in the tungsten particle size was discussed.
文摘The mixture of 90 wt%W, 7 wt%Ni and 3 wt%Fe elemental powders was milled in a planetary high-energy ball mill. The evolution of the structure during milling and the sintering behavior of the milled powders were tested. The results showed that by mechanical alloying W(Ni, Fe) supersaturated solid solution with nano-meter size formed, which can enhance the sintering process. Fully dense alloy from the milled powders was obtained through solid state sintering. The tensile strength of the obtained alloy is over 900 MPa which is comparable to that of the alloy sintered by traditional liquid-phase sintering from un-milled powders of the same composition.