We demonstrate high-performance broadband tunable external-cavity lasers(ECLs) with the metal-organic chemical vapor deposition(MOCVD) grown In As/In P quantum dots(QDs) structures. Without cavity facet coatings, the ...We demonstrate high-performance broadband tunable external-cavity lasers(ECLs) with the metal-organic chemical vapor deposition(MOCVD) grown In As/In P quantum dots(QDs) structures. Without cavity facet coatings, the 3-d B spectral bandwidth of the Fabry–Perot(FP) laser is approximately 10.8 nm, while the tuning bandwidth of ECLs is 45 nm.Combined with the anti-reflection(AR)/high-reflection(HR) facet coating, a 92 nm bandwidth tuning range has been obtained with the wavelength covering from 1414 nm to 1506 nm. In most of the tuning range, the threshold current density is lower than 1.5 k A/cm2. The maximum output power of 6.5 m W was achieved under a 500 m A injection current.All achievements mentioned above were obtained under continuous-wave(CW) mode at room temperature(RT).展开更多
Nonalloyed ohmic contacts regrown by metal-organic chemical vapor deposition are performed on AlGaN/GaN high-electron-mobility transistors. Low ohmic contact resistance of 0.15Ω.mm is obtained. It is found that the s...Nonalloyed ohmic contacts regrown by metal-organic chemical vapor deposition are performed on AlGaN/GaN high-electron-mobility transistors. Low ohmic contact resistance of 0.15Ω.mm is obtained. It is found that the sidewall obliquity near the regrown interface induced by the plasma dry etching has great influence on the total contact resistance. The fabricated device with a 100-nm T-shaped gate demonstrates a maximum drain current density of 0.95 A/mm at Vgs = 1 V and a maximum peak extrinsic transcondutance Gm of 216mS/ram. Moreover, a current gain cut-off frequency fT of 115 GHz and a maximum oscillation frequency fmax of 127 GHz are achieved.展开更多
GaSb quantum dots have been widely applied in optoelectronic devices due to its unique electrical and optical properties.The effects of metal-organic chemical vapor deposition(MOCVD) parameters,such as growth temper...GaSb quantum dots have been widely applied in optoelectronic devices due to its unique electrical and optical properties.The effects of metal-organic chemical vapor deposition(MOCVD) parameters,such as growth temperature and vapour V/Ⅲ ratio[V/Ⅲ ratio means the molar ratio of trimethylgallium(TMGa) and triethylantimony(TESb)],were systematically investigated to achieve GaSb quantum dots with high quality and high density.The features of surface morphology of uncapped GaSb quantum dots were characterized by atomic force microscope(AFM) images.The results show that the surface morphologies of quantum dots are strongly dependent on growth temperature and vapour V/Ⅲ ratio.GaSb quantum dots with an average height of 4.94 nm and a density of 2.45× 1010 cm-2 were obtained by optimizing growth temperature and V/Ⅲ ratio.展开更多
ZnO thin films were grown on Si (111) substrates by low-pressure metal-organic chemical vapor deposition. The crystal structures and electrical properties of as-grown sample were investigated by scanning electron mi...ZnO thin films were grown on Si (111) substrates by low-pressure metal-organic chemical vapor deposition. The crystal structures and electrical properties of as-grown sample were investigated by scanning electron microscopy (SEM) and conductive atomic force microscopy (C-AFM). It can be seen that with increasing growth temperature, the surface morphology of ZnO thin films changed from flake-like to cobblestones-like structure. The current maps were simultaneously recorded with the topography, which was gained by C-AFM contact mode. Conductivity for the off-axis facet planes presented on ZnO grains enhanced. Measurement results indicate that the off-axis facet planes were more electrically active than the c-plane of ZnO flakes or particles probably due to lower Schottky barrier height of the off-axis facet planes.展开更多
This study focused on the investigation of the edge effect of diamond films deposited by microwave plasma chemical vapor de-position.Substrate bulge height△h is a factor that affects the edge effect,and it was used t...This study focused on the investigation of the edge effect of diamond films deposited by microwave plasma chemical vapor de-position.Substrate bulge height△h is a factor that affects the edge effect,and it was used to simulate plasma and guide the diamond-film deposition experiments.Finite-element software COMSOL Multiphysics was used to construct a multiphysics(electromagnetic,plasma,and fluid heat transfer fields)coupling model based on electron collision reaction.Raman spectroscopy and scanning electron microscopy were performed to characterize the experimental growth and validate the model.The simulation results reflected the experimental trends observed.Plasma discharge at the edge of the substrate accelerated due to the increase in△h(△h=0-3 mm),and the values of electron density(n_(c)),molar concentration of H(C_(H)),and molar concentration of CH_(3)(C_(CH_(3)))doubled at the edge(for the special concave sample with△h=−1 mm,the active chemical groups exhibited a decreased molar concentration at the edge of the substrate).At=0-3 mm,a high diamond growth rate and a large diamond grain size were observed at the edge of the substrate,and their values increased with.The uniformity of film thickness decreased with.The Raman spectra of all samples revealed the first-order characteristic peak of dia-mond near 1332 cm^(−1).When△h=−1 mm,tensile stress occurred in all regions of the film.When△h=1-3 mm,all areas in the film ex-hibited compressive stress.展开更多
