期刊文献+
共找到1,463篇文章
< 1 2 74 >
每页显示 20 50 100
Photophysics of metal-organic frameworks:A brief overview
1
作者 刘晴硕 余俊宏 胡建波 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第1期122-133,共12页
Metal-organic frameworks(MOFs),which are self-assembled porous coordination materials,have garnered considerable attention in the fields of optoelectronics,photovoltaic,photochemistry,and photocatalysis due to their d... Metal-organic frameworks(MOFs),which are self-assembled porous coordination materials,have garnered considerable attention in the fields of optoelectronics,photovoltaic,photochemistry,and photocatalysis due to their diverse structures and excellent tunability.However,the performance of MOF-based optoelectronic applications currently falls short of the industry benchmark.To enhance the performance of MOF materials,it is imperative to undertake comprehensive investigations aimed at gaining a deeper understanding of photophysics and sequentially optimizing properties related to photocarrier transport,recombination,interaction,and transfer.By utilizing femtosecond laser pulses to excite MOFs,time-resolved optical spectroscopy offers a means to observe and characterize these ultrafast microscopic processes.This approach adds the time coordinate as a novel dimension for comprehending the interaction between light and MOFs.Accordingly,this review provides a comprehensive overview of the recent advancements in the photophysics of MOFs and additionally outlines potential avenues for exploring the time domain in the investigation of MOFs. 展开更多
关键词 metal-organic framework(mof) ultrafast spectroscopy PHOTOPHYSICS carrier dynamics
下载PDF
Metal-organic frameworks and their composites for advanced lithium-ion batteries:Synthesis,progress and prospects
2
作者 Chengcai Liu Borong Wu +7 位作者 Tao Liu Yuanxing Zhang Jingwen Cui Lingjun Huang Guoqiang Tan Ling Zhang Yuefeng Su Feng Wu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第2期449-470,I0011,共23页
Metal-organic frameworks(MOFs)are among the most promising materials for lithium-ion batteries(LIBs)owing to their high surface area,periodic porosity,adjustable pore size,and controllable chemical composition.For ins... Metal-organic frameworks(MOFs)are among the most promising materials for lithium-ion batteries(LIBs)owing to their high surface area,periodic porosity,adjustable pore size,and controllable chemical composition.For instance,their unique porous structures promote electrolyte penetration,ions transport,and make them ideal for battery separators.Regulating the chemical composition of MOF can introduce more active sites for electrochemical reactions.Therefore,MOFs and their related composites have been extensively and thoroughly explored for LIBs.However,the reported reviews solely include the applications of MOFs in the electrode materials of LIBs and rarely involve other aspects.A systematic review of the application of MOFs in LIBs is essential for understanding the mechanism of MOFs and better designing related MOFs battery materials.This review systematically evaluates the latest developments in pristine MOFs and MOF composites for LIB applications,including MOFs as the main materials(anode,cathode,separators,and electrolytes)to auxiliary materials(coating layers and additives for electrodes).Furthermore,the synthesis,modification methods,challenges,and prospects for the application of MOFs in LIBs are discussed. 展开更多
关键词 metal-organic frameworks ELECTRODES Electrolytes SEPARATORS Lithium-ion batteries
下载PDF
