期刊文献+
共找到2,231篇文章
< 1 2 112 >
每页显示 20 50 100
Research status and prospects of the fractal analysis of metal material surfaces and interfaces
1
作者 Qinjin Dai Xuefeng Liu +2 位作者 Xin Ma Shaojie Tian Qinghe Cui 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS 2025年第1期20-38,共19页
As a mathematical analysis method,fractal analysis can be used to quantitatively describe irregular shapes with self-similar or self-affine properties.Fractal analysis has been used to characterize the shapes of metal... As a mathematical analysis method,fractal analysis can be used to quantitatively describe irregular shapes with self-similar or self-affine properties.Fractal analysis has been used to characterize the shapes of metal materials at various scales and dimensions.Conventional methods make it difficult to quantitatively describe the relationship between the regular characteristics and properties of metal material surfaces and interfaces.However,fractal analysis can be used to quantitatively describe the shape characteristics of metal materials and to establish the quantitative relationships between the shape characteristics and various properties of metal materials.From the perspective of two-dimensional planes and three-dimensional curved surfaces,this paper reviews the current research status of the fractal analysis of metal precipitate interfaces,metal grain boundary interfaces,metal-deposited film surfaces,metal fracture surfaces,metal machined surfaces,and metal wear surfaces.The relationship between the fractal dimensions and properties of metal material surfaces and interfaces is summarized.Starting from three perspectives of fractal analysis,namely,research scope,image acquisition methods,and calculation methods,this paper identifies the direction of research on fractal analysis of metal material surfaces and interfaces that need to be developed.It is believed that revealing the deep influence mechanism between the fractal dimensions and properties of metal material surfaces and interfaces will be the key research direction of the fractal analysis of metal materials in the future. 展开更多
关键词 metal material surfaces and interfaces fractal analysis fractal dimension HOMOGENEITY
下载PDF
Effect of Interface Form on Creep Failure and Life of Dissimilar Metal Welds Involving Nickel-Based Weld Metal and Ferritic Base Metal 被引量:1
2
作者 Xiaogang Li Junfeng Nie +2 位作者 Xin Wang Kejian Li Haiquan Zhang 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2024年第1期265-285,共21页
For dissimilar metal welds(DMWs)involving nickel-based weld metal(WM)and ferritic heat resistant steel base metal(BM)in power plants,there must be an interface between WM and BM,and this interface suffers mechanical a... For dissimilar metal welds(DMWs)involving nickel-based weld metal(WM)and ferritic heat resistant steel base metal(BM)in power plants,there must be an interface between WM and BM,and this interface suffers mechanical and microstructure mismatches and is often the rupture location of premature failure.In this study,a new form of WM/BM interface form,namely double Y-type interface was designed for the DMWs.Creep behaviors and life of DMWs containing double Y-type interface and conventional I-type interface were compared by finite element analysis and creep tests,and creep failure mechanisms were investigated by stress-strain analysis and microstructure characterization.By applying double Y-type interface instead of conventional I-type interface,failure location of DMW could be shifted from the WM/ferritic heat-affected zone(HAZ)interface into the ferritic HAZ or even the ferritic BM,and the failure mode change improved the creep life of DMW.The interface premature failure of I-type interface DMW was related to the coupling effect of microstructure degradation,stress and strain concentrations,and oxide notch on the WM/HAZ interface.The creep failure of double Y-type interface DMW was the result of Type IV fracture due to the creep voids and micro-cracks on fine-grain boundaries in HAZ,which was a result of the matrix softening of HAZ and lack of precipitate pinning at fine-grain boundaries.The double Y-type interface form separated the stress and strain concentrations in DMW from the WM/HAZ interface,preventing the trigger effect of oxide notch on interface failure and inhibiting the interfacial microstructure cracking.It is a novel scheme to prolong creep life and enhance reliability of DMW,by means of optimizing the interface form,decoupling the damage factors from WM/HAZ interface,and then changing the failure mechanism and shifting the failure location. 展开更多
关键词 Dissimilar metal weld Nickel-based weld metal Ferritic heat resistant steel interface Creep strain MICROSTRUCTURE Failure mechanism Creep life
下载PDF
Plasma-assisted aerogel interface engineering enables uniform Zn^(2+)flux and fast desolvation kinetics toward zinc metal batteries 被引量:1