Graphene(Gr)has unique properties including high electrical conductivity;Thus,graphene/copper(Gr/Cu)composites have attracted increasing attention to replace traditional Cu for electrical applications. However,the pro...Graphene(Gr)has unique properties including high electrical conductivity;Thus,graphene/copper(Gr/Cu)composites have attracted increasing attention to replace traditional Cu for electrical applications. However,the problem of how to control graphene to form desired Gr/Cu composite is not well solved. This paper aims at exploring the best parameters for preparing graphene with different layers on Cu foil by chemical vapor deposition(CVD)method and studying the effects of different layers graphene on Gr/Cu composite’s electrical conductivity. Graphene grown on single-sided and double-sided copper was prepared for Gr/Cu and Gr/Cu/Gr composites. The resultant electrical conductivity of Gr/Cu composites increased with decreasing graphene layers and increasing graphene volume fraction. The Gr/Cu/Gr composite with monolayer graphene owns volume fraction of less than 0.002%,producing the best electrical conductivity up to59.8 ×10^(6)S/m,equivalent to 104.5% IACS and 105.3% pure Cu foil.展开更多
In this paper we report that the GaN thin film is grown by metal-organic chemical vapour deposition on a sapphire (0001) substrate with double A1N buffer layers. The buffer layer consists of a low-temperature (LT)...In this paper we report that the GaN thin film is grown by metal-organic chemical vapour deposition on a sapphire (0001) substrate with double A1N buffer layers. The buffer layer consists of a low-temperature (LT) A1N layer and a high-temperature (HT) A1N layer that are grown at 600 ℃ and 1000 ℃, respectively. It is observed that the thickness of the LT-A1N layer drastically influences the quality of GaN thin film, and that the optimized 4.25-min-LT-A1N layer minimizes the dislocation density of GaN thin film. The reason for the improved properties is discussed in this paper.展开更多
ZnO thin films were grown on GaAs (001) substrates by metal-organic chemical vapor deposition (MOCVD) at low temperatures ranging from 100 to 400℃. DEZn and 1-12 O were used as the zinc precursor and oxygen precu...ZnO thin films were grown on GaAs (001) substrates by metal-organic chemical vapor deposition (MOCVD) at low temperatures ranging from 100 to 400℃. DEZn and 1-12 O were used as the zinc precursor and oxygen precursor, respectively. The effects of the growth temperatures on the growth characteristics and optical properties of ZnO films were investigated. The X-ray diffraction measurement (XRD) results indicated that all the thin films were grown with highly c- axis orientation. The surface morphologies and crystal properties of the films were critically dependent on the growth temperatures. Although there was no evidence of epitaxial growth, the scanning electron microscopy (SEM) image of ZnO film grown at 400℃ revealed the presence of ZnO microcrystallines with closed packed hexagon structure. The photoluminescence spectrum at room temperature showed only bright band-edge (3. 33eV) emissions with little or no deep-level e- mission related to defects.展开更多
Viscose activated carbon fibers (ACFs) were characterized using specific surface area, scanning electron modified with chemical vapor deposition (CVD). The samples were microscopy (SEM), pore size distribution a...Viscose activated carbon fibers (ACFs) were characterized using specific surface area, scanning electron modified with chemical vapor deposition (CVD). The samples were microscopy (SEM), pore size distribution and Fourier transform infrared spectroscopy (FTIR). Batch adsorption experiments were carried out to investigate the adsorption behavior of modified ACFs for methyl orange(MO) from its aqueous solutions. The results show that the adsorption isotherms of MO onto modified ACFs well follows the Langmuir isotherm equation. The adsorption kinetics of MO can be well described by the pseudo second-order kinetic model. The adsorption process involves the intra-particle diffusion, but is not the only rate-controlling step. Thermodynamic parameters including AG, AH and AS were calculated, suggesting that the adsorption of MO onto modified ACFs is a spontaneous, exothermic and physisorption process. FTIR result indicates that the major adsorption mechanism of modified ACFs for MO is hydrogen bond.展开更多
A versatile metal-organic chemical vapor deposition (MOCVD) system was designed and constructed. Copper films were deposited on silicon (100) substrates by chemical vapor deposition (CVD) using Cu(hfac)2 as a ...A versatile metal-organic chemical vapor deposition (MOCVD) system was designed and constructed. Copper films were deposited on silicon (100) substrates by chemical vapor deposition (CVD) using Cu(hfac)2 as a precursor. The growth of Cu nucleus on silicon substrates by H2 reduction of Cu(hfac)2 was studied by atomic force microscopy and scanning electron microscopy. The growth mode of Cu nucleus is initially Volmer-Weber mode (island), and then transforms to Stranski-Rastanov mode (layer-by-layer plus island). The mechanism of Cu nucleation on silicon (100) substrates was further investigated by X-ray photoelectron spectroscopy. From Cu2p, O1s, F1s, Si2p patterns, the observed C=O, OH and CF3/CF2 should belong to Cu(hfac) formed by the thermal dissociation of Cu(hfac)2. H2 reacts with hfac on the surface, producing OH. With its accumulation, OH reacts with hfac, forming HO-hfac, and desorbs, meanwhile, the copper oxide is reduced, and thus the redox reaction between Cu(hafc)2 and H2 occurs.展开更多
We report on the growth and fabrication of nonpolar a-plane light emitting diodes with an in-situ SiNx interlayer grown between the undoped a-plane GaN buffer and Si-doped GaN layer. X-ray diffraction shows that the c...We report on the growth and fabrication of nonpolar a-plane light emitting diodes with an in-situ SiNx interlayer grown between the undoped a-plane GaN buffer and Si-doped GaN layer. X-ray diffraction shows that the crystalline quality of the GaN buffer layer is greatly improved with the introduction of the SiNx interlayer. The electrical properties are also improved. For example, electron mobility and sheet resistance are reduced from high resistance to 31.6 cm2/(V· s) and 460 Ω/respectively. Owing to the significant effect of the SiNx interlayer, a-plane LEDs are realized. Electrolurninescence of a nonpolar a-plane light-emitting diode with a wavelength of 488nm is demonstrated. The emission peak remains constant when the injection current increases to over 20 mA.展开更多
