期刊文献+
共找到5,212篇文章
< 1 2 250 >
每页显示 20 50 100
Research progress in friction stir processing of magnesium alloys and their metal matrix surface composites: Evolution in the 21^(st )century
1
作者 Roshan Vijay Marode Tamiru Alemu Lemma +3 位作者 Nabihah Sallih Srinivasa Rao Pedapati Mokhtar Awang Adeel Hassan 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第6期2091-2146,共56页
Rising concerns about climate change drive the demand for lightweight components.Magnesium(Mg)alloys are highly valued for their low weight,making them increasingly important in various industries.Researchers focusing... Rising concerns about climate change drive the demand for lightweight components.Magnesium(Mg)alloys are highly valued for their low weight,making them increasingly important in various industries.Researchers focusing on enhancing the characteristics of Mg alloys and developing their Metal Matrix Composites(MMCs)have gained significant attention worldwide over the past decade,driven by the global shift towards lightweight materials.Friction Stir Processing(FSP)has emerged as a promising technique to enhance the properties of Mg alloys and produce Mg-MMCs.Initially,FSP adapted to refine grain size from the micro to the nano level and accelerated the development of MMCs due to its solid-state nature and the synergistic effects of microstructure refinement and reinforcement,improving strength,hardness,ductility,wear resistance,corrosion resistance,and fatigue strength.However,producing defect-free and sound FSPed Mg and Mg-MMCs requires addressing several variables and their interdependencies,which opens up a broad range of practical applications.Despite existing reviews on individual FSP of Mg,its alloys,and MMCs,an attempt has been made to analyze the latest research on these three aspects collectively to enhance the understanding,application,and effectiveness of FSP for Mg and its derivatives.This review article discusses the literature,classifies the importance of Mg alloys,provides a historical background,and explores developments and potential applications of FSPed Mg alloys.It focuses on novel fabrication methods,reinforcement strategies,machine and tool design parameters,material characterization,and integration with other methods for enhanced properties.The influence of process parameters and the emergence of defects are examined,along with specific applications in mono and hybrid composites and their microstructure evolution.The study identifies promising reinforcement materials and highlights research gaps in FSP for Mg alloys and MMCs production.It concludes with significant recommendations for further exploration,reflecting ongoing advancements in this field. 展开更多
关键词 Magnesium alloys Friction stir processing metal matrix composites LIGHTWEIGHT Surface modification
下载PDF
Mitigated reaction kinetics between lithium metal anodes and electrolytes by alloying lithium metal with low-content magnesium
2
作者 Yang-Yang Wang Ya-Nan Wang +9 位作者 Nan Yao Shu-Yu Sun Xiao-Qing Ding Chen-Xi Bi Qian-Kui Zhang Zhao Zheng Cheng-Bin Jin Bo-Quan Li Xue-Qiang Zhang Jia-Qi Huang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第8期644-650,I0014,共8页
Lithium(Li)metal is regarded as a promising anode candidate for high-energy-density rechargeable batteries.Nevertheless,Li metal is highly reactive against electrolytes,leading to rapid decay of active Li metal reserv... Lithium(Li)metal is regarded as a promising anode candidate for high-energy-density rechargeable batteries.Nevertheless,Li metal is highly reactive against electrolytes,leading to rapid decay of active Li metal reservoir.Here,alloying Li metal with low-content magnesium(Mg)is proposed to mitigate the reaction kinetics between Li metal anodes and electrolytes.Mg atoms enter the lattice of Li atoms,forming solid solution due to the low amount(5 wt%)of Mg.Mg atoms mainly concentrate near the surface of Mg-alloyed Li metal anodes.The reactivity of Mg-alloyed Li metal is mitigated kinetically,which results from the electron transfer from Li to Mg atoms due to the electronegativity difference.Based on quantitative experimental analysis,the consumption rate of active Li and electrolytes is decreased by using Mgalloyed Li metal anodes,which increases the cycle life of Li metal batteries under demanding conditions.Further,a pouch cell(1.25 Ah)with Mg-alloyed Li metal anodes delivers an energy density of 340 Wh kg^(-1)and a cycle life of 100 cycles.This work inspires the strategy of modifying Li metal anodes to kinetically mitigate the side reactions with electrolytes. 展开更多
