Well-crystallized Bi2Nd2Ti3O12 (BNT) thin film with good surface morphology was prepared by metal-organic solution deposition (MOD).The waveguide property was investigated by using a Metricon 2010 prism coupler.Th...Well-crystallized Bi2Nd2Ti3O12 (BNT) thin film with good surface morphology was prepared by metal-organic solution deposition (MOD).The waveguide property was investigated by using a Metricon 2010 prism coupler.The nonlinear optical properties of the film were measured by Z-scan technique at a wavelength of 532 nm with pulse durations of 35 ps.A large positive nonlinear refractive index,nonlinear refractive coefficient and two-photon absorption coefficient were determined to be 2.7×10-7 esu,5.29×10-7 esu and 2.41×10-7 m/W,respectively.The origin of optical nonlinearity of BNT thin film was discussed.The results suggested that the the BNT thin film may be a kind of new multifunctional materials.展开更多
It is well accepted that a lithiophilic interface can effectively regulate Li deposition behaviors,but the influence of the lithiophilic interface is gradually diminished upon continuous Li deposition that completely ...It is well accepted that a lithiophilic interface can effectively regulate Li deposition behaviors,but the influence of the lithiophilic interface is gradually diminished upon continuous Li deposition that completely isolates Li from the lithiophilic metals.Herein,we perform in-depth studies on the creation of dynamic alloy interfaces upon Li deposition,arising from the exceptionally high diffusion coefficient of Hg in the amalgam solid solution.As a comparison,other metals such as Au,Ag,and Zn have typical diffusion coefficients of 10-20 orders of magnitude lower than that of Hg in the similar solid solution phases.This difference induces compact Li deposition pattern with an amalgam substrate even with a high areal capacity of 55 mAh cm^(-2).This finding provides new insight into the rational design of Li anode substrate for the stable cycling of Li metal batteries.展开更多
LiMn2O4 thin films were prepared by solution deposition using lithium acetate and manganese acetate us raw materials. The phase constitution and surface morphalogy were observed by X-ray diffraction and scanning elect...LiMn2O4 thin films were prepared by solution deposition using lithium acetate and manganese acetate us raw materials. The phase constitution and surface morphalogy were observed by X-ray diffraction and scanning electron microscopy. The electrochemical properties of the thin films were studied by cycilc voltammetry, charge- discharge experiments and impedance spectroscopy in 1 mol· L^-1 LiPF6 / EC- DMC solution using lithium metal as both the counter and reference electrodes. The films prepared by this method are of spinel phase. The lattice parameter increases with the annealing temperature aud annealing time. The film annealed at 750 ℃ for 30 minutes has the highest capacity of 34.5 μAh ·cm^- 2·μm^-1 , and its capacity loss per cycle is 0. 05% afrer being cycled 100 times.展开更多
We demonstrate high-performance broadband tunable external-cavity lasers(ECLs) with the metal-organic chemical vapor deposition(MOCVD) grown In As/In P quantum dots(QDs) structures. Without cavity facet coatings, the ...We demonstrate high-performance broadband tunable external-cavity lasers(ECLs) with the metal-organic chemical vapor deposition(MOCVD) grown In As/In P quantum dots(QDs) structures. Without cavity facet coatings, the 3-d B spectral bandwidth of the Fabry–Perot(FP) laser is approximately 10.8 nm, while the tuning bandwidth of ECLs is 45 nm.Combined with the anti-reflection(AR)/high-reflection(HR) facet coating, a 92 nm bandwidth tuning range has been obtained with the wavelength covering from 1414 nm to 1506 nm. In most of the tuning range, the threshold current density is lower than 1.5 k A/cm2. The maximum output power of 6.5 m W was achieved under a 500 m A injection current.All achievements mentioned above were obtained under continuous-wave(CW) mode at room temperature(RT).展开更多
Nonalloyed ohmic contacts regrown by metal-organic chemical vapor deposition are performed on AlGaN/GaN high-electron-mobility transistors. Low ohmic contact resistance of 0.15Ω.mm is obtained. It is found that the s...Nonalloyed ohmic contacts regrown by metal-organic chemical vapor deposition are performed on AlGaN/GaN high-electron-mobility transistors. Low ohmic contact resistance of 0.15Ω.mm is obtained. It is found that the sidewall obliquity near the regrown interface induced by the plasma dry etching has great influence on the total contact resistance. The fabricated device with a 100-nm T-shaped gate demonstrates a maximum drain current density of 0.95 A/mm at Vgs = 1 V and a maximum peak extrinsic transcondutance Gm of 216mS/ram. Moreover, a current gain cut-off frequency fT of 115 GHz and a maximum oscillation frequency fmax of 127 GHz are achieved.展开更多
