Non-metallic inclusions and zyglo indications frequently occur in the superalloy castings produced through the traditional vacuum gravity investment casting process,particularly in components with thin-walled and comp...Non-metallic inclusions and zyglo indications frequently occur in the superalloy castings produced through the traditional vacuum gravity investment casting process,particularly in components with thin-walled and complex structural features.The vacuum-assisted low-pressure casting(VLC),a type of counter-gravity casting(CGC)method,has been developed to minimize non-metallic inclusions and zyglo indications in superalloy castings.Rectifying frames for gas turbines made from K446 alloy were produced semi-continuously using the VLC process and subsequently evaluated through tensile testing,chemical composition analysis,X-ray diffraction,and zyglo penetrant inspection.The results indicate a roughly 10%improvement in tensile strength at 800℃ compared to gravity casting.Moreover,no significant changes are observed in the chemical composition of the alloys from the beginning to the end of a casting campaign,indicating that the developed VLC process is viable for the engineering-scale production of superalloy castings.Compared to traditional vacuum gravity casting(GC)method,the application of VLC can reduce the numbers of non-metallic inclusions and Zyglo indications in the castings by over 80%.At the same time,it significantly shortens the production time by 3 to 5 days.展开更多
During the low-pressure casting of extra-large size C95800 copper alloy components,traditional linear pressurization technique leads to a rapid surge of liquid metal inlet velocity at the regions where the mold cavity...During the low-pressure casting of extra-large size C95800 copper alloy components,traditional linear pressurization technique leads to a rapid surge of liquid metal inlet velocity at the regions where the mold cavity cross-section enlarges.This rapid increasement of liquid metal inlet velocity causes serious entrapment of gas and oxide films,and results in various casting defects such as the bifilm defects.These defects detrimentally deteriorate mechanical properties of the castings.To address this issue,an innovative nonlinear pressurization strategy timely matching to the casting structure was proposed.The pressurization rate decreases at sections where the cross-section widens,but it gradually increases as the liquid metal level rises.By this way,the inlet velocity remains below a critical threshold to prevent the entrapment of gas and oxide films.Comparative analyses involving numerical simulations and casting verification illustrate that the nonlinear pressurization technique,compared to the linear pressurization,effectively diminishes both the size and number of bifilm defects.Furthermore,the nonlinear pressurization method enhances the casting yield strength by 10%,tensile strength by 14%,and elongation by 10%.Examination through scanning electron microscopy highlights that the bifilm defects arising from the linear pressurization process result in the reduction of the castings’mechanical properties.These observations underscore the efficacy of nonlinear pressurization in enhancing the quality and reliability of gigantic castings,as exemplified by a 5.4-ton extra-large sized C95800 copper alloy propeller hub with complex structures in the current study.展开更多
The hole defects can easily occur in magnesium alloy castings that are prepared by low pressure lost foam casting(LP-LFC)process when the process parameters such as vacuum,pouring temperature and f illing velocity are...The hole defects can easily occur in magnesium alloy castings that are prepared by low pressure lost foam casting(LP-LFC)process when the process parameters such as vacuum,pouring temperature and f illing velocity are not properly selected.In this study,the forming mechanism of the hole defects in AZ91D magnesium castings by LP-LFC process was investigated.The shape,location and surface appearance of the hole defects were observed using optical microscopy and scanning electron microscopy,and the chemical composition on the surface of the holes was analyzed using energy spectrometer.The result indicates that there are two types of hole defects,i.e.,the pyrolysis products related hole defects,including concentrative hole and blow hole defects,and slag related hole defects.The concentrative hole and the blow-hole defects were formed either by the liquidEPS degradation products entrapped in the molten metal under the condition that the pouring temperature is equal to or lower than 730℃,or by the hindered