关键词 Lithium metal anodes alloyING Anode/electrolyte interface Reaction kinetics Pouch cell
下载PDF
Relations of Microstructural Attributes and Strength-Ductility of Zirconium Alloys with Hydrides
3
作者 Chao Fang Xiang Guo +1 位作者 Jianghua Li Gang Chen 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2023年第4期407-419,共13页
As the first safety barrier of nuclear reactors,zirconium alloy cladding tubes have attracted extensive attention because of its good mechanical properties.The strength and ductility of zirconium alloy are of great si... As the first safety barrier of nuclear reactors,zirconium alloy cladding tubes have attracted extensive attention because of its good mechanical properties.The strength and ductility of zirconium alloy are of great significance to the service process of cladding tubes,while brittle hydrides precipitate and thus deteriorate the overall performance.Based on the cohesive finite element method,the effects of cohesive strength,interfacial characteristics,and hydrides geometric characteristics on the strength and ductility of two-phase material(zirconium alloy with hydrides)are numerically simulated.The results show that the fracture behavior is significantly affected by the cohesive strength and that the overall strength and ductility are sensitive to the cohesive strength of the zirconium alloy.Furthermore,the interface is revealed to have prominent effects on the overall fracture behavior.When the cohesive strength and fracture energy of the interface are higher than those of the hydride phase,fracture initiates in the hydrides,which is consistent with the experimental phenomena.In addition,it is found that the number density and arrangement of hydrides play important roles in the overall strength and ductility.Our simulation provides theoretical support for the performance analysis of hydrogenated zirconium alloys during nuclear reactor operation. 展开更多
关键词 Zirconium alloy hydridE Strength and ductility Cohesive finite element method Microcrack initiation and propagation
下载PDF
Recent advances on surface metal hydrides studied by solid-state nuclear magnetic resonance spectroscopy
4
作者 Pan Gao Guangjin Hou 《Magnetic Resonance Letters》 2023年第1期31-42,I0003,共13页
Metal hydrides (MeH) on solid surfaces, i.e., surface MeH, are ubiquitous but criticalspecies in heterogeneous catalysis, and their intermediate roles have been proposed innumerous reactions such as (de)hydrogenation ... Metal hydrides (MeH) on solid surfaces, i.e., surface MeH, are ubiquitous but criticalspecies in heterogeneous catalysis, and their intermediate roles have been proposed innumerous reactions such as (de)hydrogenation and alkanes activation, etc., however, thedetailed spectroscopic characterizations remain challenging. Solid-state nuclear magnetic resonance (ssNMR) spectroscopy has become a powerful tool in surface studies, asit provides access to local structural characterizations at atomic level from multipleviews, with comprehensive information on chemical bonding and spatial structures. Inthis review, we summarized and discussed the latest research developments on thesuccessful application of ssNMR to characterize surface MeH species on solid catalystsincluding supported single-site heterogeneous catalysts, bulk metal oxides and metalmodified zeolites. We also discussed the opportunities and challenges in this field, aswell as the potential application/development of state-of-the-art ssNMR technologies toenable further exploration of metal hydrides in heterogeneous catalysis. 展开更多
关键词 metal hydrides Surface chemistry INTERMEDIATE Solid-state NMR Heterogeneous catalysis
下载PDF
FeCoNiCrMo high entropy alloy nanosheets catalyzed magnesium hydride for solid-state hydrogen storage 被引量:1
5
作者 Tao Zhong Haoyu Zhang +4 位作者 Mengchen Song Yiqun Jiang Danhong Shang Fuying Wu Liuting Zhang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2023年第11期2270-2279,共10页