In this paper we report that the GaN thin film is grown by metal-organic chemical vapour deposition on a sapphire (0001) substrate with double A1N buffer layers. The buffer layer consists of a low-temperature (LT)...In this paper we report that the GaN thin film is grown by metal-organic chemical vapour deposition on a sapphire (0001) substrate with double A1N buffer layers. The buffer layer consists of a low-temperature (LT) A1N layer and a high-temperature (HT) A1N layer that are grown at 600 ℃ and 1000 ℃, respectively. It is observed that the thickness of the LT-A1N layer drastically influences the quality of GaN thin film, and that the optimized 4.25-min-LT-A1N layer minimizes the dislocation density of GaN thin film. The reason for the improved properties is discussed in this paper.展开更多
Laser-induced voltage effects in c-axis oriented Ca3Co4O9 thin films have been studied with samples fabricated on 10°tilted LaAIO3 (001) substrates by a simple chemical solution deposition method. An open-circu...Laser-induced voltage effects in c-axis oriented Ca3Co4O9 thin films have been studied with samples fabricated on 10°tilted LaAIO3 (001) substrates by a simple chemical solution deposition method. An open-circuit voltage with a rise time of about 10 ns and full width at half maximum of about 28 ns is detected when the film surface is irradiated by a 308-nm laser pulse with a duration of 25 ns. Besides, opemcircuit voltage signals are also observed when the film surface is irradiated separately by the laser pulses of 532 nm and 1064 nm. The results indicate that Ca3Co4O9 thin films have a great potential application in the wide range photodetctor from the ultraviolet to near infrared regions.展开更多
We report on the growth and fabrication of nonpolar a-plane light emitting diodes with an in-situ SiNx interlayer grown between the undoped a-plane GaN buffer and Si-doped GaN layer. X-ray diffraction shows that the c...We report on the growth and fabrication of nonpolar a-plane light emitting diodes with an in-situ SiNx interlayer grown between the undoped a-plane GaN buffer and Si-doped GaN layer. X-ray diffraction shows that the crystalline quality of the GaN buffer layer is greatly improved with the introduction of the SiNx interlayer. The electrical properties are also improved. For example, electron mobility and sheet resistance are reduced from high resistance to 31.6 cm2/(V· s) and 460 Ω/respectively. Owing to the significant effect of the SiNx interlayer, a-plane LEDs are realized. Electrolurninescence of a nonpolar a-plane light-emitting diode with a wavelength of 488nm is demonstrated. The emission peak remains constant when the injection current increases to over 20 mA.展开更多
Photoluminescence (PL) and lasing properties of InAs/GaAs quantum dots (QDs) with different growth procedures prepared by metalorganic chemical vapour deposition are studied. PL measurements show that the low grow...Photoluminescence (PL) and lasing properties of InAs/GaAs quantum dots (QDs) with different growth procedures prepared by metalorganic chemical vapour deposition are studied. PL measurements show that the low growth rate QD sample has a larger PL intensity and a narrower PL line width than the high growth rate sample. During rapid thermal annealing, however, the low growth rate sample shows a greater blueshift of PL peak wavelength. This is caused by the larger InAs layer thickness which results from the larger 2-3 dimensional transition critical layer thickness for the QDs in the low-growth-rate sample. A growth technique including growth interruption and in-situ annealing, named indium flush method, is used during the growth of GaAs cap layer, which can flatten the GaAs surface effectively. Though the method results in a blueshift of PL peak wavelength and a broadening of PL line width, it is essential for the fabrication of room temperature working QD lasers.展开更多
Most reports on the fabrication of high-quality Gallium nitride (GaN) are typically based on physical techniques that require very expensive equipment. Therefore, the electrodeposition was adopted and examined to deve...Most reports on the fabrication of high-quality Gallium nitride (GaN) are typically based on physical techniques that require very expensive equipment. Therefore, the electrodeposition was adopted and examined to develop a simple and economical method for GaN synthesis. GaN films are synthesized on aluminum substrates that are heat-treated at various temperatures using a low-cost and low-temperature electrochemical deposition technique. The electrochemical behavior of source ions in aqueous solutions is examined by cyclic voltammetry (CV).?In the solution at pH 1.5 containing 0.1M Ga(NO3)3, 2.5 M NH4NO3 and 0.6 M H3BO3, reduction of gallium and nitrate ions are observed in CV. The presence of hexagonal GaN and gallium oxide (Ga2O3) phases is detected for the films deposited on Al substrates at -3.5 mA•cm-2 for 3 h. The energy dispersive X-ray and mapping results reveal that Ga, O, and N coexist in these films. Raman analysis shows hexagonal GaN formation on Al substrates. The changes in the morphology and preferred orientation of GaN were found, which was caused by the reactivity of aluminum surface and the aluminum oxide layer formed by the heat treatment.展开更多