Photoluminescence (PL) and lasing properties of InAs/GaAs quantum dots (QDs) with different growth procedures prepared by metalorganic chemical vapour deposition are studied. PL measurements show that the low grow...Photoluminescence (PL) and lasing properties of InAs/GaAs quantum dots (QDs) with different growth procedures prepared by metalorganic chemical vapour deposition are studied. PL measurements show that the low growth rate QD sample has a larger PL intensity and a narrower PL line width than the high growth rate sample. During rapid thermal annealing, however, the low growth rate sample shows a greater blueshift of PL peak wavelength. This is caused by the larger InAs layer thickness which results from the larger 2-3 dimensional transition critical layer thickness for the QDs in the low-growth-rate sample. A growth technique including growth interruption and in-situ annealing, named indium flush method, is used during the growth of GaAs cap layer, which can flatten the GaAs surface effectively. Though the method results in a blueshift of PL peak wavelength and a broadening of PL line width, it is essential for the fabrication of room temperature working QD lasers.展开更多
Metal-organic chemical vapor deposition (MOCVD) grown ferromagnetic GaMnN films are investigated by photo- luminescence (PL) measurement with a mid-gap excitation wavelength of 405 nm. A sharp PL peak at 1.8 eV is...Metal-organic chemical vapor deposition (MOCVD) grown ferromagnetic GaMnN films are investigated by photo- luminescence (PL) measurement with a mid-gap excitation wavelength of 405 nm. A sharp PL peak at 1.8 eV is found and the PL intensity successively decreases with the addition of Mn, in which the Mn concentration of sample A is below 1% ([Mn]A =0.75%) but its PL intensity is stronger than other samples'. The 1.8-eV PL peak is attributed to the recombination of electrons in the t2 state of the neutral Mn3+ acceptor with holes in the valence band. With Mn concentration increasing, the intensity of the PL peak decreases and the magnetic increment reduces in our samples. The correlation between the PL peak intensity and ferromagnetism of the samples is discussed in combination with the experimental results.展开更多
Ternary Ti-B-N coatings were synthesized on AISI 304 and Si wafer by plasma-enhanced chemical vapor deposition (PECVD) technique using a gaseous mixture of TiCl4,BCl3,H2,N2,and Ar.By virtue of X-ray diffraction analys...Ternary Ti-B-N coatings were synthesized on AISI 304 and Si wafer by plasma-enhanced chemical vapor deposition (PECVD) technique using a gaseous mixture of TiCl4,BCl3,H2,N2,and Ar.By virtue of X-ray diffraction analysis,X-ray photoelectron spectroscopy,scanning electron microscope,and high-resolution transmission electron microscope,the influences of B content on the microstructure and properties of Ti B N coatings were investigated systematically.The results indicated that the microstructure and mechanical properties of Ti-B-N coatings largely depend on the transformation from FCC-TiN phase to HCP-TiB2 phase.With increasing B content and decreasing N content in the coatings,the coating microstructure evolves gradually from FCC-TiN/a-BN to HCP-TiB2 /a-BN via FCC-TiN+HCP-TiB2/a-BN.The highest microhardness of about 34 GPa is achieved,which corresponds to the nanocomposite Ti-63%B-N (mole fraction) coating consisting of the HCP-TiB2 nano-crystallites and amorphous BN phase.The lowest friction-coefficient was observed for the nanocomposite Ti-41%B-N (mole fraction) coating consisting of the FCC-TiN nanocrystallites and amorphous BN展开更多
High quality TiC whiskers have been prepared by a modified chemical vapor deposition (CVD) method using TiCl4 and CH4 as reactant gases and Ni as substrate. The deposition temperature and gas flow mies have ampreciabl...High quality TiC whiskers have been prepared by a modified chemical vapor deposition (CVD) method using TiCl4 and CH4 as reactant gases and Ni as substrate. The deposition temperature and gas flow mies have ampreciable effect on the whisker growth.The whisker orientations and morphology are determined by X-my diffraction (XRD),scanning electron micmpmph (SEM) and transmission electron microgmph (TEM).In addition to the spherical tips, spiral growth microsteps and obvious terraces are observed at the tips and side faces of whiskers in the present eoperiment. The whiskers grow mostly along (100) direction. The whisker growth mechanism is discussed in detail.展开更多
Various methods for production of polysilicon have been proposed for lowering the production cost andenergy consumption, and enhancing productivity, which are critical for industrial applications. The fluidized bed ch...Various methods for production of polysilicon have been proposed for lowering the production cost andenergy consumption, and enhancing productivity, which are critical for industrial applications. The fluidized bed chemical vapor deposition (FBCVD) method is a most promising alternative to conventional ones, but the homogeneous reaction of silane in FBCVD results in unwanted formation of fines, which will affect the product qualityand output. There are some other problems, such as heating degeneration due to undesired polysilicon deposition on the walls of the reactor and the heater. This article mainly reviews the technological development on FBCVD of polycrystalline silicon and the research status for solving the above problems. It also identifies a number of challenges to tackle and principles should be followed in the design ofa FBCVD reactor.展开更多