The catalytic effect of FeCoNiCrMo high entropy alloy nanosheets on the hydrogen storage performance of magnesium hydride(MgH_(2))was investigated for the first time in this paper.Experimental results demonstrated tha... The catalytic effect of FeCoNiCrMo high entropy alloy nanosheets on the hydrogen storage performance of magnesium hydride(MgH_(2))was investigated for the first time in this paper.Experimental results demonstrated that 9wt%FeCoNiCrMo doped MgH_(2)started to dehydrogenate at 200℃and discharged up to 5.89wt%hydrogen within 60 min at 325℃.The fully dehydrogenated composite could absorb3.23wt%hydrogen in 50 min at a temperature as low as 100℃.The calculated de/hydrogenation activation energy values decreased by44.21%/55.22%compared with MgH_(2),respectively.Moreover,the composite’s hydrogen capacity dropped only 0.28wt%after 20 cycles,demonstrating remarkable cycling stability.The microstructure analysis verified that the five elements,Fe,Co,Ni,Cr,and Mo,remained stable in the form of high entropy alloy during the cycling process,and synergistically serving as a catalytic union to boost the de/hydrogenation reactions of MgH_(2).Besides,the FeCoNiCrMo nanosheets had close contact with MgH_(2),providing numerous non-homogeneous activation sites and diffusion channels for the rapid transfer of hydrogen,thus obtaining a superior catalytic effect. 展开更多
关键词 hydrogen storage magnesium hydride high entropy alloy nano-sheets CATALYSIS
下载PDF
Nano silica aerogel-induced formation of an organic/alloy biphasic interfacial layer enables construction of stable high-energy lithium metal batteries 被引量:1
6
作者 Chengwei Ma Xinyu Zhang +6 位作者 Chengcai Liu Yuanxing Zhang Yuanshen Wang Ling Liu Zhikun Zhao Borong Wu Daobin Mu 《Green Energy & Environment》 SCIE EI CAS CSCD 2023年第4期1071-1080,共10页
Lithium metal batteries represent promising candidates for high-energy-density batteries, however, many challenges must still be overcome,e.g., interface instability and dendrite growth. In this work, nano silica aero... Lithium metal batteries represent promising candidates for high-energy-density batteries, however, many challenges must still be overcome,e.g., interface instability and dendrite growth. In this work, nano silica aerogel was employed to generate a hybrid film with high lithium ion conductivity(0.6 mS cm^(-1)at room temperature) via an in situ crosslinking reaction. TOF-SIMS profile analysis has revealed conversion mechanism of hybrid film to Li–Si alloy/Li F biphasic interface layer, suggesting that the Li–Si alloy and Li F-rich interface layer promoted rapid Li+transport and shielded the Li anodes from corrosive reactions with electrolyte-derived products. When coupled with nickel-cobalt-manganese-based cathodes, the batteries achieve outstanding capacity retention over 1000 cycles at 1 C. Additionally the developed film coated on Li enabled high coulombic efficiency(99.5%) after long-term cycling when coupled with S cathodes. Overall, the results presented herein confirm an effective strategy for the development of high-energy batteries. 展开更多
关键词 Lithium metal batteries Nano silica aerogel In situ crosslinking Biphasic interface layer Li–Si alloy
下载PDF
Laves phase hydrogen storage alloys for super-high-pressure metal hydride hydrogen compressors 被引量:4
7
作者 GUO Xiumei WANG Shumao LIU Xiaopeng LI Zhinian LU Fang MI Jing HAO Lei JIANG Lijun 《Rare Metals》 SCIE EI CAS CSCD 2011年第3期227-231,共5页
Ti-Cr- and Ti-Mn-based alloys were prepared to be low- and high-pressure stage metals for a double-stage super-high-pressure metal hydride hydrogen compressor. Their crystallographic characteristics and hydrogen stora... Ti-Cr- and Ti-Mn-based alloys were prepared to be low- and high-pressure stage metals for a double-stage super-high-pressure metal hydride hydrogen compressor. Their crystallographic characteristics and hydrogen storage properties were investigated. The alloy pair Ti0.9Zr0.1Mn1.4- Cr0.35V0.2Fe0.05/TiCr1.55Mn0.2Fe0.2 was optimized based on the comprehensive performance of the studied alloys. The product hydrogen with a pressure of 100 MPa could be produced from 4 MPa feed gas when hot oil was used as a heat reservoir. 展开更多
关键词 hydrogen storage alloys hydrides Laves phase compressors HYDROGEN
下载PDF
Some Rare Earth Metallic Organohydrides with Biindenyl as the Ligand 被引量:3
8
作者 GE Yue YUE Zheng-yu +1 位作者 GAO Jin-sheng YAN Peng-fei 《Chemical Research in Chinese Universities》 SCIE CAS CSCD 2001年第3期338-340,共3页