No. 6 East tin deposit in the Songshujiao orefield, Gejiu, is characterized by one-stage hydrothermal activity and monotonous country rocks. The authors selected this deposit and used the multivariate statistical anal...No. 6 East tin deposit in the Songshujiao orefield, Gejiu, is characterized by one-stage hydrothermal activity and monotonous country rocks. The authors selected this deposit and used the multivariate statistical analysis to study the types of association of main ore-forming elements at different temperatures and pressures and their distribution in the deposit. On that basis combined with the structural analysis of the deposit, the recto-geochemical features of No.6 East tin deposit have been revealed and the direction and channel of migration of the ore solutions in faults and the deposit have been deduced. This research can appropriately elucidate the control of faults on the migration of ore solutions and the sites where ore solutions are dispersed and accumulated, thus providing the theoretical basis for the prediction of hydrothermal deposits in question.展开更多
ZnO thin films were grown on GaAs (001) substrates by metal-organic chemical vapor deposition (MOCVD) at low temperatures ranging from 100 to 400℃. DEZn and 1-12 O were used as the zinc precursor and oxygen precu...ZnO thin films were grown on GaAs (001) substrates by metal-organic chemical vapor deposition (MOCVD) at low temperatures ranging from 100 to 400℃. DEZn and 1-12 O were used as the zinc precursor and oxygen precursor, respectively. The effects of the growth temperatures on the growth characteristics and optical properties of ZnO films were investigated. The X-ray diffraction measurement (XRD) results indicated that all the thin films were grown with highly c- axis orientation. The surface morphologies and crystal properties of the films were critically dependent on the growth temperatures. Although there was no evidence of epitaxial growth, the scanning electron microscopy (SEM) image of ZnO film grown at 400℃ revealed the presence of ZnO microcrystallines with closed packed hexagon structure. The photoluminescence spectrum at room temperature showed only bright band-edge (3. 33eV) emissions with little or no deep-level e- mission related to defects.展开更多
High-performance and cost-effective catalysts for water splitting are key components of hydrogen-based energy technologies. Metal-organic framework(MOF)-derived metal phosphide composites have immense potential as hig...High-performance and cost-effective catalysts for water splitting are key components of hydrogen-based energy technologies. Metal-organic framework(MOF)-derived metal phosphide composites have immense potential as highly active and stable electrocatalysts but suffer from the poor efficacy of available electrode assembly methods. In this study, an MOF-derived nitrogen-doped porous carbon/Co/Co P/carbon paper(NC/Co/Co P/CP) composite electrode was assembled by electrophoretic deposition and post-processing reactions. The binder-free electrode showed good catalytic activity, significantly higher than that of traditional electrodes. The electrode required overpotentials of 208 and 350 m V to achieve a current density of 10 m A/cm^2 for the hydrogen and oxygen evolution reactions, respectively. This facile synthetic method provides a promising route for designing metal-doped and multi-metal phase MOF-derived composite electrodes for energy storage and conversion devices.展开更多
Perovskite solar cells(PSCs) have emerged as one of the most promising candidates for photovoltaic applications. Low-cost, low-temperature solution processes including coating and printing techniques makes PSCs promis...Perovskite solar cells(PSCs) have emerged as one of the most promising candidates for photovoltaic applications. Low-cost, low-temperature solution processes including coating and printing techniques makes PSCs promising for the greatly potential commercialization due to the scalability and compatibility with large-scale, roll-to-roll manufacturing processes. In this review, we focus on the solution deposition of charge transport layers and perovskite absorption layer in both mesoporous and planar structural PSC devices. Furthermore, the most recent design strategies via solution deposition are presented as well, which have been explored to enlarge the active area, enhance the crystallization and passivate the defects, leading to the performance improvement of PSC devices.展开更多
The recent steady improvements in the performance of the nascent hybrid perovskite photovoltaic(PV)devices have led to power conversion efficiencies that rival the best-performing established PV technologies.However,t...The recent steady improvements in the performance of the nascent hybrid perovskite photovoltaic(PV)devices have led to power conversion efficiencies that rival the best-performing established PV technologies.However,to scale these laboratory demonstrations to PV module-scale production will require development of scalable deposition methods for perovskite thin films.Every record result for perovskite PVs so far was achieved via spin coating,a technique that is popular in research laboratories for thin-film coating over relatively small device areas,but not considered to be a method that could be used to scale up the manufacturing of perovskite PVs.Significantly larger thin-film areas are needed for future commercial PV products.Hence,some researchers have focused their efforts on perovskite deposition techniques that can be considered as scalable for mass production and have achieved notable results even on large areas.Here,we present an overview of the solution-based and vapor-based deposition processes;we explain their influence on the molecular crystal growth behavior of perovskite thin films and discuss the morphology as well as other material quality characteristics.By presenting a comprehensive comparison of the deposition techniques and the corresponding performance parameters for different device sizes,we intent to guide the growing research community through the methods that might enable mass production of perovskite solar products.展开更多