Two-dimensional transition metal dichalcogenides heterostructures have stimulated wide in- terest not only for the fundamental research, but also for the application of next generation electronic and optoelectronic de...Two-dimensional transition metal dichalcogenides heterostructures have stimulated wide in- terest not only for the fundamental research, but also for the application of next generation electronic and optoelectronic devices. Herein, we report a successful two-step chemical vapor deposition strategy to construct vertically stacked van der Waals epitaxial In2Se3/MoSe2 heterostructures. Transmission electron microscopy characterization reveals clearly that the In2Se3 has well-aligned lattice orientation with the substrate of monolayer MoSe2. Due to the interaction between the In2Se3 and MoSe2 layers, the heterostructure shows the quench- ing and red-shift of photoluminescence. Moreover, the current rectification behavior and photovoltaic effect can be observed from the heterostructure, which is attributed to the unique band structure alignment of the heterostructure, and is further confirmed by Kevin probe force microscopy measurement. The synthesis approach via van der Waals epitaxy in this work can expand the way to fabricate a variety of two-dimensional heterostructures for potential applications in electronic and optoelectronic devices.展开更多
Fe-Si ribbons and thin sheets with 6.5%Si content were prepared by means of the single roller rapid solidification and chemical vapor deposition (CVD), respectively. The initial textures of rapidly solidified Fe-6.5%S...Fe-Si ribbons and thin sheets with 6.5%Si content were prepared by means of the single roller rapid solidification and chemical vapor deposition (CVD), respectively. The initial textures of rapidly solidified Fe-6.5%Si ribbons were characteristic of the {100} fiber-type, which became weakened during primary recrystallization in various atmospheres. At the stage of secondary recrystallization, the {100} texture formed in Ar and the {110} texture in hydrogen, while there occurred a texture transformation from the {100} type to the {110} type in vacuum with the increase of annealing temperature. For Fe-6.5%Si sheets prepared by Si deposition in cold-rolled Fe-3%Si matrix sheets, their textures were dominated by the η-fiber (<001>//RD) with the maximum density at the {120}<001> orientations. After homogenization annealing, the η-fiber could evolve into the {130}<001> type or become more concentrated on the {120}<001> orientations, depending on the cold rolling modes of Fe-3%Si matrix sheets.展开更多
In this topic, we first discussed the requirement and performance of supercapacitors using carbon nanotubes (CNTs) as the electrode, including specific surface area, purity and cost. Then we reviewed the preparation...In this topic, we first discussed the requirement and performance of supercapacitors using carbon nanotubes (CNTs) as the electrode, including specific surface area, purity and cost. Then we reviewed the preparation technique of single wailed CNTs (SWNTs) in relatively large scale by chemical vapor deposition method. Its catalysis on the decomposition of methane and other carbon source, the reactor type and the process control strategies were discussed. Special focus was concentrated on how to increase the yield, selectivity, and purity of SWNTs and how to inhibit the formation of impurities, including amorphous carbon, multiwalled CNTs and the carbon encapsulated metal particles, since these impurities seriously influenced the performance of SWNTs in supercapacitors. Wish it be helpful to further decrease its product cost and for the commercial use in supercapacitors.展开更多
Mg-doped ZnO radial spherical structures with nanorods grown on both sides of the spherical shell were successfully prepared via chemical vapor deposition (CVD) of Zn and Mg powders in the absence of a catalyst. The...Mg-doped ZnO radial spherical structures with nanorods grown on both sides of the spherical shell were successfully prepared via chemical vapor deposition (CVD) of Zn and Mg powders in the absence of a catalyst. The structures associated with different growth temperatures (700, 800, and 850°C) were monitored by scanning electron microscopy (SEM), and the result shows that the length of the nanorods increase progressively with the growth temperature increasing. X-ray diffraction (XRD) shows that the as-obtained samples can be indexed to high crystallinity with wurtzite structure. The growth of the nanostructures mainly depends on the formation of sphere-like Mg-doped Zn droplets before adding oxygen. Photoluminescence (PL) spectra that show a 39 meV blue shift indicates that the band gap becomes large, because Mg substitutes Zn in the lattice.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant No.61974141)Tianjin Municipal Science and Technology BureauScience and Technology Innovation Bureau of China-Singapore Tianjin Eco-City。
文摘We demonstrate high-performance broadband tunable external-cavity lasers(ECLs) with the metal-organic chemical vapor deposition(MOCVD) grown In As/In P quantum dots(QDs) structures. Without cavity facet coatings, the 3-d B spectral bandwidth of the Fabry–Perot(FP) laser is approximately 10.8 nm, while the tuning bandwidth of ECLs is 45 nm.Combined with the anti-reflection(AR)/high-reflection(HR) facet coating, a 92 nm bandwidth tuning range has been obtained with the wavelength covering from 1414 nm to 1506 nm. In most of the tuning range, the threshold current density is lower than 1.5 k A/cm2. The maximum output power of 6.5 m W was achieved under a 500 m A injection current.All achievements mentioned above were obtained under continuous-wave(CW) mode at room temperature(RT).