Introduction It is well known that organometallic hydrides of rare earth metals are the catalysts and reducing reagents for the catalysis polymerization of alkenes and the catalysis hydrogenation of alkenoalkynes. The... Introduction It is well known that organometallic hydrides of rare earth metals are the catalysts and reducing reagents for the catalysis polymerization of alkenes and the catalysis hydrogenation of alkenoalkynes. There are four methods for the syntheses of organometallic hydrides of rare earth metals:(1) the thermal atomization of metals, i.e., the interaction of a rare earth metal with alkenes with a terminal alkyne;(2) the Ln—Cσ bond is broken with H;;(3) metal- 展开更多
关键词 Rare earth metallic hydride Indenyl sodium SYNTHESIS Thermogravimetric analysis
下载PDF
The electrochemical characteristics of AB_(4)-type rare earth-Mg-Ni-based superlattice structure hydrogen storage alloys for nickel metal hydride battery 被引量:5
9
作者 Wenfeng Wang Xiaoxue Liu +6 位作者 Lu Zhang Shuang Zhang Wei Guo Yumeng Zhao Hongming zhang Yuan Li Shumin Han 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2021年第6期2039-2048,共10页
Rare earth-Mg-Ni-based alloys with superlattice structures are new generation negative electrode materials for the nickel metal hydride batteries.Among them,the novel AB_(4)-type superlattice structure alloy is suppos... Rare earth-Mg-Ni-based alloys with superlattice structures are new generation negative electrode materials for the nickel metal hydride batteries.Among them,the novel AB_(4)-type superlattice structure alloy is supposed to have superior cycling stability and rate capability.Yet its preparation is hindered by the crucial requirement of temperature and the special composition which is close to the other superlattice structure.Here,we prepare rare earth-Mg-Ni-based alloy and study the phase transformation of alloys to make clear the formation of AB_(4)-type phase.It is found Pr_(5)Co_(19)-type phase is converted from Ce_(5)Co_(19)-type phase and shows good stability at higher temperature compared to the Ce_(5)Co_(19)-type phase in the range of 930-970℃.Afterwards,with further 5℃increasing,AB_(4)-type superlattice structure forms at a temperature of 975℃by consuming Pr_(5)Co_(19)-type phase.In contrast with A_(5)B_(19)-type alloy,AB_(4)-type alloy has superior rate capability owing to the dominant advantages of charge transfer and hydrogen diffusion.Besides,AB_(4)-type alloy shows long lifespan whose capacity retention rates are 89.2%at the 100;cycle and 82.8%at the 200;cycle,respectively.AB_(4)-type alloy delivers 1.53 wt.%hydrogen storage capacity at room temperature and exhibits higher plateau pressure than Pr_(5)Co_(19)-type alloy.The work provides novel AB_(4)-type alloy with preferable electrochemical performance as negative electrode material to inspire the development of nickel metal hydride batteries. 展开更多
关键词 Nickel metal hydride batteries Hydrogen storage alloys AB_(4)-type superlattice structure Electrochemical performance Kinetics properties
下载PDF
Unexpected formation of hydrides in heavy rare earth containing magnesium alloys 被引量:6
10
作者 Yuanding Huang Lei Yang +3 位作者 Sihang You Weimin Gan Karl Ulrich Kainer Norbert Hort 《Journal of Magnesium and Alloys》 SCIE EI CAS 2016年第3期173-180,共8页
Mg–RE(Dy,Gd,Y)alloys show promising for being developed as biodegradable medical applications.It is found that the hydride REH_(2) could be formed on the surface of samples during their preparations with water cleani... Mg–RE(Dy,Gd,Y)alloys show promising for being developed as biodegradable medical applications.It is found that the hydride REH_(2) could be formed on the surface of samples during their preparations with water cleaning.The amount of formed hydrides in Mg–RE alloys is affected by the content of RE and heat treatments.It increases with the increment of RE content.On the surface of the alloy with T4 treatment the amount of formed hydride REH_(2) is higher.In contrast,the amount of REH2 is lower on the surfaces of as-cast and T6-treated alloys.Their formation mechanism is attributed to the surface reaction of Mg–RE alloys with water.The part of RE in solid solution in Mg matrix plays an important role in influencing the formation of hydrides. 展开更多
关键词 Magnesium alloy Microstructure hydridE Heat treatment Rare earths
下载PDF
Study of δ-hydrides in Ti-2Al-2.5Zr and Ti-4Al-2V alloys 被引量:2
11
作者 YU Huang GU Jialin +1 位作者 LIU Qing LIU Yanzhang 《Rare Metals》 SCIE EI CAS CSCD 2006年第1期16-20,共5页