The fabrication and performance of 160-nm gate-length metamorphic AlInAs/GaInAs high electron mobility transistors (mHEMTs) grown on GaAs substrate by metal organic chemical vapour deposition (MOCVD) are reported....The fabrication and performance of 160-nm gate-length metamorphic AlInAs/GaInAs high electron mobility transistors (mHEMTs) grown on GaAs substrate by metal organic chemical vapour deposition (MOCVD) are reported. By using a novel combined optical and e-beam photolithography technology, submicron mHEMTs devices have been achieved. The devices exhibit good DC and RF performance. The maximum current density was 817 mA/mm and the maximum transconductance was 828 mS/mm. The non-alloyed Ohmic contact resistance Rc was as low as 0.02 Ω- ram. The unity current gain cut-off frequency (fT) and the maximum oscillation frequency (fmax) were 146 GHz and 189 GHz, respectively. This device has the highest fT yet reported for a 160-nm gate-length HEMTs grown by MOCVD. The output conductance is 28.9 mS/mm, which results in a large voltage gain of 28.6, Also, an input capacitance to gate-drain feedback capacitance ratio, Cgs/Cgd, of 4.3 is obtained in the device.展开更多
A versatile metal-organic chemical vapor deposition (MOCVD) system was designed and constructed. Copper films were deposited on silicon (100) substrates by chemical vapor deposition (CVD) using Cu(hfac)2 as a ...A versatile metal-organic chemical vapor deposition (MOCVD) system was designed and constructed. Copper films were deposited on silicon (100) substrates by chemical vapor deposition (CVD) using Cu(hfac)2 as a precursor. The growth of Cu nucleus on silicon substrates by H2 reduction of Cu(hfac)2 was studied by atomic force microscopy and scanning electron microscopy. The growth mode of Cu nucleus is initially Volmer-Weber mode (island), and then transforms to Stranski-Rastanov mode (layer-by-layer plus island). The mechanism of Cu nucleation on silicon (100) substrates was further investigated by X-ray photoelectron spectroscopy. From Cu2p, O1s, F1s, Si2p patterns, the observed C=O, OH and CF3/CF2 should belong to Cu(hfac) formed by the thermal dissociation of Cu(hfac)2. H2 reacts with hfac on the surface, producing OH. With its accumulation, OH reacts with hfac, forming HO-hfac, and desorbs, meanwhile, the copper oxide is reduced, and thus the redox reaction between Cu(hafc)2 and H2 occurs.展开更多
Heat treatment of spray deposition 10% SiCp/6066 ( φ (SiCp)=10%) composites was investigated by means of hardness measurement. The results show that heat treatment technology is influenced by the presence of SiC part...Heat treatment of spray deposition 10% SiCp/6066 ( φ (SiCp)=10%) composites was investigated by means of hardness measurement. The results show that heat treatment technology is influenced by the presence of SiC particles. Compared with the base alloy 6066, the composites have lower burning temperature and is burnt at 540 ℃ due to the enrichment of Mg and Cu atoms in the SiCp/6066 interfaces. As a result, solution treatment of the composites should be carried out at lower temperature. The aging parameter values such as the aging temperature, the precipitation temperature of β′ and β phases, as well as the peak aging time, become lower. The optimum heat treatment process conditions are that the composites are solution treated at 515 ℃ and aged at 165 ℃ for 5 h.展开更多
Considering the ionizing energy of bound electrons, the energy depositions around the path of an ion whose energy is below 1 MeV/u are calculated by using track structure model. The results are in good agreement with ...Considering the ionizing energy of bound electrons, the energy depositions around the path of an ion whose energy is below 1 MeV/u are calculated by using track structure model. The results are in good agreement with experiments.展开更多
基金supported by the Fundamental Research Funds for the Central Universities (2010LKWL06)
文摘Well-crystallized Bi2Nd2Ti3O12 (BNT) thin film with good surface morphology was prepared by metal-organic solution deposition (MOD).The waveguide property was investigated by using a Metricon 2010 prism coupler.The nonlinear optical properties of the film were measured by Z-scan technique at a wavelength of 532 nm with pulse durations of 35 ps.A large positive nonlinear refractive index,nonlinear refractive coefficient and two-photon absorption coefficient were determined to be 2.7×10-7 esu,5.29×10-7 esu and 2.41×10-7 m/W,respectively.The origin of optical nonlinearity of BNT thin film was discussed.The results suggested that the the BNT thin film may be a kind of new multifunctional materials.