Synergistic catalysis of the N-hydroxyphthalimide on flower-like bimetallic metal-organic frameworks for boosting oxidative desulfurization
3
作者 Jing He Kun Zhu +5 位作者 Wei Jiang Dong-Ao Zhu Lin-Hua Zhu Hai-Yan Huang Wen-Shuai Zhu Hua-Ming Li 《Petroleum Science》 SCIE EI CAS CSCD 2024年第1期674-682,共9页
Synergic catalytic effect between active sites and supports greatly determines the catalytic activity for the aerobic oxidative desulfurization of fuel oils.In this work,Ni-doped Co-based bimetallic metal-organic fram... Synergic catalytic effect between active sites and supports greatly determines the catalytic activity for the aerobic oxidative desulfurization of fuel oils.In this work,Ni-doped Co-based bimetallic metal-organic framework(CoNi-MOF)is fabricated to disperse N-hydroxyphthalimide(NHPI),in which the whole catalyst provides plentiful synergic catalytic effect to improve the performance of oxidative desulfurization(ODS).As a bimetallic MOF,the second metal Ni doping results in the flower-like morphology and the modification of electronic properties,which ensure the exposure of NHPI and strengthen the synergistic effect of the overall catalyst.Compared with the monometallic Co-MOF and naked NHPI,the NHPI@CoNi-MOF triggers the efficient activation of molecular oxygen and improves the ODS performance without an initiator.The sulfur removal of dibenzothiophene-based model oil reaches 96.4%over the NHPI@CoNi-MOF catalyst in 8 h of reaction.Furthermore,the catalytic product of this aerobic ODS reaction is sulfone,which is adsorbed on the catalyst surface due to the difference in polarity.This work provides new insight and strategy for the design of a strong synergic catalytic effect between NHPI and bimetallic supports toward high-activity aerobic ODS materials. 展开更多
关键词 metal-organic frameworks DOPED BIMETALLIC N-HYDROXYPHTHALIMIDE Aerobic processes Oxidative desulfurization
下载PDF
Regulating interfacial behavior of zinc metal anode via metal-organic framework functionalized separator
4
作者 Ruotong Li Liang Pan +6 位作者 Ziyu Peng Ningning Zhao Zekun Zhang Jing Zhu Lei Dai Ling Wang Zhangxing He 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第6期213-220,I0006,共9页
Aqueous zinc ion batteries(AZIBs)are one of the promising energy storage devices.However,uncontrolled dendrite and side reactions have seriously hindered its further application.In this study,the metal-organic framewo... Aqueous zinc ion batteries(AZIBs)are one of the promising energy storage devices.However,uncontrolled dendrite and side reactions have seriously hindered its further application.In this study,the metal-organic framework(MOF)functionalized glass fiber separator(GF-PFC-31)was used to regulate interfacial behavior of zinc metal anode,enabling the development of high-performance AZIBs.In PFC-31,there areπ-πinteractions between two adjacent benzene rings with a spacing of 3.199 A.This spacing can block the passage of[Zn(H_(2)O)_6]^(2+)(8.6 A in diameter)through the GF-PFC-31 separator to a certain extent,which promotes the deposition process of Zn ions.In addition,the sulfonic acid group(-S03H)contained in GF-PFC-31 can form a hydrogen bonding network with H_(2)O,which can provide a desolvation effect and reduce the side reaction.Consequently,GF-PFC-31 separator achieves uniform deposition of Zn ions.The Zn‖GF-PFC-31‖Zn symmetric cell exhibits stable cycle life(3000 h at 1.2 mA cm^(-2),2000 h at 0.3 mA cm^(-2),and 2000 h at 5.0 mA cm^(-2)),and Zn‖GF-PFC-31‖MnO_(2) full cell with GF-PFC-31 separator can cycle for 1000 cycles at 1.2 A g^(-1)with capacity retention rate of 82.5%.This work provides a promising method to achieve high-performance AZIBs. 展开更多