The α alloy Ti-2Al-2.5Zr and near α alloy Ti-4Al-2V were hydrogenated to various levels. The morphology, orientation relation (OR), and habit plane of the hydrides were studied by means of transmission electron mi... The α alloy Ti-2Al-2.5Zr and near α alloy Ti-4Al-2V were hydrogenated to various levels. The morphology, orientation relation (OR), and habit plane of the hydrides were studied by means of transmission electron microscopy (TEM). It was found that in the two alloys most of the precipitates are δ-hydrides which have fcc structure with the lattice parameter a = 0.44 nm. Two basic orientation relationships and habit planes of the precipitates are determined. Twin structure was observed in both alloys. 展开更多
关键词 titanium alloy hydridE orientation relation habit plane twin structure
下载PDF
Understanding the corrosion of Mg alloys in in vitro urinary tract conditions: A step forward towards a biodegradable metallic ureteral stent
12
作者 Margarida Pacheco Ivo M.Aroso +7 位作者 Joana M.Silva Sviatlana V.Lamaka Jan Bohlen Maria Nienaber Dietmar Letzig Estêvão Lima Alexandre A.Barros Rui L.Reis 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2023年第11期4301-4324,共24页
Ureteral stents play a fundamental role in modern time urology. However, following the deployment, stent-related symptoms are frequent and affect patient health and quality of life. Using biodegradable metals as urete... Ureteral stents play a fundamental role in modern time urology. However, following the deployment, stent-related symptoms are frequent and affect patient health and quality of life. Using biodegradable metals as ureteral stent materials have emerged as a promising strategy, mainly due to the improved radial force and slower degradation rate expected. Therefore, this study aimed to characterize different biodegradable metals in urinary tract environment to understand their propensity for future utilization as base materials for ureteral stents. The corrosion of 5 Mg alloys - AZ31, Mg-1Zn, Mg-1Y, pure Mg, and Mg-4Ag - under simulated urinary tract conditions was accessed. The corrosion layer of the different alloys presented common elements, such as Mg(OH)_(2), MgO, and phosphate-containing products, but slight variations in their chemical compositions were detected. The corrosion rate of the different metals varied, which was expected given the differences in the corrosion layers. On top of this, the findings of this study highlighted the significant differences in the samples' corrosion and corrosion layers when in stagnant and flowing conditions. With the results of this study, we concluded that Mg-1Zn and Mg-4Ag presented a higher propensity for localized corrosion, probably due to a less protective corrosion layer;Mg-4Ag corroded faster than all the other four alloys,and Mg-1Y stood out due to its distinct corrosion pattern, that showed to be more homogeneous than all the other four samples, making this one more attractive for the future studies on biodegradable metals. 展开更多
关键词 Biodegradable metals Magnesium alloys Localized corrosion Biodegradable metallic ureteral stent
下载PDF
Microstructure and thermal properties of dissimilar M300–CuCr1Zr alloys by multi-material laser-based powder bed fusion 被引量:1
13
作者 Xiaoshuang Li Dmitry Sukhomlinov Zaiqing Que 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CSCD 2024年第1期118-128,共11页
Multi-material laser-based powder bed fusion (PBF-LB) allows manufacturing of parts with 3-dimensional gradient and additional functionality in a single step. This research focuses on the combination of thermally-cond... Multi-material laser-based powder bed fusion (PBF-LB) allows manufacturing of parts with 3-dimensional gradient and additional functionality in a single step. This research focuses on the combination of thermally-conductive CuCr1Zr with hard M300 tool steel.Two interface configurations of M300 on CuCr1Zr and CuCr1Zr on M300 were investigated. Ultra-fine grains form at the interface due to the low mutual solubility of Cu and steel. The material mixing zone size is dependent on the configurations and tunable in the range of0.1–0.3 mm by introducing a separate set of parameters for the interface layers. Microcracks and pores mainly occur in the transition zone.Regardless of these defects, the thermal diffusivity of bimetallic parts with 50vol% of CuCr1Zr significantly increases by 70%–150%compared to pure M300. The thermal diffusivity of CuCr1Zr and the hardness of M300 steel can be enhanced simultaneously by applying the aging heat treatment. 展开更多