基金Supported by the National Natural Science Foundation of China under Grant No 61306113
文摘Nonalloyed ohmic contacts regrown by metal-organic chemical vapor deposition are performed on AlGaN/GaN high-electron-mobility transistors. Low ohmic contact resistance of 0.15Ω.mm is obtained. It is found that the sidewall obliquity near the regrown interface induced by the plasma dry etching has great influence on the total contact resistance. The fabricated device with a 100-nm T-shaped gate demonstrates a maximum drain current density of 0.95 A/mm at Vgs = 1 V and a maximum peak extrinsic transcondutance Gm of 216mS/ram. Moreover, a current gain cut-off frequency fT of 115 GHz and a maximum oscillation frequency fmax of 127 GHz are achieved.
基金Supported by the National Natural Science Foundation of China(No.61076010) and the Program of the State Key Laboratory on Integrated Optoelectronics, China(No. IOSKL2012ZZ13).
文摘GaSb quantum dots have been widely applied in optoelectronic devices due to its unique electrical and optical properties.The effects of metal-organic chemical vapor deposition(MOCVD) parameters,such as growth temperature and vapour V/Ⅲ ratio[V/Ⅲ ratio means the molar ratio of trimethylgallium(TMGa) and triethylantimony(TESb)],were systematically investigated to achieve GaSb quantum dots with high quality and high density.The features of surface morphology of uncapped GaSb quantum dots were characterized by atomic force microscope(AFM) images.The results show that the surface morphologies of quantum dots are strongly dependent on growth temperature and vapour V/Ⅲ ratio.GaSb quantum dots with an average height of 4.94 nm and a density of 2.45× 1010 cm-2 were obtained by optimizing growth temperature and V/Ⅲ ratio.
基金financially supported by the National Natural Science Foundation of China (Nos. 11175038 and 51102036)the Fundamental Research Funds for the Central Universities (No. DC110314)
文摘ZnO thin films were grown on Si (111) substrates by low-pressure metal-organic chemical vapor deposition. The crystal structures and electrical properties of as-grown sample were investigated by scanning electron microscopy (SEM) and conductive atomic force microscopy (C-AFM). It can be seen that with increasing growth temperature, the surface morphology of ZnO thin films changed from flake-like to cobblestones-like structure. The current maps were simultaneously recorded with the topography, which was gained by C-AFM contact mode. Conductivity for the off-axis facet planes presented on ZnO grains enhanced. Measurement results indicate that the off-axis facet planes were more electrically active than the c-plane of ZnO flakes or particles probably due to lower Schottky barrier height of the off-axis facet planes.
基金supported by the National Key Research and Development Program(No.2019YFE03100200)the State Key Lab for Advanced Metals and Materials,the Fund of National Key Laboratory of Solid-State Microwave Devices and Circuits,the National Natural Science Foundation of China(No.52102034)the Or-ganized Research Fund of North China University of Tech-nology(No.2023YZZKY12).The authors are very grateful for the financial support of these institutions.
文摘This study focused on the investigation of the edge effect of diamond films deposited by microwave plasma chemical vapor de-position.Substrate bulge height△h is a factor that affects the edge effect,and it was used to simulate plasma and guide the diamond-film deposition experiments.Finite-element software COMSOL Multiphysics was used to construct a multiphysics(electromagnetic,plasma,and fluid heat transfer fields)coupling model based on electron collision reaction.Raman spectroscopy and scanning electron microscopy were performed to characterize the experimental growth and validate the model.The simulation results reflected the experimental trends observed.Plasma discharge at the edge of the substrate accelerated due to the increase in△h(△h=0-3 mm),and the values of electron density(n_(c)),molar concentration of H(C_(H)),and molar concentration of CH_(3)(C_(CH_(3)))doubled at the edge(for the special concave sample with△h=−1 mm,the active chemical groups exhibited a decreased molar concentration at the edge of the substrate).At=0-3 mm,a high diamond growth rate and a large diamond grain size were observed at the edge of the substrate,and their values increased with.The uniformity of film thickness decreased with.The Raman spectra of all samples revealed the first-order characteristic peak of dia-mond near 1332 cm^(−1).When△h=−1 mm,tensile stress occurred in all regions of the film.When△h=1-3 mm,all areas in the film ex-hibited compressive stress.