关键词 Aqueous zinc ion batteries Interfacial behavior metal-organic framework Sulfonic acid group SEPARATOR
下载PDF
From Zeolitic Imidazolate Framework-8 to Metal-Organic Frameworks (MOFs): Representative Substance for the General Study of Pioneering MOF Applications 被引量:1
5
作者 Dianting Zou Dingxin Liu Jianyong Zhang 《Energy & Environmental Materials》 SCIE EI CAS 2018年第4期209-220,共12页
Metal-organic frameworks(MOFs)have been intensely studied for the past few decades as an enormous family of highly tunable porous materials with promisingly applicable functionalities in adsorption,separation,catalysi... Metal-organic frameworks(MOFs)have been intensely studied for the past few decades as an enormous family of highly tunable porous materials with promisingly applicable functionalities in adsorption,separation,catalysis,sensing,electrochemistry,and a great number of emerging purposes.As a classic MOF,zeolitic imidazolate framework-8(ZIF-8)is conventionally one of the very few MOF members that has been commercialized with considerable production. 展开更多
关键词 metal-organic frameworks nanoporous composites zeolitic imidazolate frameworks zeolitic imidazolate framework-8
下载PDF
Research progress on the substrate for metal-organic framework(MOF) membrane growth for separation 被引量:1
6
作者 Wufeng Wu Xilu Hong +2 位作者 Jiang Fan Yanying Wei Haihui Wang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第4期299-313,共15页
During the last decade, metal-organic frameworks(MOFs) have been applied in various fields due to their unique chemical and functional advantages. One of the widespread research hotspots is MOF-based membranes for sep... During the last decade, metal-organic frameworks(MOFs) have been applied in various fields due to their unique chemical and functional advantages. One of the widespread research hotspots is MOF-based membranes for separations, specifically continuous defect-free MOF membranes, which are usually grown on porous substrates. The substrate not only serves as the MOF layer support but also has a great influence on the membrane fabrication process and the final separation performance of the resultant membrane. In this review, we mainly introduce the progress focused on the substrates for MOF membranes fabrication. The substrate modifications and seeding methods aimed at synthesizing highquality MOF membranes are also summarized systematically. 展开更多
关键词 Membrane separation mof membrane metal-organic frameworks SUPPORT Synthesis
下载PDF
Structural survey of metal-covalent organic frameworks and covalent metal-organic frameworks 被引量:1
7
作者 Chaozhi Xiong Zhenwu Shao +3 位作者 Jia’nan Hong Kexin Bi Qingsong Huang Chong Liu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2023年第12期2297-2309,共13页
This review offers an overview of the latest developments in metal-covalent organic framework(MCOF)and covalent metal-organic framework(CMOF)materials,whose construction entails a combination of reversible coordinatio... This review offers an overview of the latest developments in metal-covalent organic framework(MCOF)and covalent metal-organic framework(CMOF)materials,whose construction entails a combination of reversible coordination and covalent bonding adapted from metal-organic frameworks(MOFs)and covalent organic frameworks(COFs),respectively.With an emphasis on the MCOF and CMOF structures,this review surveys their building blocks and topologies.Specifically,the frameworks are classified based on the dimensions of their components(building blocks),namely,discrete building blocks and one-dimensional infinite building blocks.For the first category,the materials are further divided into collections of two-and three-dimensional networks based on their topologies.For the second category,the recently emerging MCOFs with woven structures are covered.Finally,the state-of-the-art in MCOF and CMOF chemistry has been laid out for promising avenues in future developments. 展开更多