基金supported by the National Key Research and Development Program of China(2019YFA0205700)Scientific Research Projects of Colleges and Universities in Hebei Province(JZX2023004)+2 种基金Research Program of Local Science and Technology Development under the Guidance of Central(216Z4402G)support from Ministry of Science and Higher Education of Russian Federation(project FFSG-2022-0001(122111700046-3),"Laboratory of perspective electrode materials for chemical power sources")support from"Yuanguang"Scholar Program of Hebei University of Technology
文摘It is well accepted that a lithiophilic interface can effectively regulate Li deposition behaviors,but the influence of the lithiophilic interface is gradually diminished upon continuous Li deposition that completely isolates Li from the lithiophilic metals.Herein,we perform in-depth studies on the creation of dynamic alloy interfaces upon Li deposition,arising from the exceptionally high diffusion coefficient of Hg in the amalgam solid solution.As a comparison,other metals such as Au,Ag,and Zn have typical diffusion coefficients of 10-20 orders of magnitude lower than that of Hg in the similar solid solution phases.This difference induces compact Li deposition pattern with an amalgam substrate even with a high areal capacity of 55 mAh cm^(-2).This finding provides new insight into the rational design of Li anode substrate for the stable cycling of Li metal batteries.
基金Founded by Hunan Provincial Natural Science Foundation of Chi-na (No.04JJ40038) ,and Foundation of Hunan Provincial EducationDepartment (No.04C475)
文摘LiMn2O4 thin films were prepared by solution deposition using lithium acetate and manganese acetate us raw materials. The phase constitution and surface morphalogy were observed by X-ray diffraction and scanning electron microscopy. The electrochemical properties of the thin films were studied by cycilc voltammetry, charge- discharge experiments and impedance spectroscopy in 1 mol· L^-1 LiPF6 / EC- DMC solution using lithium metal as both the counter and reference electrodes. The films prepared by this method are of spinel phase. The lattice parameter increases with the annealing temperature aud annealing time. The film annealed at 750 ℃ for 30 minutes has the highest capacity of 34.5 μAh ·cm^- 2·μm^-1 , and its capacity loss per cycle is 0. 05% afrer being cycled 100 times.
基金Project supported by the National Natural Science Foundation of China(Grant No.61974141)Tianjin Municipal Science and Technology BureauScience and Technology Innovation Bureau of China-Singapore Tianjin Eco-City。
文摘We demonstrate high-performance broadband tunable external-cavity lasers(ECLs) with the metal-organic chemical vapor deposition(MOCVD) grown In As/In P quantum dots(QDs) structures. Without cavity facet coatings, the 3-d B spectral bandwidth of the Fabry–Perot(FP) laser is approximately 10.8 nm, while the tuning bandwidth of ECLs is 45 nm.Combined with the anti-reflection(AR)/high-reflection(HR) facet coating, a 92 nm bandwidth tuning range has been obtained with the wavelength covering from 1414 nm to 1506 nm. In most of the tuning range, the threshold current density is lower than 1.5 k A/cm2. The maximum output power of 6.5 m W was achieved under a 500 m A injection current.All achievements mentioned above were obtained under continuous-wave(CW) mode at room temperature(RT).
