期刊文献+
共找到7,390篇文章
< 1 2 250 >
每页显示 20 50 100
Bio-inspired Hydroxyapatite/Gelatin Transparent Nanocomposites
1
作者 谭军军 WU Mingchen +2 位作者 LI Yuzhe PENG Jiamei 熊焰 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第2期298-308,共11页
Hydroxyapatite(HA)nanoparticles impart outstanding mechanical properties to organicinorganic nanocomposites in bone.Inspired by the composite structure of HA nanoparticles and collagen in bone,a high performance HA/ge... Hydroxyapatite(HA)nanoparticles impart outstanding mechanical properties to organicinorganic nanocomposites in bone.Inspired by the composite structure of HA nanoparticles and collagen in bone,a high performance HA/gelatin nanocomposite was first developed.The nanocomposites have much better mechanical properties(elongation at break 29.9%,tensile strength 90.7 MPa,Young’s modulus 5.24 GPa)than pure gelatin films(elongation at break 9.3%,tensile strength 90.8 MPa,Young’s modulus 2.5 GPa).In addition,the composite films keep a high transmittance in visible wavelength range from 0%to 60%of the HA solid content.These differences in properties are attributed to the homogeneous distribution of HA nanoparticles in the gelatin polymer matrix and the strong interaction between the particle surfaces and the gelatin molecules.This protocol should be promising for HA-based nanocomposites with enhanced mechanical properties for biomedical applications. 展开更多
关键词 HYDROXYAPATITE nanocomposites sodium citrate GELATIN colloidal stability
下载PDF
Increasing the toughness while reducing the viscosity of carbon nanotube/ polyether imide/polyether ether ketone nanocomposites
2
作者 SONG Jiu-peng ZHAO Yan +3 位作者 LI Xue-kuan XIONG Shu LI Shuang WANG Kai 《新型炭材料(中英文)》 SCIE EI CAS CSCD 北大核心 2024年第4期715-728,共14页
Polyether ether ketone(PEEK)has good mechanical properties.However,its high viscosity when molten limits its use because it is hard to process.PEEK nanocomposites containing both carbon nanotubes(CNTs)and polyether im... Polyether ether ketone(PEEK)has good mechanical properties.However,its high viscosity when molten limits its use because it is hard to process.PEEK nanocomposites containing both carbon nanotubes(CNTs)and polyether imide(PEI)were pre-pared by a direct wet powder blending method using a vertical injection molding machine.The addition of an optimum amount of PEI lowered the viscosity of the molten PEEK by approximately 50%while producing an increase in the toughness of the nanocom-posites,whose strain to failure increased by 129%,and fracture energy increased by 97%.The uniformly dispersed CNT/PEI powder reduced the processing difficulty of PEEK nanocomposites without affecting the thermal resistance.This improvement of the strength and viscosity of PEEK facilitate its use in the preparation of thermoplastic composites. 展开更多
关键词 nanocomposites Mechanical properties Rheological properties Microstructural analysis
下载PDF
Assembly of functional carboxymethyl cellulose/polyethylene oxide/anatase TiO_(2) nanocomposites and tuning the dielectric relaxation, optical, and photoluminescence performances
3
作者 Asmaa M.Ismail Abeer A.Reffaee Fawzy G.El Desouky 《Journal of Semiconductors》 EI CAS CSCD 2024年第7期26-38,共13页
Nanocomposite films consisting of carboxymethyl cellulose,polyethylene oxide(CMC/PEO),and anatase titanium diox-ide(TO)were produced by the use of sol-gel and solution casting techniques.TiO2 nanocrystals were effecti... Nanocomposite films consisting of carboxymethyl cellulose,polyethylene oxide(CMC/PEO),and anatase titanium diox-ide(TO)were produced by the use of sol-gel and solution casting techniques.TiO2 nanocrystals were effectively incorporated into CMC/PEO polymers,as shown by X-ray diffraction(XRD)and attenuated total reflectance fourier transform infrared(ATR-FTIR)analysis.The roughness growth is at high levels of TO nanocrystals(TO NCs),which means increasing active sites and defects in CMC/PEO.In differential scanning calorimetry(DSC)thermograms,the change in glass transition temperature(Tg)val-ues verifies that the polymer blend interacts with TO NCs.The increment proportions of TO NCs have a notable impact on the dielectric performances of the nanocomposites,as observed.The electrical properties of the CMC/PEO/TO nanocomposite undergo significant changes.The nanocomposite films exhibit a red alteration in the absorption edge as the concentration of TO NCs increases in the polymer blend.The decline in the energy gap is readily apparent as the weight percentage of TO NCs increases.The photoluminescence(PL)emission spectra indicate that the sites of the luminescence peak maximums show slight variation;peaks get wider,while their intensities decrease dramatically as the concentration of TO increases.These nanocomposite materials show potential for multifunctional applications including optoelectronics,antireflection coatings,pho-tocatalysis,light emitting diodes,and solid polymer electrolytes. 展开更多