关键词 metal–covalent organic frameworks covalent metal-organic frameworks TOPOLOGY building block
下载PDF
Two Cd(Ⅱ)Metal-organic Frameworks(MOFs)Derived from a Triazine-based Flexible Polycarboxylate Ligand:Syntheses,Crystal Structures and Luminescence
8
作者 黄艺辉 盛天录 +4 位作者 朱起龙 谭春红 傅瑞标 胡胜民 吴新涛 《Chinese Journal of Structural Chemistry》 SCIE CAS CSCD 2013年第10期1572-1578,共7页
Two new metal-organic frameworks, {[Cd2CI(HL)(H20)2"0.5H20]}n (1) and {[Cd2L(H20)2]'H20}n (2), have been hydrothermally synthesized with designed ligand H4L (HaL = 1,3,5-triazine-2-iminodiacetic acid-4,6-... Two new metal-organic frameworks, {[Cd2CI(HL)(H20)2"0.5H20]}n (1) and {[Cd2L(H20)2]'H20}n (2), have been hydrothermally synthesized with designed ligand H4L (HaL = 1,3,5-triazine-2-iminodiacetic acid-4,6-biglycine) under the same condition except for different pH values. Single-crystal X-ray determination shows that they are 3-D frameworks. Complex 1 crystallizes in monoclinic, space group P21/n. Complex 2 crystallizes in triclinic, space group Pi. The photoluminescence properties of those two complexes have been investigated in solid state. Complexes 2 exhibited remarkable blue luminescence emissions with high quantum yield of 40.3% On the other hand, complexes 1 featured weak quantum yields of 13.7%. 展开更多
关键词 metal-organic framework pH value influence LUMINESCENCE
下载PDF
Metal-organic frameworks based single-atom catalysts for advanced fuel cells and rechargeable batteries
9
作者 Yifei Wu Peng Hu +5 位作者 Fengping Xiao Xiaoting Yu Wenqi Yang Minqi Liang Ziwei Liang Aixin Zhu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第5期501-534,I0012,共35页
The next-generation energy storage systems such as fuel cells,metal-air batteries,and alkali metal(Li,Na)-chalcogen(S,Se)batteries have received increasing attention owing to their high energy density and low cost.How... The next-generation energy storage systems such as fuel cells,metal-air batteries,and alkali metal(Li,Na)-chalcogen(S,Se)batteries have received increasing attention owing to their high energy density and low cost.However,one of the main obstacles of these systems is the poor reaction kinetics in the involved chemical reactions.Therefore,it is essential to incorporate suitable and efficient catalysts into the cell.These years,single-atom catalysts(SACs)are emerging as a frontier in catalysis due to their maximum atom efficiency and unique reaction selectivity.For SACs fabrication,metal-organic frameworks(MOFs)have been confirmed as promising templates or precursors due to their high metal loadings,structural adjustability,porosity,and tailorable catalytic site.In this review,we summarize effective strategies for fabricating SACs by MOFs with corresponding advanced characterization techniques and illustrate the key role of MOFs-based SACs in these batteries by explaining their reaction mechanisms and challenges.Finally,current applications,prospects,and opportunities for MOFs-based SACs in energy storage systems are discussed. 展开更多