transport of EPS pyrolysis products.Some irregular shape hole defects were caused by slag or by coating slough entrapment when the pouring temperature is equal to 750℃and the f illing velocity is equal to or greater than 100 mm·s-1.To reduce or eliminate the hole defects,the vacuum and f illing velocity must be properly chosen to ensure that the metal front prof ile exhibits convex shape and in laminar current state,and the pouring temperature should be just high enough to ensure that the molten melt has adequate heat energy to complete the foam pyrolysis and to fully occupy the mould.For AZ91D magnesium castings in this study,the parameters should be 730℃pouring temperature,0.02-0.03 MPa vacuum and 80mm·s-1f illing velocity.展开更多
The influence of a key process variable on the mold filling characteristics of AZ91 Mg-alloy was studied in the low pressure EPC process.The applied flow quantity of insert gas from 1 to 5 m~3/h associated with the pr...The influence of a key process variable on the mold filling characteristics of AZ91 Mg-alloy was studied in the low pressure EPC process.The applied flow quantity of insert gas from 1 to 5 m~3/h associated with the pressurizing rate in the low pressure EPC casting process was considered for rectangle and L-shape plate casting. The experimental results show that there is an optimal flow quantity of insert gas for good mold filling characteristics in AZ91 Mg-alloy low-pressure EPC process. The optimal flow quantity of insert gas for the specimens is 3 to 4 m~3/h. Either less or higher than the optimal flow quantity of insert gas would lead to misrun defects or folds, blisters and porosity defects. The practice of hub casting confirmed that the low-pressure EPC process with an optimal processing variable exemplified as 4 m~3/h gas flow quantity was capable of producing complicated magnesium castings without misrun defects.展开更多
A newly developed low-pressure expendable pattern casting (LP-EPC) process was introduced and its basic principles or effect factors were further analyzed. According to theoretical calculation and experimental results...A newly developed low-pressure expendable pattern casting (LP-EPC) process was introduced and its basic principles or effect factors were further analyzed. According to theoretical calculation and experimental results, the major casting parameters that are of great and critical importance on the process include pressure and flux of filling gas, decomposition characteristic and density of foam pattern, thickness and permeability of coating, pouring temperature, vacuum degree and their combination. Most of casting defects can be effectively avoided by choosing the suitable parameters. The success achieved in pouring motor housing and exhaust manifold castings demonstrates the advantages of LP-EPC process in the production of high-complicated castings with high dimension accuracy.展开更多
基金financially supported by the National Key Research and Development Plan Project of the Ministry of Science and Technology:Intelligent Liquid Precision Casting Technology and Application of Large Complex Thin-Wall High-End Metal Components(No.2022YFB3706800).
文摘Non-metallic inclusions and zyglo indications frequently occur in the superalloy castings produced through the traditional vacuum gravity investment casting process,particularly in components with thin-walled and complex structural features.The vacuum-assisted low-pressure casting(VLC),a type of counter-gravity casting(CGC)method,has been developed to minimize non-metallic inclusions and zyglo indications in superalloy castings.Rectifying frames for gas turbines made from K446 alloy were produced semi-continuously using the VLC process and subsequently evaluated through tensile testing,chemical composition analysis,X-ray diffraction,and zyglo penetrant inspection.The results indicate a roughly 10%improvement in tensile strength at 800℃ compared to gravity casting.Moreover,no significant changes are observed in the chemical composition of the alloys from the beginning to the end of a casting campaign,indicating that the developed VLC process is viable for the engineering-scale production of superalloy castings.Compared to traditional vacuum gravity casting(GC)method,the application of VLC can reduce the numbers of non-metallic inclusions and Zyglo indications in the castings by over 80%.At the same time,it significantly shortens the production time by 3 to 5 days.
基金supported by the National Natural Science Foundation of China(Granted Nos.51827801,52371152)the Foundation of National Key Laboratory of Precision Hot Processing of Metals(Granted No.DCQQ2790100724).