3
作者 Zijian Xu Zhenhai Shi +7 位作者 Zhan Chang Fan Feng Zhuanyi Liu Dongkun Chu Jianguo Ren Zi-Feng Ma Suli Chen Tianxi Liu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第8期29-38,I0002,共11页
The poor reversibility of Zn anodes induced by dendrite growth,surface passivation,and corrosion,severely hinders the practical applicability of Zn metal batteries.To address these issues,a plasmaassisted aerogel(PAG)... The poor reversibility of Zn anodes induced by dendrite growth,surface passivation,and corrosion,severely hinders the practical applicability of Zn metal batteries.To address these issues,a plasmaassisted aerogel(PAG)interface engineering was proposed as efficient ion transport modulator that can simultaneously regulate uniform Zn^(2+)flux and desolvation behavior during battery operation.The PAG with ordered mesopores acted as an ion sieve to homogenize Zn deposition and accelerate Zn^(2+)flux,which is favorable for corrosion resistance and dendrite suppression.Importantly,the plasma-assisted aerogel with abundant hydrophilic groups can facilitate the desolvation kinetics of Zn^(2+)due to the multiple hydrogen-bonding interaction with the activated water molecules,thus accelerating the Zn^(2+)migration kinetics.Consequently,the Zn/Zn cell assembled with PAG-modified separator demonstrates stable plating and stripping behavior(over 1400 h at 1 mA cm^(-2))and high Coulombic efficiency(99.8%at1 mA cm^(-2)after 1100 cycles),and the Zn‖MnO_(2)full cell shows excellent long-term cycling stability and maintains a high capacity of 154.9 mA h g^(-1)after 1000 cycles at 1 A g^(-1).This study provides a feasible approach for the large-scale fabrication of aerogel functionalized separators to realize ultra-stable Zn metal batteries. 展开更多
关键词 Zn metal batteries Aerogel interface Plasma Zn^(2+)migration kinetics Dendrite growth
下载PDF
Designing Conformal Electrode-electrolyte Interface by Semi-solid NaK Anode for Sodium Metal Batteries
4
作者 YIN Chunsen CHEN Zeyuan WANG Xiuli 《材料科学与工程学报》 CAS CSCD 北大核心 2024年第4期533-543,共11页
Solid-state Na metal batteries(SSNBs),known for its low cost,high safety,and high energy density,hold a significant position in the next generation of rechargeable batteries.However,the urgent challenge of poor interf... Solid-state Na metal batteries(SSNBs),known for its low cost,high safety,and high energy density,hold a significant position in the next generation of rechargeable batteries.However,the urgent challenge of poor interfacial contact in solid-state electrolytes has hindered the commercialization of SSNBs.Driven by the concept of intimate electrode-electrolyte interface design,this study employs a combination of NaK alloy and carbon nanotubes to prepare a semi-solid NaK(NKC)anode.Unlike traditional Na anodes,the paintable paste-like NKC anode exhibits superior adhesion and interface compatibility with both current collectors and gel electrolytes,significantly enhancing the intimate contact of electrode-electrolyte interface.Additionally,the filling of SiO_(2)nanoparticles improves the wettability of NaK alloy on gel polymer electrolytes,further achieving a conformal interface contact.Consequently,the overpotential of the NKC symmetric cell is markedly lower than that of the Na symmetric cell when subjected to a long cycle of 300 h.The full cell coupled with Na_(3)V_(3)(PO_(4))_(2)cathodes had an initial discharge capacity of 106.8 mAh·g^(-1)with a capacity retention of 89.61%after 300 cycles,and a high discharge capacity of 88.1 mAh·g^(-1)even at a high rate of 10 C.The outstanding electrochemical performance highlights the promising application potential of the NKC electrode. 展开更多
关键词 Solid-state Na metal battery NaK alloy Gel electrolyte electrode-electrolyte interface dendrite free anode
下载PDF
Metal-Semiconductor Interfaces Investigated by Positron Annihilation Spectroscopy
5
作者 Abdulnasser S. Saleh 《World Journal of Condensed Matter Physics》 CAS 2016年第2期68-74,共7页
Variable-energy positron annihilation spectroscopy has been applied to study interfaces in Al/Si, Au/Si and Au/GaAs structures. Computational fittings of ROYPROF program were used to analyze Doppler broadening results... Variable-energy positron annihilation spectroscopy has been applied to study interfaces in Al/Si, Au/Si and Au/GaAs structures. Computational fittings of ROYPROF program were used to analyze Doppler broadening results in order to determine kinds of regions that positrons were likely to sample. The interfaces were found acting as a capturing thin layer with negligible positrons stopped in them and their characteristics came only from positrons diffusing to these interfaces, the positron work function of these materials were taken into consideration. In all fittings, the interfaces are found to have 1 nm thickness and act as an absorbing sink for all thermal positrons diffusing towards them, and this indicates either the existence of open volume defects or a weakness of known theoretical models for positron affinities. The result is supported by measurements obtained by applying external electric fields on Al/Si sample. Theoretical fittings have clearly demonstrated the sensitivity of interfaces in these attempts and their importance in data analyzing and in developing of fitting cods. 展开更多