关键词 metal-organic frameworks Single-atom catalysts Rechargeable batteries ELECTROCATALYSTS Coordination configuration
下载PDF
Recent Progress of Conductive Metal-Organic Frameworks for Electrochemical Energy Storage
10
作者 Zhiyuan Sang Yueyu Tong +1 位作者 Feng Hou Ji Liang 《Transactions of Tianjin University》 EI CAS 2023年第2期136-150,共15页
The development of reliable and low-cost energy storage systems is of considerable value in using renewable and clean energy sources,and exploring advanced electrodes with high reversible capacity,excellent rate perfo... The development of reliable and low-cost energy storage systems is of considerable value in using renewable and clean energy sources,and exploring advanced electrodes with high reversible capacity,excellent rate performance,and long cycling life for Li/Na/Zn-ion batteries and supercapacitors is the key problem.Particularly because of their diverse structure,high specific surface area,and adjustable redox activity,electrically conductive metal-organic frameworks(c-MOFs)are considered promising candidates for these electrochemical applications,and a detailed overview of the recent progress of c-MOFs for electrochemical energy storage and their intrinsic energy storage mechanism helps realize a comprehensive and systematic understanding of this progress and further achieve highly efficient energy storage and conversion.Herein,the chemical structure of c-MOFs and their conductive mechanism are first introduced.Subsequently,a comprehensive summarization of the current applications of c-MOFs in energy storage systems,namely supercapacitors,LIBs,SIBs,and ZIBs,is presented.Finally,the prospects and challenges of c-MOFs toward much higher-performance energy storage devices are presented,which should illuminate the future scientific research and practical applications of c-MOFs in energy storage fields. 展开更多
关键词 Energy storage Conductive metal-organic frameworks BATTERIES SUPERCAPACITORS
下载PDF
Zinc-Based Metal-Organic Frameworks for High-Performance Supercapacitor Electrodes:Mechanism Underlying Pore Generation
11
作者 Shigeyuki Umezawa Takashi Douura +6 位作者 Koji Yoshikawa Daisuke Tanaka Vlad Stolojan S.Ravi P.Silva Mika Yoneda Kazuma Gotoh Yasuhiko Hayashi 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2023年第2期100-112,共13页
Heat treatment of metal-organic frameworks(MOFs)has provided a wide variety of functional carbons coordinated with metal compounds.In this study,two kinds of zinc-based MOF(ZMOF),C_(16)H_(10)O_(4)Zn(ZMOF1)and C_(8)H_(... Heat treatment of metal-organic frameworks(MOFs)has provided a wide variety of functional carbons coordinated with metal compounds.In this study,two kinds of zinc-based MOF(ZMOF),C_(16)H_(10)O_(4)Zn(ZMOF1)and C_(8)H_(4)O_(4)Zn(ZMOF2),were prepared.ZMOF1 and ZMOF2 were carbonized at 1000℃,forming CZMOF1 and CZMOF2,respectively.The specific surface area(S_(BET))of CZMOF2 was~2700 m^(2)g^(−1),much higher than that of CZMOF1(~1300 m^(2)g^(−1)).A supercapacitor electrode based on CZMOF2 achieved specific capacitances of 360,278,and 221 F g^(−1)at 50,250,and 1000 mA g^(−1)in an aqueous electrolyte(H2SO_(4)),respectively,the highest values reported to date for ZMOF-derived electrodes under identical conditions.The practical applicability of the CZMOF-based supercapacitor was verified in non-aqueous electrolytes.The initial capacitance retention was 78%after 100000 charge/discharge cycles at 10 A g^(−1).Crucially,the high capacitance of CZMOF2 arises from pore generation during carbonization.Below 1000℃,pore generation is dominated by the Zn/C ratio of ZMOFs,as carbon atoms reduce the zinc oxides formed during carbonization.Above 1000℃,a high O/C ratio becomes essential for pore generation because the oxygen functional groups are pyrolyzed.These findings will provide insightful information for other metal-based MOFderived multifunctional carbons. 展开更多