基金supported substantially by the Southwest Jiaotong University for Material and Financial Support。
文摘Graphene(Gr)has unique properties including high electrical conductivity;Thus,graphene/copper(Gr/Cu)composites have attracted increasing attention to replace traditional Cu for electrical applications. However,the problem of how to control graphene to form desired Gr/Cu composite is not well solved. This paper aims at exploring the best parameters for preparing graphene with different layers on Cu foil by chemical vapor deposition(CVD)method and studying the effects of different layers graphene on Gr/Cu composite’s electrical conductivity. Graphene grown on single-sided and double-sided copper was prepared for Gr/Cu and Gr/Cu/Gr composites. The resultant electrical conductivity of Gr/Cu composites increased with decreasing graphene layers and increasing graphene volume fraction. The Gr/Cu/Gr composite with monolayer graphene owns volume fraction of less than 0.002%,producing the best electrical conductivity up to59.8 ×10^(6)S/m,equivalent to 104.5% IACS and 105.3% pure Cu foil.
基金Project supported by the National Key Science & Technology Special Project,China(Grant No.2008ZX01002-002)the Fundamental Research Funds for the Central Universities,China(Grant No.JY10000904009)the Major Program and State Key Program of the National Natural Science Foundation of China(Grant Nos.60890191 and 60736033)
文摘In this paper we report that the GaN thin film is grown by metal-organic chemical vapour deposition on a sapphire (0001) substrate with double A1N buffer layers. The buffer layer consists of a low-temperature (LT) A1N layer and a high-temperature (HT) A1N layer that are grown at 600 ℃ and 1000 ℃, respectively. It is observed that the thickness of the LT-A1N layer drastically influences the quality of GaN thin film, and that the optimized 4.25-min-LT-A1N layer minimizes the dislocation density of GaN thin film. The reason for the improved properties is discussed in this paper.
文摘ZnO thin films were grown on GaAs (001) substrates by metal-organic chemical vapor deposition (MOCVD) at low temperatures ranging from 100 to 400℃. DEZn and 1-12 O were used as the zinc precursor and oxygen precursor, respectively. The effects of the growth temperatures on the growth characteristics and optical properties of ZnO films were investigated. The X-ray diffraction measurement (XRD) results indicated that all the thin films were grown with highly c- axis orientation. The surface morphologies and crystal properties of the films were critically dependent on the growth temperatures. Although there was no evidence of epitaxial growth, the scanning electron microscopy (SEM) image of ZnO film grown at 400℃ revealed the presence of ZnO microcrystallines with closed packed hexagon structure. The photoluminescence spectrum at room temperature showed only bright band-edge (3. 33eV) emissions with little or no deep-level e- mission related to defects.
基金Project (50802115) supported by the National Natural Science Foundation of ChinaProject (2010FJ4075) supported by Science and Technology Planning Project of Hunan Province, China+1 种基金Project (CDJJ-10010205) supported by the Science Foundation of Changsha University, ChinaProject supported by the Construct Program of the Key Discipline in Hunan Province, China
文摘Viscose activated carbon fibers (ACFs) were characterized using specific surface area, scanning electron modified with chemical vapor deposition (CVD). The samples were microscopy (SEM), pore size distribution and Fourier transform infrared spectroscopy (FTIR). Batch adsorption experiments were carried out to investigate the adsorption behavior of modified ACFs for methyl orange(MO) from its aqueous solutions. The results show that the adsorption isotherms of MO onto modified ACFs well follows the Langmuir isotherm equation. The adsorption kinetics of MO can be well described by the pseudo second-order kinetic model. The adsorption process involves the intra-particle diffusion, but is not the only rate-controlling step. Thermodynamic parameters including AG, AH and AS were calculated, suggesting that the adsorption of MO onto modified ACFs is a spontaneous, exothermic and physisorption process. FTIR result indicates that the major adsorption mechanism of modified ACFs for MO is hydrogen bond.
基金ACKN0WLEDGMENT This work was supported by the National Natural Science Foundation of China (No.20576112).