基金Supported by the National Natural Science Foundation of China under Grant No 61306113
文摘Nonalloyed ohmic contacts regrown by metal-organic chemical vapor deposition are performed on AlGaN/GaN high-electron-mobility transistors. Low ohmic contact resistance of 0.15Ω.mm is obtained. It is found that the sidewall obliquity near the regrown interface induced by the plasma dry etching has great influence on the total contact resistance. The fabricated device with a 100-nm T-shaped gate demonstrates a maximum drain current density of 0.95 A/mm at Vgs = 1 V and a maximum peak extrinsic transcondutance Gm of 216mS/ram. Moreover, a current gain cut-off frequency fT of 115 GHz and a maximum oscillation frequency fmax of 127 GHz are achieved.
基金Project supported by the National Key Science & Technology Special Project,China(Grant No.2008ZX01002-002)the Fundamental Research Funds for the Central Universities,China(Grant No.JY10000904009)the Major Program and State Key Program of the National Natural Science Foundation of China(Grant Nos.60890191 and 60736033)
文摘In this paper we report that the GaN thin film is grown by metal-organic chemical vapour deposition on a sapphire (0001) substrate with double A1N buffer layers. The buffer layer consists of a low-temperature (LT) A1N layer and a high-temperature (HT) A1N layer that are grown at 600 ℃ and 1000 ℃, respectively. It is observed that the thickness of the LT-A1N layer drastically influences the quality of GaN thin film, and that the optimized 4.25-min-LT-A1N layer minimizes the dislocation density of GaN thin film. The reason for the improved properties is discussed in this paper.
基金Project supported by the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 10904030)the Natural Science Foundation of Hebei Province, China (Grant No. A2009000144)
文摘Laser-induced voltage effects in c-axis oriented Ca3Co4O9 thin films have been studied with samples fabricated on 10°tilted LaAIO3 (001) substrates by a simple chemical solution deposition method. An open-circuit voltage with a rise time of about 10 ns and full width at half maximum of about 28 ns is detected when the film surface is irradiated by a 308-nm laser pulse with a duration of 25 ns. Besides, opemcircuit voltage signals are also observed when the film surface is irradiated separately by the laser pulses of 532 nm and 1064 nm. The results indicate that Ca3Co4O9 thin films have a great potential application in the wide range photodetctor from the ultraviolet to near infrared regions.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.60676032,60776041,60976009 and U0834001)the National Basic Research program of China(Grant No.2007CB307004)
文摘We report on the growth and fabrication of nonpolar a-plane light emitting diodes with an in-situ SiNx interlayer grown between the undoped a-plane GaN buffer and Si-doped GaN layer. X-ray diffraction shows that the crystalline quality of the GaN buffer layer is greatly improved with the introduction of the SiNx interlayer. The electrical properties are also improved. For example, electron mobility and sheet resistance are reduced from high resistance to 31.6 cm2/(V· s) and 460 Ω/respectively. Owing to the significant effect of the SiNx interlayer, a-plane LEDs are realized. Electrolurninescence of a nonpolar a-plane light-emitting diode with a wavelength of 488nm is demonstrated. The emission peak remains constant when the injection current increases to over 20 mA.
基金Project supported by the National Natural Science Foundation of China (Grant Nos 60706009, 90401025, 60736036, 60777021 and60476009)the National Key Basic Research Program of China (Grant Nos 2006CB604901 and 2006CB604902)the National High Technology Research and Development Program of China (Grant Nos 2006AA01Z256, 2007AA03Z419 and 2007AA03Z417)
文摘Photoluminescence (PL) and lasing properties of InAs/GaAs quantum dots (QDs) with different growth procedures prepared by metalorganic chemical vapour deposition are studied. PL measurements show that the low growth rate QD sample has a larger PL intensity and a narrower PL line width than the high growth rate sample. During rapid thermal annealing, however, the low growth rate sample shows a greater blueshift of PL peak wavelength. This is caused by the larger InAs layer thickness which results from the larger 2-3 dimensional transition critical layer thickness for the QDs in the low-growth-rate sample. A growth technique including growth interruption and in-situ annealing, named indium flush method, is used during the growth of GaAs cap layer, which can flatten the GaAs surface effectively. Though the method results in a blueshift of PL peak wavelength and a broadening of PL line width, it is essential for the fabrication of room temperature working QD lasers.