关键词 Positron Annihilation interface metal-semiconductor DEFECTS
下载PDF
First-principles thermodynamics of metal-oxide surfaces andinterfaces:A case study review 被引量:4
6
作者 江勇 许灿辉 蓝国强 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2013年第1期180-192,共13页
An important step for achieving the knowledge-based design freedom on nano-and interfacial materials is attained by elucidating the related surface and interface thermodynamics from the first principles so as to allow... An important step for achieving the knowledge-based design freedom on nano-and interfacial materials is attained by elucidating the related surface and interface thermodynamics from the first principles so as to allow engineering the microstructures for desired properties through smartly designing fabrication processing parameters.This is demonstrated for SnO2 nano-particle surfaces and also a technologically important Ag-SnO2 interface fabricated by in-situ internal oxidation.Based on defect thermodynamics,we first modeled and calculated the equilibrium surface and interface structures,and as well corresponding properties,as a function of the ambient temperature and oxygen partial pressure.A series of first principles energetics calculations were then performed to construct the equilibrium surface and interface phase diagrams,to describe the environment dependence of the microstructures and properties of the surfaces and interfaces during fabrication and service conditions.The use and potential application of these phase diagrams as a process design tool were suggested and discussed. 展开更多
关键词 metal oxide surface phase diagram interface phase diagram equilibrium crystal shape FIRST-PRINCIPLES THERMODYNAMICS
下载PDF
Advanced strategies for solid electrolyte interface design with MOF materials 被引量:5
7
作者 Guolong Lu Ge Meng +5 位作者 Qian Liu Ligang Feng Jun Luo Xijun Liu Yang Luo Paul K.Chu 《Advanced Powder Materials》 2024年第1期114-143,共30页
Emerging energy technologies,aimed at addressing the challenges of energy scarcity and environmental pollution,have become a focal point for society.However,these actualities present significant challenges for modern ... Emerging energy technologies,aimed at addressing the challenges of energy scarcity and environmental pollution,have become a focal point for society.However,these actualities present significant challenges for modern energy storage devices.Lithium metal batteries(LMBs)have gained considerable attention due to their high energy density.Nonetheless,their use of liquid electrolytes raises safety concerns,including dendritic growth,electrode corrosion,and electrolyte decomposition.In light of these challenges,solid-state batteries(SSBs)have emerged as a highly promising next-generation energy storage solution by leveraging lithium metal as the anode to achieve improved safety and energy density.Metal organic frameworks(MOFs),characterized by their porous structure,ordered crystal frame,and customizable configuration,have garnered interest as potential materials for enhancing solid-state electrolytes(SSEs)in SSBs.The integration of MOFs into SSEs offers opportunities to enhance the electrochemical performance and optimize the interface between SSEs and electrodes.This is made possible by leveraging the high porosity,functionalized structures,and abundant open metal sites of MOFs.However,the rational design of high-performance MOF-based SSEs for high-energy Li metal SSBs(LMSSBs)remains a significant challenge.In this comprehensive review,we present an overview of recent advancements in MOF-based SSEs for LMSSBs,focusing on strategies for interface optimization and property enhancement.We categorize these SSEs into two main types:MOF-based quasi-solid-state electrolytes and MOF-based all solid-state electrolytes.Within these categories,various subtypes are identified based on the combination mode,additional materials,formation state,preparation method,and interface optimization measures employed.The review also highlights the existing challenges associated with MOF materials in SSBs applications and proposes potential solutions and future development prospects to guide the advancement of MOFs-based SSEs.By providing a comprehensive assessment of the applications of MOFs in LMSSBs,this review aims to offer valuable insights and guidance for the development of MOF-based SSEs,addressing the key issues faced by these materials in SSBs technology. 展开更多