文摘A versatile metal-organic chemical vapor deposition (MOCVD) system was designed and constructed. Copper films were deposited on silicon (100) substrates by chemical vapor deposition (CVD) using Cu(hfac)2 as a precursor. The growth of Cu nucleus on silicon substrates by H2 reduction of Cu(hfac)2 was studied by atomic force microscopy and scanning electron microscopy. The growth mode of Cu nucleus is initially Volmer-Weber mode (island), and then transforms to Stranski-Rastanov mode (layer-by-layer plus island). The mechanism of Cu nucleation on silicon (100) substrates was further investigated by X-ray photoelectron spectroscopy. From Cu2p, O1s, F1s, Si2p patterns, the observed C=O, OH and CF3/CF2 should belong to Cu(hfac) formed by the thermal dissociation of Cu(hfac)2. H2 reacts with hfac on the surface, producing OH. With its accumulation, OH reacts with hfac, forming HO-hfac, and desorbs, meanwhile, the copper oxide is reduced, and thus the redox reaction between Cu(hafc)2 and H2 occurs.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.60676032,60776041,60976009 and U0834001)the National Basic Research program of China(Grant No.2007CB307004)
文摘We report on the growth and fabrication of nonpolar a-plane light emitting diodes with an in-situ SiNx interlayer grown between the undoped a-plane GaN buffer and Si-doped GaN layer. X-ray diffraction shows that the crystalline quality of the GaN buffer layer is greatly improved with the introduction of the SiNx interlayer. The electrical properties are also improved. For example, electron mobility and sheet resistance are reduced from high resistance to 31.6 cm2/(V· s) and 460 Ω/respectively. Owing to the significant effect of the SiNx interlayer, a-plane LEDs are realized. Electrolurninescence of a nonpolar a-plane light-emitting diode with a wavelength of 488nm is demonstrated. The emission peak remains constant when the injection current increases to over 20 mA.
基金Project supported by the National Natural Science Foundation of China (Grant Nos 60706009, 90401025, 60736036, 60777021 and60476009)the National Key Basic Research Program of China (Grant Nos 2006CB604901 and 2006CB604902)the National High Technology Research and Development Program of China (Grant Nos 2006AA01Z256, 2007AA03Z419 and 2007AA03Z417)
文摘Photoluminescence (PL) and lasing properties of InAs/GaAs quantum dots (QDs) with different growth procedures prepared by metalorganic chemical vapour deposition are studied. PL measurements show that the low growth rate QD sample has a larger PL intensity and a narrower PL line width than the high growth rate sample. During rapid thermal annealing, however, the low growth rate sample shows a greater blueshift of PL peak wavelength. This is caused by the larger InAs layer thickness which results from the larger 2-3 dimensional transition critical layer thickness for the QDs in the low-growth-rate sample. A growth technique including growth interruption and in-situ annealing, named indium flush method, is used during the growth of GaAs cap layer, which can flatten the GaAs surface effectively. Though the method results in a blueshift of PL peak wavelength and a broadening of PL line width, it is essential for the fabrication of room temperature working QD lasers.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61204008,11075176,and 60976090)the National Key Basic Research Special Foundation of China(Grant No.2013CB328705)
文摘Metal-organic chemical vapor deposition (MOCVD) grown ferromagnetic GaMnN films are investigated by photo- luminescence (PL) measurement with a mid-gap excitation wavelength of 405 nm. A sharp PL peak at 1.8 eV is found and the PL intensity successively decreases with the addition of Mn, in which the Mn concentration of sample A is below 1% ([Mn]A =0.75%) but its PL intensity is stronger than other samples'. The 1.8-eV PL peak is attributed to the recombination of electrons in the t2 state of the neutral Mn3+ acceptor with holes in the valence band. With Mn concentration increasing, the intensity of the PL peak decreases and the magnetic increment reduces in our samples. The correlation between the PL peak intensity and ferromagnetism of the samples is discussed in combination with the experimental results.
基金funded by a grant from the National Core Research Center(NCRC)Program through the National Research Foundation of Korea funded by the Ministry of Education,Science and Technology(No.2012-0000-957)by a grant from the Fundamental R&D Program for Core Technology of Materials funded by the Ministry of Knowledge Economy,Republic of Korea
文摘Ternary Ti-B-N coatings were synthesized on AISI 304 and Si wafer by plasma-enhanced chemical vapor deposition (PECVD) technique using a gaseous mixture of TiCl4,BCl3,H2,N2,and Ar.By virtue of X-ray diffraction analysis,X-ray photoelectron spectroscopy,scanning electron microscope,and high-resolution transmission electron microscope,the influences of B content on the microstructure and properties of Ti B N coatings were investigated systematically.The results indicated that the microstructure and mechanical properties of Ti-B-N coatings largely depend on the transformation from FCC-TiN phase to HCP-TiB2 phase.With increasing B content and decreasing N content in the coatings,the coating microstructure evolves gradually from FCC-TiN/a-BN to HCP-TiB2 /a-BN via FCC-TiN+HCP-TiB2/a-BN.The highest microhardness of about 34 GPa is achieved,which corresponds to the nanocomposite Ti-63%B-N (mole fraction) coating consisting of the HCP-TiB2 nano-crystallites and amorphous BN phase.The lowest friction-coefficient was observed for the nanocomposite Ti-41%B-N (mole fraction) coating consisting of the FCC-TiN nanocrystallites and amorphous BN
文摘High quality TiC whiskers have been prepared by a modified chemical vapor deposition (CVD) method using TiCl4 and CH4 as reactant gases and Ni as substrate. The deposition temperature and gas flow mies have ampreciable effect on the whisker growth.The whisker orientations and morphology are determined by X-my diffraction (XRD),scanning electron micmpmph (SEM) and transmission electron microgmph (TEM).In addition to the spherical tips, spiral growth microsteps and obvious terraces are observed at the tips and side faces of whiskers in the present eoperiment. The whiskers grow mostly along (100) direction. The whisker growth mechanism is discussed in detail.