关键词 multi-material additive manufacturing laser-based powder bed fusion thermal diffusivity dissimilar metals copper alloy
下载PDF
New insights on the high-corrosion resistance of UHP Mg-Ge alloys tested in a simulated physiological environment 被引量:1
14
作者 Ting Liu Xingrui Chen +4 位作者 Jeffrey Venezuela Yuan Wang Zhiming Shi Wenyi Chen Matthew Dargusch 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第3期1026-1044,共19页
UHP Mg-Ge alloys was recently found to provide excellent corrosion resistance.This paper provides new insights on the mechanism of improved corrosion resistance of UHP Mg-Ge alloys in Hanks’solution.The studied UHP M... UHP Mg-Ge alloys was recently found to provide excellent corrosion resistance.This paper provides new insights on the mechanism of improved corrosion resistance of UHP Mg-Ge alloys in Hanks’solution.The studied UHP Mg-0.5Ge and UHP Mg-1Ge alloys showed superior corrosion resistance compared to UHP Mg and WE43,with the Mg-1Ge exhibiting the best corrosion performance.The exceptional corrosion resistance of the UHP alloy is attributed to(i)Mg_(2)Ge’s ability to suppress cathodic kinetics,(ii)Ge’s capability to accelerate the formation of a highly passive layer,and the(iii)low amounts of corrosion-accelerating impurities. 展开更多
关键词 UHP Mg-Ge alloy Cathodic kinetics suppression Biodegradable metals In vitro corrosion Magnesium corrosion.
下载PDF
Development of 3D bicontinuous metal-intermetallic composites through subsequent alloying process after liquid metal dealloying
15
作者 Jee Eun Jang Jihye Seong +1 位作者 Soo-Hyun Joo Sung Hyuk Park 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2023年第11期4274-4281,共8页
This study presents a novel process for the fabrication of metal-intermetallic composites with a 3D bicontinuous structure, achieved through a combination of liquid metal dealloying(LMD) and subsequent alloying. Initi... This study presents a novel process for the fabrication of metal-intermetallic composites with a 3D bicontinuous structure, achieved through a combination of liquid metal dealloying(LMD) and subsequent alloying. Initially, porous Ti structures are produced using the LMD process, followed by immersion in a molten Mg-3Al(wt%) metal. Due to the higher thermodynamic miscibility of Al with Ti compared to Mg, the concentration of Al in the Ti matrix increases as the immersion time increases. This results in a sequential phase transition within the Ti matrix: α-Ti → Ti_(3)Al → Ti Al. The phase transition considerably affects the hardness and strength of the composite material,with the Mg-Ti_(3)Al-Ti Al composite exhibiting a maximum hardness nearly twice as high as that of the conventional Mg-Ti composite. This innovative process holds potential for the development of various bicontinuous metal-intermetallic composites. 展开更多
关键词 Liquid metal dealloying Subsequent alloying metal–intermetallic composite 3D bicontinuous structure HARDNESS
下载PDF
Chemical and physical studies of metallic alloy-based old Indian coins with LIBS coupled with multivariate analysis
16
作者 Vikas GUPTA Abhishekh Kumar RAI +3 位作者 Tejmani KUMAR Rajendhar JUNJURI G Manoj KUMAR A K RAI 《Plasma Science and Technology》 SCIE EI CAS CSCD 2023年第9期91-103,共13页
The present work aims to demonstrate the capabilities of Laser-induced Breakdown Spectroscopy(LIBS)coupled with a multivariate technique for rapid quantification and classification of old Indian coins made of various ... The present work aims to demonstrate the capabilities of Laser-induced Breakdown Spectroscopy(LIBS)coupled with a multivariate technique for rapid quantification and classification of old Indian coins made of various alloys.Thirteen old Indian coins in different years of circulation,(1922–1986)were selected for the study.The concentrations were determined by Calibration free LIBS(CF-LIBS)method.The concentration of cuprum(Cu)is negligible,and aluminum(Al)is maximum in the first five coins,and vice-versa in the remaining eight coins.Two different multivariate methods,Principal Component Analysis(PCA)and Soft Independent Modelling of Class Analogy(SIMCA)have been used to classify and identify the coins.PCA classified all thirteen samples into four main alloy categories.The discernment of unknown samples to their probable class membership of alloy was performed using SIMCA.The surface hardness(Brinell hardness number)is linearly correlated with the plasma temperature and LIBS intensity ratios.The sample surface of the first and fifth coin belongs to Al-alloy,having the least surface hardness,and it became harder for Cu–Ni alloy,Ni-brass alloy,and bronze alloy.The hardness of the surface is more for bronze sample twelve.It is also observed that the plasma temperature increases monotonically with the Brinell hardness number.This analysis provides valuable information on fabrication methodology and explains large diversification in the elementary composition of old coins. 展开更多