关键词 Lithium metal solid-state batteries metal organic frameworks Quasi-solid-state electrolytes All solid-state electrolytes interface optimization strategy
下载PDF
Research progress in interface modification and thermal conduction behavior of diamond/metal composites 被引量:8
8
作者 Ping Zhu Pingping Wang +5 位作者 Puzhen Shao Xiu Lin Ziyang Xiu Qiang Zhang Equo Kobayashi Gaohui Wu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2022年第2期200-211,共12页
Diamond/metal composites are widely used in aerospace and electronic packaging fields due to their outstanding high thermal conductivity and low expansion.However,the difference in chemical properties leads to interfa... Diamond/metal composites are widely used in aerospace and electronic packaging fields due to their outstanding high thermal conductivity and low expansion.However,the difference in chemical properties leads to interface incompatibility between diamond and metal,which has a considerable impact on the performance of the composites.To improve the interface compatibility between diamond and metal,it is necessary to modify the interface of composites.This paper reviews the experimental research on interface modification and the application of computational simulation in diamond/metal composites.Combining computational simulation with experimental methods is a promising way to promote diamond/metal composite interface modification research. 展开更多
关键词 diamond/metal interface modification thermal conductivity computational simulation
下载PDF
A Study on Solid/Melt Interfaces and the Formation of<100> Texture in Solidified FCC Metals 被引量:21
9
作者 D.Y.Li(Dept. of Mater. Sci & Eng., The Pennsylvania State University, University Park, PA 16802, USA )B.Debray and J.A.Szpunar(Dept. of Metall. Eng., McGill University, 3450 Uuiversity Street, Molitreal, PQ, Canada H3A 2A7) 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 1997年第6期457-461,共5页
The (100) texture of solidified fcc metals, caused by the preferential (100) dendrite growth, could be closeIy related to solid/melt interfaces which behave differently along different crystallographic orientation. Th... The (100) texture of solidified fcc metals, caused by the preferential (100) dendrite growth, could be closeIy related to solid/melt interfaces which behave differently along different crystallographic orientation. The stability and roughness of {111} and {100} solid/melt interfaces of fcc metals were investigated using a modified Temkin multi-layer model. It is demonstrated that {100}crystal/melt interface is more unstable and rougher than {111} interface. The effect of the stability of crystal/melt interface on the (100) texture formation in solidified fcc metals has been analysed and discussed. 展开更多
关键词 FCC A Study on Solid/Melt interfaces and the Formation of<100 Texture in Solidified FCC metals
下载PDF
Plasmonic Field Enhancement for Vibration Spectroscopy at Metal/Water Interfaces
10
作者 刘志华 徐倩 刘韡韬 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2016年第1期87-90,I0002,共5页
Electrochemical (EC) reactions play vital roles in many disciplines, and its molecular-level understanding is highly desired, in particular under reactions. The vibration spectroscopy is a powerful in situ technique... Electrochemical (EC) reactions play vital roles in many disciplines, and its molecular-level understanding is highly desired, in particular under reactions. The vibration spectroscopy is a powerful in situ technique for chemical analysis, yet its application to EC reactions is hindered by the strong attenuation of infrared (IR) light in both electrodes and electrolytes. Here we demonstrate that by incorporating appropriate sub-wavelength plasmonic structures at the metal electrode, the IR field at the EC interface can be greatly enhanced via the excitation of surface plasmon. This scheme facilitates in situ vibrational spectroscopic studies, especially using the surface-specific sum-frequency generation technique. 展开更多
关键词 metal water interfaces Surface plasmon excitation Extraordinary optical transmission
下载PDF
Interface-dominated mechanical behavior in advanced metal matrix composites 被引量:3
11
作者 Qiang Guo Yifan Han Di Zhang 《Nano Materials Science》 CAS 2020年第1期66-71,共6页