文摘Most reports on the fabrication of high-quality Gallium nitride (GaN) are typically based on physical techniques that require very expensive equipment. Therefore, the electrodeposition was adopted and examined to develop a simple and economical method for GaN synthesis. GaN films are synthesized on aluminum substrates that are heat-treated at various temperatures using a low-cost and low-temperature electrochemical deposition technique. The electrochemical behavior of source ions in aqueous solutions is examined by cyclic voltammetry (CV).?In the solution at pH 1.5 containing 0.1M Ga(NO3)3, 2.5 M NH4NO3 and 0.6 M H3BO3, reduction of gallium and nitrate ions are observed in CV. The presence of hexagonal GaN and gallium oxide (Ga2O3) phases is detected for the films deposited on Al substrates at -3.5 mA•cm-2 for 3 h. The energy dispersive X-ray and mapping results reveal that Ga, O, and N coexist in these films. Raman analysis shows hexagonal GaN formation on Al substrates. The changes in the morphology and preferred orientation of GaN were found, which was caused by the reactivity of aluminum surface and the aluminum oxide layer formed by the heat treatment.
文摘No. 6 East tin deposit in the Songshujiao orefield, Gejiu, is characterized by one-stage hydrothermal activity and monotonous country rocks. The authors selected this deposit and used the multivariate statistical analysis to study the types of association of main ore-forming elements at different temperatures and pressures and their distribution in the deposit. On that basis combined with the structural analysis of the deposit, the recto-geochemical features of No.6 East tin deposit have been revealed and the direction and channel of migration of the ore solutions in faults and the deposit have been deduced. This research can appropriately elucidate the control of faults on the migration of ore solutions and the sites where ore solutions are dispersed and accumulated, thus providing the theoretical basis for the prediction of hydrothermal deposits in question.
文摘ZnO thin films were grown on GaAs (001) substrates by metal-organic chemical vapor deposition (MOCVD) at low temperatures ranging from 100 to 400℃. DEZn and 1-12 O were used as the zinc precursor and oxygen precursor, respectively. The effects of the growth temperatures on the growth characteristics and optical properties of ZnO films were investigated. The X-ray diffraction measurement (XRD) results indicated that all the thin films were grown with highly c- axis orientation. The surface morphologies and crystal properties of the films were critically dependent on the growth temperatures. Although there was no evidence of epitaxial growth, the scanning electron microscopy (SEM) image of ZnO film grown at 400℃ revealed the presence of ZnO microcrystallines with closed packed hexagon structure. The photoluminescence spectrum at room temperature showed only bright band-edge (3. 33eV) emissions with little or no deep-level e- mission related to defects.
基金supported by the National Natural Science Foundation of China(21573033)Shandong Provincial Natural Science Foundation,China(ZR2018BB037)+1 种基金Project of Shandong Province Higher Educational Science and Technology Program(J17KA104)Project of Qingdao Applied Basic Research Programs of Science and Technology(18-2-2-10-jch and 18-2-2-35-jch)~~
文摘High-performance and cost-effective catalysts for water splitting are key components of hydrogen-based energy technologies. Metal-organic framework(MOF)-derived metal phosphide composites have immense potential as highly active and stable electrocatalysts but suffer from the poor efficacy of available electrode assembly methods. In this study, an MOF-derived nitrogen-doped porous carbon/Co/Co P/carbon paper(NC/Co/Co P/CP) composite electrode was assembled by electrophoretic deposition and post-processing reactions. The binder-free electrode showed good catalytic activity, significantly higher than that of traditional electrodes. The electrode required overpotentials of 208 and 350 m V to achieve a current density of 10 m A/cm^2 for the hydrogen and oxygen evolution reactions, respectively. This facile synthetic method provides a promising route for designing metal-doped and multi-metal phase MOF-derived composite electrodes for energy storage and conversion devices.
基金Projects(51673214,51673218,61774170)supported by the National Natural Science Foundation of ChinaProject(2017YFA0206600)supported by the National Key Research and Development Program of China。
文摘Perovskite solar cells(PSCs) have emerged as one of the most promising candidates for photovoltaic applications. Low-cost, low-temperature solution processes including coating and printing techniques makes PSCs promising for the greatly potential commercialization due to the scalability and compatibility with large-scale, roll-to-roll manufacturing processes. In this review, we focus on the solution deposition of charge transport layers and perovskite absorption layer in both mesoporous and planar structural PSC devices. Furthermore, the most recent design strategies via solution deposition are presented as well, which have been explored to enlarge the active area, enhance the crystallization and passivate the defects, leading to the performance improvement of PSC devices.