基金Supported by the Natural Science Foundation of Shandong Province of China (ZR2009BM011) and the Doctor Foundation of Shandong Province of China (BS2010NJ005).
文摘Various methods for production of polysilicon have been proposed for lowering the production cost andenergy consumption, and enhancing productivity, which are critical for industrial applications. The fluidized bed chemical vapor deposition (FBCVD) method is a most promising alternative to conventional ones, but the homogeneous reaction of silane in FBCVD results in unwanted formation of fines, which will affect the product qualityand output. There are some other problems, such as heating degeneration due to undesired polysilicon deposition on the walls of the reactor and the heater. This article mainly reviews the technological development on FBCVD of polycrystalline silicon and the research status for solving the above problems. It also identifies a number of challenges to tackle and principles should be followed in the design ofa FBCVD reactor.
文摘Two-dimensional transition metal dichalcogenides heterostructures have stimulated wide in- terest not only for the fundamental research, but also for the application of next generation electronic and optoelectronic devices. Herein, we report a successful two-step chemical vapor deposition strategy to construct vertically stacked van der Waals epitaxial In2Se3/MoSe2 heterostructures. Transmission electron microscopy characterization reveals clearly that the In2Se3 has well-aligned lattice orientation with the substrate of monolayer MoSe2. Due to the interaction between the In2Se3 and MoSe2 layers, the heterostructure shows the quench- ing and red-shift of photoluminescence. Moreover, the current rectification behavior and photovoltaic effect can be observed from the heterostructure, which is attributed to the unique band structure alignment of the heterostructure, and is further confirmed by Kevin probe force microscopy measurement. The synthesis approach via van der Waals epitaxy in this work can expand the way to fabricate a variety of two-dimensional heterostructures for potential applications in electronic and optoelectronic devices.
基金This work was supported by the National Natural Science Foundation of China under Grant No.50130010, Pok Ying-Tung Education Foundation under Grant No. 71045 and the AFCRST under PRA MX 97-04.
文摘Fe-Si ribbons and thin sheets with 6.5%Si content were prepared by means of the single roller rapid solidification and chemical vapor deposition (CVD), respectively. The initial textures of rapidly solidified Fe-6.5%Si ribbons were characteristic of the {100} fiber-type, which became weakened during primary recrystallization in various atmospheres. At the stage of secondary recrystallization, the {100} texture formed in Ar and the {110} texture in hydrogen, while there occurred a texture transformation from the {100} type to the {110} type in vacuum with the increase of annealing temperature. For Fe-6.5%Si sheets prepared by Si deposition in cold-rolled Fe-3%Si matrix sheets, their textures were dominated by the η-fiber (<001>//RD) with the maximum density at the {120}<001> orientations. After homogenization annealing, the η-fiber could evolve into the {130}<001> type or become more concentrated on the {120}<001> orientations, depending on the cold rolling modes of Fe-3%Si matrix sheets.
基金financially supported by the National Basic Research Program of China (2011CB932602)the NSFC Key Program (20736007,20736004)the Foundation of Tsinghua University (2011THZ08,new energy)
文摘In this topic, we first discussed the requirement and performance of supercapacitors using carbon nanotubes (CNTs) as the electrode, including specific surface area, purity and cost. Then we reviewed the preparation technique of single wailed CNTs (SWNTs) in relatively large scale by chemical vapor deposition method. Its catalysis on the decomposition of methane and other carbon source, the reactor type and the process control strategies were discussed. Special focus was concentrated on how to increase the yield, selectivity, and purity of SWNTs and how to inhibit the formation of impurities, including amorphous carbon, multiwalled CNTs and the carbon encapsulated metal particles, since these impurities seriously influenced the performance of SWNTs in supercapacitors. Wish it be helpful to further decrease its product cost and for the commercial use in supercapacitors.
文摘Mg-doped ZnO radial spherical structures with nanorods grown on both sides of the spherical shell were successfully prepared via chemical vapor deposition (CVD) of Zn and Mg powders in the absence of a catalyst. The structures associated with different growth temperatures (700, 800, and 850°C) were monitored by scanning electron microscopy (SEM), and the result shows that the length of the nanorods increase progressively with the growth temperature increasing. X-ray diffraction (XRD) shows that the as-obtained samples can be indexed to high crystallinity with wurtzite structure. The growth of the nanostructures mainly depends on the formation of sphere-like Mg-doped Zn droplets before adding oxygen. Photoluminescence (PL) spectra that show a 39 meV blue shift indicates that the band gap becomes large, because Mg substitutes Zn in the lattice.