Metal matrix composites(MMCs)incorporate a reinforcing or functional secondary phase into a metal matrix to achieve specific properties.Of the parameters which may affect the mechanical behavior of MMCs,the structure ... Metal matrix composites(MMCs)incorporate a reinforcing or functional secondary phase into a metal matrix to achieve specific properties.Of the parameters which may affect the mechanical behavior of MMCs,the structure and properties of the reinforcement/matrix interface play a crucial role.This article reviews recent developments in measuring the interfacial properties in advanced MMCs,with an emphasis on the use of micro-/nano-mechanical testing approaches.It is shown that,with the novel in situ and ex situ experimental capability,researchers can now obtain some of the critical interfacial properties as well as the effects of reinforcement/matrix interfaces on the composites’deformation and failure mechanisms that were unattainable previously by conventional methodologies.Moreover,the micro-/nano-mechanical testing platform allows for both fundamental and applied research on the composites’mechanical performance under service conditions,which is considered a promising and emerging research direction. 展开更多
关键词 metal MATRIX COMPOSITES interface Mechanical behavior NANOSTRUCTURE Strengthening
下载PDF
3D Artificial Array Interface Engineering Enabling Dendrite-Free Stable Zn Metal Anode 被引量:3
12
作者 Jianbin Ruan Dingtao Ma +6 位作者 Kefeng Ouyang Sicheng Shen Ming Yang Yanyi Wang Jinlai Zhao Hongwei Mi Peixin Zhang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第3期112-128,共17页
The ripple effect induced by uncontrollable Zn deposition is considered as the Achilles heel for developing high-performance aqueous Zn-ion batteries.For this problem,this work reports a design concept of 3D artificia... The ripple effect induced by uncontrollable Zn deposition is considered as the Achilles heel for developing high-performance aqueous Zn-ion batteries.For this problem,this work reports a design concept of 3D artificial array interface engineering to achieve volume stress elimination,preferred orientation growth and dendrite-free stable Zn metal anode.The mechanism of MXene array interface on modulating the growth kinetics and deposition behavior of Zn atoms were firstly disclosed on the multi-scale level,including the in-situ optical microscopy and transient simulation at the mesoscopic scale,in-situ Raman spectroscopy and in-situ X-ray diffraction at the microscopic scale,as well as density functional theory calculation at the atomic scale.As indicated by the electrochemical performance tests,such engineered electrode exhibits the comprehensive enhancements not only in the resistance of corrosion and hydrogen evolution,but also the rate capability and cyclic stability.High-rate performance(20 mA cm^(-2))and durable cycle lifespan(1350 h at 0.5 mA cm^(-2),1500 h at 1 mA cm^(-2)and 800 h at 5 mA cm^(-2))can be realized.Moreover,the improvement of rate capability(214.1 mAh g^(-1)obtained at 10 A g^(-1))and cyclic stability also can be demonstrated in the case of 3D MXene array@Zn/VO2battery.Beyond the previous 2D closed interface engineering,this research offers a unique 3D open array interface engineering to stabilize Zn metal anode,the controllable Zn deposition mechanism revealed is also expected to deepen the fundamental of rechargeable batteries including but not limited to aqueous Zn metal batteries. 展开更多
关键词 Aqueous Zn-ion batteries Volume stress 3D artificial array interface Controllable deposition Zn metal anode
下载PDF
Molecular Reactivity and Interface Stability Modification in In-Situ Gel Electrolyte for High Performance Quasi-Solid-State Lithium Metal Batteries 被引量:2
13
作者 Qiyu Wang Xiangqun Xu +4 位作者 Bo Hong Maohui Bai Jie Li Zhian Zhang Yanqing Lai 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2023年第3期8-19,共12页
Quasi-solid-state lithium metal battery is a promising candidate for next generation high energy density and high safety power supply.Despite intensive efforts on electrolytes,uncontrolled interfacial reactions on lit... Quasi-solid-state lithium metal battery is a promising candidate for next generation high energy density and high safety power supply.Despite intensive efforts on electrolytes,uncontrolled interfacial reactions on lithium with electrolyte and patchy interfacial contacts still hinder its practical process.Herein,we bring in rationally designed F contained groups into polymer skeleton via in-situ gelation for the first time to establish quasi-solid-state battery.This method achieves a capacity retention of 90%after 1000 cycles at 0.5C with LiFePO_(4)cathodes.The interface constructed by polymer skeleton and reaction with–CF_(3)lead to the predicted solid electrolyte interface species with high stability.Furthermore,we optimize molecular reactivity and interface stability with regulating F contained end groups in the polymer.Comparisons on different structures reveal that high performance solid stable lithium metal batteries rely on chemical modification as well as stable polymer skeleton,which is more critical to construct robust and steady SEI with uniform lithium deposition.New approach with functional groups regulation proposes a more stable cycling process with a capacity retention of 94.2%at 0.5C and 87.6%at 1C after 1000 cycles with LiFePO_(4) cathodes,providing new insights for the practical development of quasi-solid-state lithium metal battery. 展开更多