基金funded by the MIT-Tata Grid Edge Solar research program
文摘The recent steady improvements in the performance of the nascent hybrid perovskite photovoltaic(PV)devices have led to power conversion efficiencies that rival the best-performing established PV technologies.However,to scale these laboratory demonstrations to PV module-scale production will require development of scalable deposition methods for perovskite thin films.Every record result for perovskite PVs so far was achieved via spin coating,a technique that is popular in research laboratories for thin-film coating over relatively small device areas,but not considered to be a method that could be used to scale up the manufacturing of perovskite PVs.Significantly larger thin-film areas are needed for future commercial PV products.Hence,some researchers have focused their efforts on perovskite deposition techniques that can be considered as scalable for mass production and have achieved notable results even on large areas.Here,we present an overview of the solution-based and vapor-based deposition processes;we explain their influence on the molecular crystal growth behavior of perovskite thin films and discuss the morphology as well as other material quality characteristics.By presenting a comprehensive comparison of the deposition techniques and the corresponding performance parameters for different device sizes,we intent to guide the growing research community through the methods that might enable mass production of perovskite solar products.
基金Project supported by CERG Grant (615506) from the Research Grants Council of Hong Kong Special Administrative Region of China and Intel CorporationScience and Technology Plan of the Education Bureau of Guangxi Zhuang Autonomous Region of China (Grant No. 200911MS93)
文摘The fabrication and performance of 160-nm gate-length metamorphic AlInAs/GaInAs high electron mobility transistors (mHEMTs) grown on GaAs substrate by metal organic chemical vapour deposition (MOCVD) are reported. By using a novel combined optical and e-beam photolithography technology, submicron mHEMTs devices have been achieved. The devices exhibit good DC and RF performance. The maximum current density was 817 mA/mm and the maximum transconductance was 828 mS/mm. The non-alloyed Ohmic contact resistance Rc was as low as 0.02 Ω- ram. The unity current gain cut-off frequency (fT) and the maximum oscillation frequency (fmax) were 146 GHz and 189 GHz, respectively. This device has the highest fT yet reported for a 160-nm gate-length HEMTs grown by MOCVD. The output conductance is 28.9 mS/mm, which results in a large voltage gain of 28.6, Also, an input capacitance to gate-drain feedback capacitance ratio, Cgs/Cgd, of 4.3 is obtained in the device.
基金ACKN0WLEDGMENT This work was supported by the National Natural Science Foundation of China (No.20576112).
文摘A versatile metal-organic chemical vapor deposition (MOCVD) system was designed and constructed. Copper films were deposited on silicon (100) substrates by chemical vapor deposition (CVD) using Cu(hfac)2 as a precursor. The growth of Cu nucleus on silicon substrates by H2 reduction of Cu(hfac)2 was studied by atomic force microscopy and scanning electron microscopy. The growth mode of Cu nucleus is initially Volmer-Weber mode (island), and then transforms to Stranski-Rastanov mode (layer-by-layer plus island). The mechanism of Cu nucleation on silicon (100) substrates was further investigated by X-ray photoelectron spectroscopy. From Cu2p, O1s, F1s, Si2p patterns, the observed C=O, OH and CF3/CF2 should belong to Cu(hfac) formed by the thermal dissociation of Cu(hfac)2. H2 reacts with hfac on the surface, producing OH. With its accumulation, OH reacts with hfac, forming HO-hfac, and desorbs, meanwhile, the copper oxide is reduced, and thus the redox reaction between Cu(hafc)2 and H2 occurs.
基金The Key Program of the 9th Five year Plan of China! (No .95 YS 0 0 4)
文摘Heat treatment of spray deposition 10% SiCp/6066 ( φ (SiCp)=10%) composites was investigated by means of hardness measurement. The results show that heat treatment technology is influenced by the presence of SiC particles. Compared with the base alloy 6066, the composites have lower burning temperature and is burnt at 540 ℃ due to the enrichment of Mg and Cu atoms in the SiCp/6066 interfaces. As a result, solution treatment of the composites should be carried out at lower temperature. The aging parameter values such as the aging temperature, the precipitation temperature of β′ and β phases, as well as the peak aging time, become lower. The optimum heat treatment process conditions are that the composites are solution treated at 515 ℃ and aged at 165 ℃ for 5 h.
基金The Project Supported by National Natural Science Foundation of China
文摘Considering the ionizing energy of bound electrons, the energy depositions around the path of an ion whose energy is below 1 MeV/u are calculated by using track structure model. The results are in good agreement with experiments.