关键词 metal-organic frameworks pore generation porous carbons SUPERCAPACITOR zinc oxides
下载PDF
Water-based synthesis of nanoscale hierarchical metal-organic frameworks:Boosting adsorption and catalytic performance
12
作者 Yi Yu Zewei Liu +3 位作者 Xiaofei Chen Shujun Liu Chongxiong Duan Hongxia Xi 《Nano Materials Science》 EI CAS CSCD 2023年第4期361-368,共8页
The combination of nano sizes,large pore sizes and green synthesis is recognized as one of the most crucial and challenging problems in constructing metal-organic frameworks(MOFs).Herein,a water-based strategy is prop... The combination of nano sizes,large pore sizes and green synthesis is recognized as one of the most crucial and challenging problems in constructing metal-organic frameworks(MOFs).Herein,a water-based strategy is proposed for the synthesis of nanoscale hierarchical MOFs(NH-MOFs)with high crystallinity and excellent stability.This approach allows the morphology and porosity of MOFs to be fine tuned,thereby enabling the nanoscale crystal generation and a well-defined hierarchical system.The aqueous solution facilitates rapid nucleation kinetics,and the introduced modulator acts as a deprotonation agent to accelerate the deprotonation of the organic ligand as well as a structure-directing agent(SDA)to guide the formation of hierarchical networks.The assynthesized NH-MOFs(NH-ZIF-67)were assessed as efficient adsorbents and heterogeneous catalysts to facilitate the diffusion of guest molecules,outperforming the parent microZIF-67.This study focuses on understanding the NH-MOF growth rules,which could allow tailor-designing NH-MOFs for various functions. 展开更多
关键词 Nanoscale hierarchical metal-organic framework Water-based synthesis Volatile organic compounds Olefins oxidation
下载PDF
Metal-organic-frameworks passivated CuBi_(2)O_(4)photocathodes boost CO_(2)reduction kinetics
13
作者 Jiaqi Jin Guangming Cao +4 位作者 Yanjie Liu Yingying Shu Zhiyuan Deng Wei Sun Xiaogang Yang 《Materials Reports(Energy)》 EI 2023年第4期60-70,共11页
Photoelectrochemical reduction of CO_(2)to produce CO with metal-organic frameworks(MOFs)is recognized as a desirable technology to mitigate CO_(2)emission and generate sustainable energy.To achieve highly efficient e... Photoelectrochemical reduction of CO_(2)to produce CO with metal-organic frameworks(MOFs)is recognized as a desirable technology to mitigate CO_(2)emission and generate sustainable energy.To achieve highly efficient electrocatalyst,it is essential to design a new material interface and uncover new reaction mechanisms or kinetics.Herein,we developed two metal-organic Cu-MOF and Bi-MOF layers using benzene tricarboxylic acid(H_(3)BTC)ligands on CuBi_(2)O_(4) photocathodes.Both MOF layers drastically improved the photoelectrochemical stability by suppressing the photo-corrosion through conformal surface passivation.The Cu-MOF modified CuBi_(2)O_(4) showed more significant charge separation and transfer efficiencies than the Bi-MOF modified control.Based on the transient photocurrent curves under the applied potential of 0.6 V vs.RHE,the rate-law analysis showed the CO_(2)photoreduction took place through a first-order reaction.Further,the photoelectrochemical impedance spectra(PEIS)revealed this reaction order,representing an“operando”analysis.Moreover,the reaction rate constant on Cu-MOF modified sample was higher than that on Bi-MOF modified one and bare CuBi_(2)O_(4).Combined with the density functional theory calculation,the surface absorption of CO_(2)and CO molecules and the higher energy barrier for*COOH intermediates could significantly determine the first order reaction. 展开更多