关键词 F contained end groups in-situ gel electrolyte interface stability molecular reactivity quasi-solid-state lithium metal battery
下载PDF
Heterostructured bimetallic phosphide nanowire arrays with latticetorsion interfaces for efficient overall water splitting 被引量:1
14
作者 Hua Zhang Hongyi Li +7 位作者 Yintang Zhou Fang Tan Ruijie Dai Xijun Liu Guangzhi Hu Laiming Jiang Anran Chen Renbing Wu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第2期420-427,I0011,共9页
Designing cost-effective and high-efficiency electrocatalysts is critical to the water splitting performance during hydrogen generation.Herein,we have developed Fe_(2)P-Co_(2)P heterostructure nanowire arrays with exc... Designing cost-effective and high-efficiency electrocatalysts is critical to the water splitting performance during hydrogen generation.Herein,we have developed Fe_(2)P-Co_(2)P heterostructure nanowire arrays with excellent lattice torsions and grain boundaries for highly efficient water splitting.According to the microstructural investigations and theoretical calculations,the lattice torsion interface not only contributes to the exposure of more active sites but also effectively tunes the adsorption energy of hydrogen/oxygen intermediates via the accumulation of charge redistribution.As a result,the Fe_(2)P-Co_(2)P heterostructure nanowire array exhibits exceptional bifunctional catalytic activity with overpotentials of 65 and 198 mV at 10 mA cm^(-2) for hydrogen and oxygen evolution reactions,respectively.Moreover,the Fe_(2)P-Co_(2)P/NF-assembled electrolyzer can deliver 10 mA cm^(-2) at an ultralow voltage of1.51 V while resulting in a high solar-to-hydrogen conversion efficiency of 19.8%in the solar-driven water electrolysis cell. 展开更多
关键词 Transition metal phosphide Lattice torsion Heterogeneous interfaces Water splitting Theoretical calculation
下载PDF
Ultralow Interfacial Thermal Resistance of Graphene Thermal Interface Materials with Surface Metal Liquefaction 被引量:1
15
作者 Wen Dai Xing-Jie Ren +13 位作者 Qingwei Yan Shengding Wang Mingyang Yang Le Lv Junfeng Ying Lu Chen Peidi Tao Liwen Sun Chen Xue Jinhong Yu Chengyi Song Kazuhito Nishimura Nan Jiang Cheng-Te Lin 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第1期183-196,共14页
Developing advanced thermal interface materials(TIMs)to bridge heat-generating chip and heat sink for constructing an efficient heat transfer interface is the key technology to solve the thermal management issue of hi... Developing advanced thermal interface materials(TIMs)to bridge heat-generating chip and heat sink for constructing an efficient heat transfer interface is the key technology to solve the thermal management issue of high-power semiconductor devices.Based on the ultra-high basal-plane thermal conductivity,graphene is an ideal candidate for preparing high-performance TIMs,preferably to form a vertically aligned structure so that the basal-plane of graphene is consistent with the heat transfer direction of TIM.However,the actual interfacial heat transfer efficiency of currently reported vertically aligned graphene TIMs is far from satisfactory.In addition to the fact that the thermal conductivity of the vertically aligned TIMs can be further improved,another critical factor is the limited actual contact area leading to relatively high contact thermal resistance(20-30 K mm^(2) W^(−1))of the“solid-solid”mating interface formed by the vertical graphene and the rough chip/heat sink.To solve this common problem faced by vertically aligned graphene,in this work,we combined mechanical orientation and surface modification strategy to construct a three-tiered TIM composed of mainly vertically aligned graphene in the middle and micrometer-thick liquid metal as a cap layer on upper and lower surfaces.Based on rational graphene orientation regulation in the middle tier,the resultant graphene-based TIM exhibited an ultra-high thermal conductivity of 176 W m^(−1) K^(−1).Additionally,we demonstrated that the liquid metal cap layer in contact with the chip/heat sink forms a“liquid-solid”mating interface,significantly increasing the effective heat transfer area and giving a low contact thermal con-ductivity of 4-6 K mm^(2) W^(−1) under packaging conditions.This finding provides valuable guidance for the design of high-performance TIMs based on two-dimensional materials and improves the possibility of their practical application in electronic thermal management. 展开更多
关键词 Vertically aligned graphene Liquid metal Surface modification Thermal interface materials
下载PDF
Intelligent optimization method for the dynamic scheduling of hot metal ladles of one-ladle technology on ironmaking and steelmaking interface in steel plants 被引量:1
