The hole defects can easily occur in magnesium alloy castings that are prepared by low pressure lost foam casting(LP-LFC)process when the process parameters such as vacuum,pouring temperature and f illing velocity are...The hole defects can easily occur in magnesium alloy castings that are prepared by low pressure lost foam casting(LP-LFC)process when the process parameters such as vacuum,pouring temperature and f illing velocity are not properly selected.In this study,the forming mechanism of the hole defects in AZ91D magnesium castings by LP-LFC process was investigated.The shape,location and surface appearance of the hole defects were observed using optical microscopy and scanning electron microscopy,and the chemical composition on the surface of the holes was analyzed using energy spectrometer.The result indicates that there are two types of hole defects,i.e.,the pyrolysis products related hole defects,including concentrative hole and blow hole defects,and slag related hole defects.The concentrative hole and the blow-hole defects were formed either by the liquidEPS degradation products entrapped in the molten metal under the condition that the pouring temperature is equal to or lower than 730℃,or by the hindered transport of EPS pyrolysis products.Some irregular shape hole defects were caused by slag or by coating slough entrapment when the pouring temperature is equal to 750℃and the f illing velocity is equal to or greater than 100 mm·s-1.To reduce or eliminate the hole defects,the vacuum and f illing velocity must be properly chosen to ensure that the metal front prof ile exhibits convex shape and in laminar current state,and the pouring temperature should be just high enough to ensure that the molten melt has adequate heat energy to complete the foam pyrolysis and to fully occupy the mould.For AZ91D magnesium castings in this study,the parameters should be 730℃pouring temperature,0.02-0.03 MPa vacuum and 80mm·s-1f illing velocity.展开更多
The influence of a key process variable on the mold filling characteristics of AZ91 Mg-alloy was studied in the low pressure EPC process.The applied flow quantity of insert gas from 1 to 5 m~3/h associated with the pr...The influence of a key process variable on the mold filling characteristics of AZ91 Mg-alloy was studied in the low pressure EPC process.The applied flow quantity of insert gas from 1 to 5 m~3/h associated with the pressurizing rate in the low pressure EPC casting process was considered for rectangle and L-shape plate casting. The experimental results show that there is an optimal flow quantity of insert gas for good mold filling characteristics in AZ91 Mg-alloy low-pressure EPC process. The optimal flow quantity of insert gas for the specimens is 3 to 4 m~3/h. Either less or higher than the optimal flow quantity of insert gas would lead to misrun defects or folds, blisters and porosity defects. The practice of hub casting confirmed that the low-pressure EPC process with an optimal processing variable exemplified as 4 m~3/h gas flow quantity was capable of producing complicated magnesium castings without misrun defects.展开更多
A newly developed low-pressure expendable pattern casting (LP-EPC) process was introduced and its basic principles or effect factors were further analyzed. According to theoretical calculation and experimental results...A newly developed low-pressure expendable pattern casting (LP-EPC) process was introduced and its basic principles or effect factors were further analyzed. According to theoretical calculation and experimental results, the major casting parameters that are of great and critical importance on the process include pressure and flux of filling gas, decomposition characteristic and density of foam pattern, thickness and permeability of coating, pouring temperature, vacuum degree and their combination. Most of casting defects can be effectively avoided by choosing the suitable parameters. The success achieved in pouring motor housing and exhaust manifold castings demonstrates the advantages of LP-EPC process in the production of high-complicated castings with high dimension accuracy.展开更多
基金financially supported by the National High Technology Research and Development Program of China(Project No.2007AA03Z113)the Zhejiang Province Natural Science Foundation of China(Project Nos.LY12E05015 and Y1110106)
文摘The hole defects can easily occur in magnesium alloy castings that are prepared by low pressure lost foam casting(LP-LFC)process when the process parameters such as vacuum,pouring temperature and f illing velocity are not properly selected.In this study,the forming mechanism of the hole defects in AZ91D magnesium castings by LP-LFC process was investigated.The shape,location and surface appearance of the hole defects were observed using optical microscopy and scanning electron microscopy,and the chemical composition on the surface of the holes was analyzed using energy spectrometer.The result indicates that there are two types of hole defects,i.e.,the pyrolysis products related hole defects,including concentrative hole and blow hole defects,and slag related hole defects.The concentrative hole and the blow-hole defects were formed either by the liquidEPS degradation products entrapped in the molten metal under the condition that the pouring temperature is equal to or lower than 730℃,or by the hindered transport of EPS pyrolysis products.Some irregular shape hole defects were caused by slag or by coating slough entrapment when the pouring temperature is equal to 750℃and the f illing velocity is equal to or greater than 100 mm·s-1.To reduce or eliminate the hole defects,the vacuum and f illing velocity must be properly chosen to ensure that the metal front prof ile exhibits convex shape and in laminar current state,and the pouring temperature should be just high enough to ensure that the molten melt has adequate heat energy to complete the foam pyrolysis and to fully occupy the mould.For AZ91D magnesium castings in this study,the parameters should be 730℃pouring temperature,0.02-0.03 MPa vacuum and 80mm·s-1f illing velocity.
文摘The influence of a key process variable on the mold filling characteristics of AZ91 Mg-alloy was studied in the low pressure EPC process.The applied flow quantity of insert gas from 1 to 5 m~3/h associated with the pressurizing rate in the low pressure EPC casting process was considered for rectangle and L-shape plate casting. The experimental results show that there is an optimal flow quantity of insert gas for good mold filling characteristics in AZ91 Mg-alloy low-pressure EPC process. The optimal flow quantity of insert gas for the specimens is 3 to 4 m~3/h. Either less or higher than the optimal flow quantity of insert gas would lead to misrun defects or folds, blisters and porosity defects. The practice of hub casting confirmed that the low-pressure EPC process with an optimal processing variable exemplified as 4 m~3/h gas flow quantity was capable of producing complicated magnesium castings without misrun defects.
基金This research work is sponsored and supported by the NationalNatural Science Foundation of China. The item number is50275058
文摘A newly developed low-pressure expendable pattern casting (LP-EPC) process was introduced and its basic principles or effect factors were further analyzed. According to theoretical calculation and experimental results, the major casting parameters that are of great and critical importance on the process include pressure and flux of filling gas, decomposition characteristic and density of foam pattern, thickness and permeability of coating, pouring temperature, vacuum degree and their combination. Most of casting defects can be effectively avoided by choosing the suitable parameters. The success achieved in pouring motor housing and exhaust manifold castings demonstrates the advantages of LP-EPC process in the production of high-complicated castings with high dimension accuracy.