文摘During the low-pressure casting of extra-large size C95800 copper alloy components,traditional linear pressurization technique leads to a rapid surge of liquid metal inlet velocity at the regions where the mold cavity cross-section enlarges.This rapid increasement of liquid metal inlet velocity causes serious entrapment of gas and oxide films,and results in various casting defects such as the bifilm defects.These defects detrimentally deteriorate mechanical properties of the castings.To address this issue,an innovative nonlinear pressurization strategy timely matching to the casting structure was proposed.The pressurization rate decreases at sections where the cross-section widens,but it gradually increases as the liquid metal level rises.By this way,the inlet velocity remains below a critical threshold to prevent the entrapment of gas and oxide films.Comparative analyses involving numerical simulations and casting verification illustrate that the nonlinear pressurization technique,compared to the linear pressurization,effectively diminishes both the size and number of bifilm defects.Furthermore,the nonlinear pressurization method enhances the casting yield strength by 10%,tensile strength by 14%,and elongation by 10%.Examination through scanning electron microscopy highlights that the bifilm defects arising from the linear pressurization process result in the reduction of the castings’mechanical properties.These observations underscore the efficacy of nonlinear pressurization in enhancing the quality and reliability of gigantic castings,as exemplified by a 5.4-ton extra-large sized C95800 copper alloy propeller hub with complex structures in the current study.
基金financially supported by the National High Technology Research and Development Program of China(Project No.2007AA03Z113)the Zhejiang Province Natural Science Foundation of China(Project Nos.LY12E05015 and Y1110106)
文摘The hole defects can easily occur in magnesium alloy castings that are prepared by low pressure lost foam casting(LP-LFC)process when the process parameters such as vacuum,pouring temperature and f illing velocity are not properly selected.In this study,the forming mechanism of the hole defects in AZ91D magnesium castings by LP-LFC process was investigated.The shape,location and surface appearance of the hole defects were observed using optical microscopy and scanning electron microscopy,and the chemical composition on the surface of the holes was analyzed using energy spectrometer.The result indicates that there are two types of hole defects,i.e.,the pyrolysis products related hole defects,including concentrative hole and blow hole defects,and slag related hole defects.The concentrative hole and the blow-hole defects were formed either by the liquidEPS degradation products entrapped in the molten metal under the condition that the pouring temperature is equal to or lower than 730℃,or by the hindered transport of EPS pyrolysis products.Some irregular shape hole defects were caused by slag or by coating slough entrapment when the pouring temperature is equal to 750℃and the f illing velocity is equal to or greater than 100 mm·s-1.To reduce or eliminate the hole defects,the vacuum and f illing velocity must be properly chosen to ensure that the metal front prof ile exhibits convex shape and in laminar current state,and the pouring temperature should be just high enough to ensure that the molten melt has adequate heat energy to complete the foam pyrolysis and to fully occupy the mould.For AZ91D magnesium castings in this study,the parameters should be 730℃pouring temperature,0.02-0.03 MPa vacuum and 80mm·s-1f illing velocity.
文摘The influence of a key process variable on the mold filling characteristics of AZ91 Mg-alloy was studied in the low pressure EPC process.The applied flow quantity of insert gas from 1 to 5 m~3/h associated with the pressurizing rate in the low pressure EPC casting process was considered for rectangle and L-shape plate casting. The experimental results show that there is an optimal flow quantity of insert gas for good mold filling characteristics in AZ91 Mg-alloy low-pressure EPC process. The optimal flow quantity of insert gas for the specimens is 3 to 4 m~3/h. Either less or higher than the optimal flow quantity of insert gas would lead to misrun defects or folds, blisters and porosity defects. The practice of hub casting confirmed that the low-pressure EPC process with an optimal processing variable exemplified as 4 m~3/h gas flow quantity was capable of producing complicated magnesium castings without misrun defects.
基金This research work is sponsored and supported by the NationalNatural Science Foundation of China. The item number is50275058
文摘A newly developed low-pressure expendable pattern casting (LP-EPC) process was introduced and its basic principles or effect factors were further analyzed. According to theoretical calculation and experimental results, the major casting parameters that are of great and critical importance on the process include pressure and flux of filling gas, decomposition characteristic and density of foam pattern, thickness and permeability of coating, pouring temperature, vacuum degree and their combination. Most of casting defects can be effectively avoided by choosing the suitable parameters. The success achieved in pouring motor housing and exhaust manifold castings demonstrates the advantages of LP-EPC process in the production of high-complicated castings with high dimension accuracy.