16
作者 Li Zeng Zhong Zheng +5 位作者 Xiaoyuan Lian Kai Zhang Mingmei Zhu Kaitian Zhang Chaoyue Xu Fei Wang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2023年第9期1729-1739,共11页
The one-ladle technology requires an efficient ironmaking and steelmaking interface. The scheduling of the hot metal ladle in the steel plant determines the overall operational efficiency of the interface. Considering... The one-ladle technology requires an efficient ironmaking and steelmaking interface. The scheduling of the hot metal ladle in the steel plant determines the overall operational efficiency of the interface. Considering the strong uncertainties of real-world production environments, this work studies the dynamic scheduling problem of hot metal ladles and develops a data-driven three-layer approach to solve this problem. A dynamic scheduling optimization model of the hot metal ladle operation with a minimum average turnover time as the optimization objective is also constructed. Furthermore, the intelligent perception of industrial scenes and autonomous identification of disturbances, adaptive configuration of dynamic scheduling strategies, and real-time adjustment of schedules can be realized. The upper layer generates a demand-oriented prescheduling scheme for hot metal ladles. The middle layer adaptively adjusts this scheme to obtain an executable schedule according to the actual supply–demand relationship. In the lower layer, three types of dynamic scheduling strategies are designed according to the characteristics of the dynamic disturbance in the model:real-time flexible fine-tuning, local machine adjustment, and global rescheduling. Case test using 24 h production data on a certain day during the system operation of a steel plant shows that the method and system can effectively reduce the fluctuation and operation time of the hot metal ladle and improve the stability of the ironmaking and steelmaking interface production rhythm. The data-driven dynamic scheduling strategy is feasible and effective, and the proposed method can improve the operation efficiency of hot metal ladles. 展开更多
关键词 hot metal ladles ironmaking and steelmaking interface one-ladle technology dynamic scheduling data-driven
下载PDF
Study on the separation process of non-metallic inclusions at the steel-slag interface using water modeling 被引量:5
17
作者 Ye-lian Zhou Zhi-yin Deng Miao-yong Zhu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2017年第6期627-637,共11页
The separation process of non-metallic inclusions at the steel–slag interface was simulated by physical modeling. Three different kinds of particles (octahedral, plate-like, and spherical) and three different oils (k... The separation process of non-metallic inclusions at the steel–slag interface was simulated by physical modeling. Three different kinds of particles (octahedral, plate-like, and spherical) and three different oils (kerosene, bean oil, and pump oil) were used to model inclusions and slags, respectively. The effects of inclusion geometry (shape and size) and slag properties (viscosity and interfacial tension) on the separation process were investigated. The results revealed that the variation of surface free energy and the viscosity of the slag are two significant factors affecting the separation process of inclusions at the steel–slag interface. The variation of surface free energy helped inclusions enter the slag phase, whereas the decrease of slag viscosity shortened the separation time. The deformation of the steel–slag interface could give rise to the resistance force, which would resist inclusions passing through the interface. A liquid film formed on the inclusion as it passed through the steel–slag interface, which might be related to the inclusion’s shape. © 2017, University of Science and Technology Beijing and Springer-Verlag Berlin Heidelberg. 展开更多
关键词 Free energy interfaces (materials) KEROSENE Liquid films SEPARATION VISCOSITY
下载PDF
Mechanistically Novel Frontal-Inspired In Situ Photopolymerization:An Efficient Electrode|Electrolyte Interface Engineering Method for High Energy Lithium Metal Polymer Batteries 被引量:1
18
作者 Ishamol Shaji Diddo Diddens +1 位作者 Martin Winter Jijeesh Ravi Nair 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2023年第6期273-282,共10页