关键词 Copper bismuth oxide Carbon dioxide photoelectrochemical reduction metal-organic framework Rate-law kinetics
下载PDF
Recent Progress in Synthesis, Mechanism and Applications of Zinc-Based Metal-Organic Frameworks for Fluorescent Sensing
14
作者 Xiaojing Mao Huachang Li +2 位作者 Jiemin Liu Yehong Shi Lijun Kuai 《American Journal of Analytical Chemistry》 2023年第9期390-409,共20页
As more and more pollutants threaten human health, it is necessary and essential to develop sensitive, accurate and rapid methods and sensory materials to detect harmful substance. Metal-organic frameworks (MOFs) are ... As more and more pollutants threaten human health, it is necessary and essential to develop sensitive, accurate and rapid methods and sensory materials to detect harmful substance. Metal-organic frameworks (MOFs) are inorganic-organic hybrids assembled from inorganic metal ions or clusters and suitable organic ligands. Zinc-based MOFs (Zn-MOFs) have emerged as one of the most promising sensory material of MOFs for practical applications, and attracted significant attention due to structural diversity and incomparable stability properties. However, there are few reviews on systemic summary of synthesis design, mechanism and application of Zn-MOFs. In this review, we summarize the synthesis design methods, structure types and luminescence mechanism of Zn-MOFs sensor recognition in the past ten years and their applications in metal cations, anions, organic compounds and other analytes. Finally, we present a short conclusion, and look forward to the future development direction of Zn-MOFs. 展开更多
关键词 metal-organic frameworks POLLUTANTS Sensory Materials MECHANISM Application
下载PDF
金属有机骨架(MOFs)基复合质子交换膜的研究进展
15
作者 李磊 王园园 魏国兰 《天津工业大学学报》 CAS 北大核心 2024年第1期17-27,共11页
近年来,金属有机骨架(MOFs)材料由于具有超大的比表面积和丰富的孔道结构,作为一种新型的质子导体在质子交换膜中的应用受到越来越多的关注。随着研究的不断深入,为进一步提升MOFs复合质子交换膜的各项性能,MOFs材料在质子交换膜中的物... 近年来,金属有机骨架(MOFs)材料由于具有超大的比表面积和丰富的孔道结构,作为一种新型的质子导体在质子交换膜中的应用受到越来越多的关注。随着研究的不断深入,为进一步提升MOFs复合质子交换膜的各项性能,MOFs材料在质子交换膜中的物理形态逐渐由颗粒状向连续相发展,MOFs材料的组分也呈现出由单一组分到双组分的发展态势。本文以质子交换膜中MOFs材料的物理形态为主线,将其划分为MOFs晶体/聚合物质子交换膜、第三相增强MOFs/聚合物复合质子交换膜和MOFs纳米纤维/聚合物复合质子交换膜,全面综述了MOFs材料在质子交换膜中的研究进展,并对MOFs复合质子交换膜的发展方向进行了展望。 展开更多
关键词 金属有机框架 复合质子交换膜 质子传导率 燃料电池
下载PDF
Metal-organic framework IRMOFs coated with a temperaturesensitive gel delivering norcantharidin to treat liver cancer 被引量:2
16
作者 Xiu-Yan Li Qing-Xia Guan +7 位作者 Yu-Zhou Shang Yan-Hong Wang Shao-Wa Lv Zhi-Xin Yang Rui Wang Yu-Fei Feng Wei-Nan Li Yong-Ji Li 《World Journal of Gastroenterology》 SCIE CAS 2021年第26期4208-4220,共13页
BACKGROUND Norcantharidin(NCTD)is suitable for the treatment of primary liver cancer,especially early and middle primary liver cancer.This compound can reduce tumors and improve immune function.However,the side effect... BACKGROUND Norcantharidin(NCTD)is suitable for the treatment of primary liver cancer,especially early and middle primary liver cancer.This compound can reduce tumors and improve immune function.However,the side effects of NCTD have limited its application.There is a marked need to reduce the side effects and increase the efficacy of NCTD.AIM To develop a nanomaterial carrier,NCTD-loaded metal-organic