关键词 LIBS metallic alloy stoichiometric ablation PCA SIMCA old indian coins surface hardness
下载PDF
The Structures and Properties of Y-Substituted Mg2Ni Alloys and Their Hydrides: A First-Principles Study 被引量:1
17
作者 Yuanyuan Li Gaili Sun Yiming Mi 《American Journal of Analytical Chemistry》 2016年第1期67-74,共8页
The structures and properties of Y-substituted Mg<sub>2</sub>Ni alloys and the corresponding hydrides are investigated by a first-principles plane-wave pseudopotential method within density functional theo... The structures and properties of Y-substituted Mg<sub>2</sub>Ni alloys and the corresponding hydrides are investigated by a first-principles plane-wave pseudopotential method within density functional theory. Results show that Mg<sub>2</sub>Ni has the best structural stability when Y atom occupies the Mg(6f) lattice sites. The calculated enthalpies of formation for Mg<sub>2</sub>Ni, Mg<sub>2</sub>NiH<sub>4</sub> and Mg<sub>15</sub>YNi<sub>8</sub>H<sub>32</sub> are -51.612, -64.667 and -62.554 kJ/mol, respectively. It is implied that the substitution of Y alloying destabilizes the stability of the hydrides. Moreover, the dissociated energies of H atoms are decreased significantly, indicating that Y alloying benefits the improvement of the dehydrogenating properties of Mg<sub>2</sub>Ni hydrides. The calculation and analysis of the electronic structures suggest that there is a stronger interaction between H and Ni atoms than the interaction between H and Mg atoms in Mg<sub>2</sub>NiH<sub>4</sub>. However, the Ni-H bond is weakened by the substitution of Y. Therefore, the substitution is an effective technique to decrease the structural stability of the hydrides and benefit for hydrogen storage. 展开更多
关键词 Mg2Ni alloys Y Substitution hydrides FIRST-PRINCIPLES
下载PDF
Ballistic performance of titanium-based layered composites made using blended elemental powder metallurgy and hot isostatic pressing
18
作者 Pavlo Markovsky Jacek Janiszewski +5 位作者 Dmytro Savvakin Oleksandr Stasyuk Bartosz Fikus Victor Samarov Vianey Ellison Sergey V.Prikhodko 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第9期1-14,共14页
Metal matrix composites tiles based on Ti-6Al-4V(Ti64)alloy,reinforced with 10,20,and 40(vol%)of either TiC or TiB particles were made using press-and-sinter blended elemental powder metallurgy(BEPM)and then bonded to... Metal matrix composites tiles based on Ti-6Al-4V(Ti64)alloy,reinforced with 10,20,and 40(vol%)of either TiC or TiB particles were made using press-and-sinter blended elemental powder metallurgy(BEPM)and then bonded together into 3-layer laminated plates using hot isostatic pressing(HIP).The laminates were ballistically tested and demonstrated superior performance.The microstructure and properties of the laminates were analyzed to determine the effect of the BEPM and HIP processing on the ballistic properties of the layered plates.The effect of porosity in sintered composites on further diffusion bonding of the plates during HIP is analyzed to understand the bonding features at the interfaces between different adjacent layers in the laminate.Exceptional ballistic performance of fabricated structures was explained by a significant reduction in the residual porosity of the BEPM products by their additional processing using HIP,which provides an unprecedented increase in the hardness of the layered composites.It is argued that the combination of the used two technologies,BEPM and HIP is principally complimentary for the materials in question with the abilities to solve the essential problems of each used individually. 展开更多
关键词 metal matrix composites Powder metallurgy Titanium hydride powder Master alloy Titanium carbide Titanium boride Hot isostatic pressing Ballistic tests
下载PDF
Understanding the catalysis of chromium trioxide added magnesium hydride for hydrogen storage and Li ion battery applications