The solvent-free in situ polymerization technique has the potential to tailor-make conformal interfaces that are essential for developing durable and safe lithium metal polymer batteries(LMPBs).Hence,much attention ha... The solvent-free in situ polymerization technique has the potential to tailor-make conformal interfaces that are essential for developing durable and safe lithium metal polymer batteries(LMPBs).Hence,much attention has been given to the eco-friendly and rapid ultraviolet(UV)-induced in situ photopolymerization process to prepare solid-state polymer electrolytes.In this respect,an innovative method is proposed here to overcome the challenges of UV-induced photopolymerization(UV-curing)in the zones where UV-light cannot penetrate,especially in LMPBs where thick electrodes are used.The proposed frontal-inspired photopolymerization(FIPP)process is a diverged frontal-based technique that uses two classes(dual)of initiators to improve the slow reaction kinetics of allyl-based monomers/oligomers by at least 50%compared with the conventional UV-curing process.The possible reaction mechanism occurring in FIPP is demonstrated using density functional theory calculations and spectroscopic investigations.Indeed,the initiation mechanism identified for the FIPP relies on a photochemical pathway rather than an exothermic propagating front forms during the UV-irradiation step as the case with the classical frontal photopolymerization technique.Besides,the FIPP-based in situ cell fabrication using dual initiators is advantageous over both the sandwich cell assembly and conventional in situ photopolymerization in overcoming the limitations of mass transport and active material utilization in high energy and high power LMPBs that use thick electrodes.Furthermore,the LMPB cells fabricated using the in situ-FIPP process with high mass loading LiFePO_(4)electrodes(5.2 mg cm^(-2))demonstrate higher rate capability,and a 50%increase in specific capacity against a sandwich cell encouraging the use of this innovative process in large-scale solid-state battery production. 展开更多
关键词 cathodelelectrolyte interface frontal-inspired photopolymerization in situ polymerization lithium metal polymer battery solid polymer electrolyte
下载PDF
Regulating non-precious transition metal nitrides bifunctional electrocatalysts through surface/interface nanoengineering for air-cathodes of Zn-air batteries 被引量:1
19
作者 Qixing Du Yanmei Gong +4 位作者 Muhammad Arif Khan Daixin Ye Jianhui Fang Hongbin Zhao Jiujun Zhang 《Green Energy & Environment》 SCIE EI CSCD 2022年第1期16-34,共19页
Zn-air batteries(ZABs),especially the secondary batteries,have engrossed a great interest because of its high specific energy,economical and high safety.However,due to the insufficient activity and stability of bifunc... Zn-air batteries(ZABs),especially the secondary batteries,have engrossed a great interest because of its high specific energy,economical and high safety.However,due to the insufficient activity and stability of bifunctional electrocatalysts for air-cathode oxygen reduction reaction(ORR)and oxygen evolution reaction(OER)processes,the practical application of rechargeable ZABs is seriously hindered.In the effort of developing high active,stable and cost-effective electrocatalysts,transition metal nitrides(TMNs)have been regarded as the candidates due to their high conductivity,strong corrosion-resistance,and bifunctional catalytic performance.In this paper,the research progress in TMNs-based material as ORR and OER electrocatalysts for ZABs is discussed with respect to their synthesis,chemical/physical characterization,and performance validation/optimization.The surface/interface nanoengineering strategies such as defect engineering,support binding,heteroatom introduction,crystal plane orientation,interface construction and small size effect,the physical and chemical properties of TMNs-based electrocatalysts are emphasized with respect to their structures/morphologies,composition,electrical conductivity,specific surface area,chemical stability and corrosion resistance.The challenges of TMNs-based materials as bifunctional air-cathode electrocatalysts in practical application are evaluated,and numerous research guidelines to solve these problems are put forward for facilitating further research and development. 展开更多
关键词 Surface/interface nanoengineering Non-precious transition metal nitrides Zn-air batteries Oxygen reduction reaction Oxygen evolution reaction
下载PDF
Investigation of Interfaces in Remelted A356-SiC Particulate Duralcan Metal Matrix Composite 被引量:1
20
作者 邵贝羚 李永洪 +3 位作者 刘安生 石力开 曹利 王传英 《Rare Metals》 SCIE EI CAS CSCD 1992年第1期64-65,共2页
For the manufacture of Al-based metalmatrix composites, the foundry productionroute can provide less expensive products witha greater flexibility in meeting designer’s needsamong a vaviety of fablication routes. Rece... For the manufacture of Al-based metalmatrix composites, the foundry productionroute can provide less expensive products witha greater flexibility in meeting designer’s needsamong a vaviety of fablication routes. Recent-ly, a commercially produced foundry ingot,the Duralcan composite of A356 Al alloy +20 展开更多
关键词 Investigation of interfaces in Remelted A356-SiC Particulate Duralcan metal Matrix Composite SIC
下载PDF
上一页 1 2 112 下一页 到第
使用帮助 返回顶部