framework IRMOF-3 coated with a temperature-sensitive gel(NCTD-IRMOF-3-Gel),aiming to improve the anticancer activity of NCTD and reduce the drug dose.METHODS NCTD-IRMOF-3-Gel was obtained by a coordination reaction.The apparent characteristics and in vitro release of NCTD-IRMOF-3-Gel were investigated.Cell cytotoxicity assays,flow cytometry,and apoptosis experiments in mouse hepatoma(Hepa1-6)cells were used to determine the anti-liver cancer activity of NCTD-IRMOF-3-Gel in in vitro models.RESULTS The particle size of NCTD-IRMOF-3-Gel was 50-100 nm,and the particle size distribution was uniform.The release curve showed that NCTD-IRMOF-3-Gel had an obvious sustained-release effect.The cytotoxicity assays showed that the free drug NCTD and NCTD-IRMOF-3-Gel treatments markedly inhibited Hepa1-6 cell proliferation,and the inhibition rate increased with increasing drug concentration.By flow cytometry,NCTD-IRMOF-3-Gel was observed to block the Hepa1-6 cell cycle in the S and G2/M phases,and the thermosensitive gel nanoparticles may inhibit cell proliferation by inducing cell cycle arrest.Apoptosis experiments showed that NCTD-IRMOF-3-Gel induced the apoptosis of Hepa1-6 cells.CONCLUSION Our results indicated that the NCTD-IRMOF-3-Gel may be beneficial for liver cancer disease treatment. 展开更多
关键词 NORCANTHARIDIN metal-organic frameworks IRmof-3 Temperature-sensitive gel Drug delivery Liver cancer
下载PDF
金属有机框架材料(MOFs)的电子束辐射稳定性
17
作者 刘泽鹏 蒙宇 +3 位作者 李林繁 李景烨 王自强 虞鸣 《辐射研究与辐射工艺学报》 CAS CSCD 2024年第1期18-27,共10页
本研究在不同气氛(空气、氮气)、分散液(水、甲醇、乙醇)以及不同剂量条件下对4种典型的金属有机框架材料(MOFs)(MIL-101(Cr)、ZIF-8、UiO-66和UiO-66-NH2)进行了电子束辐照处理。通过傅里叶变换红外光谱、X射线衍射谱和扫描电子显微镜... 本研究在不同气氛(空气、氮气)、分散液(水、甲醇、乙醇)以及不同剂量条件下对4种典型的金属有机框架材料(MOFs)(MIL-101(Cr)、ZIF-8、UiO-66和UiO-66-NH2)进行了电子束辐照处理。通过傅里叶变换红外光谱、X射线衍射谱和扫描电子显微镜等方法对MOFs材料在辐照前后的化学组成、晶体结构和表面形貌进行表征。结果表明,上述4种MOFs材料在高于5000 kGy的剂量辐照后,其相应的红外特征峰、衍射峰和表面形貌特征均未产生显著变化,表现出了良好的辐射稳定性。这为MOFs材料在辐射环境下的进一步应用提供了研究基础。 展开更多
关键词 金属有机框架材料(mofs) 辐射稳定性 辐照 吸收剂量
下载PDF
基于组分设计的MOFs衍生碳基吸波材料的研究进展
18
作者 王飞翔 沈勇 +1 位作者 潘虹 徐丽慧 《化工新型材料》 CAS CSCD 北大核心 2024年第1期232-237,共6页
金属有机骨架(MOFs)具有孔隙率高、比表面积大等特点,其衍生物重量轻、带宽宽、损耗能力强,具有有序规整以及易设计性的组分结构而被广泛用于电磁波吸收研究。总结了单金属、双金属及金属氧化物MOFs碳基吸波材料作为微波吸收材料的性能... 金属有机骨架(MOFs)具有孔隙率高、比表面积大等特点,其衍生物重量轻、带宽宽、损耗能力强,具有有序规整以及易设计性的组分结构而被广泛用于电磁波吸收研究。总结了单金属、双金属及金属氧化物MOFs碳基吸波材料作为微波吸收材料的性能、优势及其在电磁波吸收方面的应用等,分析了不同组分和组分设计对电磁波吸收性能的影响。尽管还面临许多的挑战,但MOFs衍生物作为电磁波吸收材料显示出广阔的发展潜力。 展开更多
关键词 电磁波吸收 金属有机骨架 mofs碳基衍生物 特殊结构
下载PDF
金属有机骨架(MOFs)衍生材料及其在催化领域的研究进展
19
作者 范宜凯 邬娇娇 +3 位作者 徐向亚 白帆 白杰 刘东兵 《工业催化》 CAS 2024年第1期14-19,共6页
金属有机骨架(MOFs)材料是一类具有大比表面积和可调孔结构的新型多孔材料,近年来在催化制备精细化学品领域受到广泛关注。在实际催化过程中,MOFs较差的稳定性制约了其在许多反应中的应用。以MOFs为前驱体制备的MOFs衍生材料能够保留MOF... 金属有机骨架(MOFs)材料是一类具有大比表面积和可调孔结构的新型多孔材料,近年来在催化制备精细化学品领域受到广泛关注。在实际催化过程中,MOFs较差的稳定性制约了其在许多反应中的应用。以MOFs为前驱体制备的MOFs衍生材料能够保留MOFs材料结构上的优势,同时解决其稳定性差的问题,极大拓展MOFs材料在催化反应中的应用。综述MOFs衍生材料在催化领域特别是在加氢和氧化制备精细化学品中的研究进展,并对MOF衍生材料面临的问题及其在催化领域的应用前景进行了展望。 展开更多
关键词 催化剂工程 金属有机骨架(mofs)衍生材料 有序多孔结构 单原子催化剂
下载PDF
MOFs基微流控电化学芯片对多种重金属离子的实时在线检测
20
作者 陈晓萍 王旭潭 +4 位作者 刘宁 汪庆祥 倪建聪 杨伟强 林振宇 《高等学校化学学报》 SCIE EI CAS CSCD 北大核心 2024年第2期25-34,共10页
将具有丰富微孔的ZIF-8金属有机框架和电化学技术对金属离子的富集作用与微流控器件对溶液流动的可控性相结合,构建了一种新型传感器,实现了高通量、实时和快速检测环境中的多种金属离子污染物.研制的ZIF-8-Nafion/ITO基微流控电化学传... 将具有丰富微孔的ZIF-8金属有机框架和电化学技术对金属离子的富集作用与微流控器件对溶液流动的可控性相结合,构建了一种新型传感器,实现了高通量、实时和快速检测环境中的多种金属离子污染物.研制的ZIF-8-Nafion/ITO基微流控电化学传感器对Cd^(2+),Pb^(2+)及Hg^(2+)离子在0.1~100μmol/L的浓度范围内具有良好的线性关系,检出限分别为0.055,0.0025及0.0016μmol/L(S/N=3).该微流控芯片对于样品的需求量少,可降低对能源的消耗;同时由聚二甲基硅氧烷拓印的微流控器件还有望实现柔性电极的功能,对便携式电化学柔性器件在生物和环境样品的集成化和自动化检测具有重要意义. 展开更多
关键词 微流控 重金属检测 电化学传感器 金属有机框架
下载PDF
上一页 1 2 74 下一页 到第
使用帮助 返回顶部