19
作者 D.Pukazhselvan IhsanÇaha +3 位作者 Catarina de Lemos Sergey M.Mikhalev Francis Leonard Deepak Duncan Paul Fagg 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第3期1117-1130,共14页
This study explores how the chemical interaction between magnesium hydride(MgH_(2))and the additive CrO_(3) influences the hydrogen/lithium storage characteristics of MgH_(2).We have observed that a 5 wt.%CrO_(3) addi... This study explores how the chemical interaction between magnesium hydride(MgH_(2))and the additive CrO_(3) influences the hydrogen/lithium storage characteristics of MgH_(2).We have observed that a 5 wt.%CrO_(3) additive reduces the dehydrogenation activation energy of MgH_(2) by 68 kJ/mol and lowers the required dehydrogenation temperature by 80℃.CrO_(3) added MgH_(2) was also tested as an anode in an Li ion battery,and it is possible to deliver over 90%of the total theoretical capacity(2038 mAh/g).Evidence for improved reversibility in the battery reaction is found only after the incorporation of additives with MgH_(2).In depth characterization study by X-ray diffraction(XRD)technique provides convincing evidence that the CrO_(3) additive interacts with MgH_(2) and produces Cr/MgO byproducts.Gibbs free energy analyses confirm the thermodynamic feasibility of conversion from MgH_(2)/CrO_(3) to MgO/Cr,which is well supported by the identification of Cr(0)in the powder by X ray photoelectron spectroscopy(XPS)technique.Through high resolution transmission electron microscopy(HRTEM)and energy dispersive spectroscopy(EDS)we found evidence for the presence of 5 nm size Cr nanocrystals on the surface of MgO rock salt nanoparticles.There is also convincing ground to consider that MgO rock salt accommodates Cr in the lattice.These observations support the argument that creation of active metal–metal dissolved rock salt oxide interface may be vital for improving the reactivity of MgH_(2),both for the improved storage of hydrogen and lithium. 展开更多
关键词 Hydrogen storage Rechargeable batteries Binary hydrides metal oxides Catalytic mechanism.
下载PDF
Oxygen variation in titanium powder and metal injection molding
20
作者 Junping Shen Chang Liu +7 位作者 Muhammad Dilawer Hayat Jianan Chen Hanqing Tian Fusheng Xin Gang Chen Fei Yang Mingli Qin Xuanhui Qu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第12期2706-2713,共8页
The control of oxygen is paramount in achieving high-performance titanium(Ti)parts by powder metallurgy such as metal in-jection molding(MIM).In this study,we purposely selected the Ti and Ti-6Al-4V powders as the ref... The control of oxygen is paramount in achieving high-performance titanium(Ti)parts by powder metallurgy such as metal in-jection molding(MIM).In this study,we purposely selected the Ti and Ti-6Al-4V powders as the reference materials since these two are the most representative Ti materials in the industry.Herein,hydride-dehydride(HDH)Ti powders were pre-oxidized to examine the ef-fect of oxygen variation on the characteristics of oxide layer on the particle surface and its resultant color feature.The results indicate that the thickness and Ti oxide level(Ti^(0)→Ti^(4+))of the oxide layer on the HDH Ti powders increased as the oxygen content increased,lead-ing to the transition of color appearance from grey,brown to blue.This work aids in the powder feedstock selection at the initial stage in powder metallurgy.In addition,the development of oxygen content was comprehensively studied during the MIM process using the gas-atomized(GA)Ti-6Al-4V powders.Particularly,the oxygen variation in the form of oxide layer,the change of oxygen content in the powders,and the relevant parts were investigated during the processes of kneading,injection,debinding,and sintering.The oxygen vari-ation was mainly concentrated in the sintering stage,and the content increased with the increase of sintering temperature.The variation of oxygen content during the MIM process demonstrates the crucial role of powder feedstock and sintering stage in controlling oxygen con-tent.This work provides a piece of valuable information on oxygen detecting,control,and manipulation for the powder and processing in the industry of Ti and its alloys by powder metallurgy. 展开更多
关键词 titanium alloys OXYGEN metal injection molding powder metallurgy
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部