关键词 anatase TiO_(2) CMC/PEO nanocomposites optical PHOTOLUMINESCENT electrical optoelectronics
下载PDF
Phase field model for electric-thermal coupled discharge breakdown of polyimide nanocomposites under high frequency electrical stress
4
作者 韩智云 李庆民 +3 位作者 李俊科 王梦溪 任瀚文 邹亮 《Plasma Science and Technology》 SCIE EI CAS CSCD 2024年第2期114-124,共11页
In contrast to conventional transformers, power electronic transformers, as an integral component of new energy power system, are often subjected to high-frequency and transient electrical stresses, leading to heighte... In contrast to conventional transformers, power electronic transformers, as an integral component of new energy power system, are often subjected to high-frequency and transient electrical stresses, leading to heightened concerns regarding insulation failures. Meanwhile, the underlying mechanism behind discharge breakdown failure and nanofiller enhancement under high-frequency electrical stress remains unclear. An electric-thermal coupled discharge breakdown phase field model was constructed to study the evolution of the breakdown path in polyimide nanocomposite insulation subjected to high-frequency stress. The investigation focused on analyzing the effect of various factors, including frequency, temperature, and nanofiller shape, on the breakdown path of Polyimide(PI) composites. Additionally, it elucidated the enhancement mechanism of nano-modified composite insulation at the mesoscopic scale. The results indicated that with increasing frequency and temperature, the discharge breakdown path demonstrates accelerated development, accompanied by a gradual dominance of Joule heat energy. This enhancement is attributed to the dispersed electric field distribution and the hindering effect of the nanosheets. The research findings offer a theoretical foundation and methodological framework to inform the optimal design and performance management of new insulating materials utilized in high-frequency power equipment. 展开更多
关键词 dielectric discharge breakdown high frequency power electronic transformer polyimide nanocomposites phase field model
下载PDF
Magnesium-based nanocomposites:A review from mechanical,creep and fatigue properties 被引量:2
5
作者 S.Abazari A.Shamsipur +5 位作者 H.R.Bakhsheshi-Rad J.W.Drelich J.Goldman S.Sharif A.F.Ismail M.Razzaghi 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2023年第8期2655-2687,共33页
The addition of nanoscale additions to magnesium(Mg)based alloys can boost mechanical characteristics without noticeably decreasing ductility.Since Mg is the lightest structural material,the Mg-based nanocomposites(NC... The addition of nanoscale additions to magnesium(Mg)based alloys can boost mechanical characteristics without noticeably decreasing ductility.Since Mg is the lightest structural material,the Mg-based nanocomposites(NCs)with improved mechanical properties are appealing materials for lightweight structural applications.In contrast to conventional Mg-based composites,the incorporation of nano-sized reinforcing particles noticeably boosts the strength of Mg-based nanocomposites without significantly reducing the formability.The present article reviews Mg-based metal matrix nanocomposites(MMNCs)with metallic and ceramic additions,fabricated via both solid-based(sintering and powder metallurgy)and liquid-based(disintegrated melt deposition)technologies.It also reviews strengthening models and mechanisms that have been proposed to explain the improved mechanical characteristics of Mg-based alloys and nanocomposites.Further,synergistic strengthening mecha-nisms in Mg matrix nanocomposites and the dominant equations for quantitatively predicting mechanical properties are provided.Furthermore,this study offers an overview of the creep and fatigue behavior of Mg-based alloys and nanocomposites using both traditional(uniaxial)and depth-sensing indentation techniques.The potential applications of magnesium-based alloys and nanocomposites are also surveyed. 展开更多
关键词 Magnesium-based nanocomposites Nanoreinforcement Strengthening mechanisms Creep properties Fatigue properties
下载PDF
The roles of polymer-graphene interface and contact resistance among nanosheets in the effective conductivity of nanocomposites 被引量:1
6
作者 Y.ZARE K.Y.RHEE 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2023年第11期1941-1956,共16页
The effective conductivity of graphene-based nanocomposites is suggested by the characteristics of polymer-filler interfacial areas as well as the contact resistance between the neighboring nanosheets.The interfacial ... The effective conductivity of graphene-based nanocomposites is suggested by the characteristics of polymer-filler interfacial areas as well as the contact resistance between the neighboring nanosheets.The interfacial properties are expressed by the effective levels of the inverse aspect ratio and the filler volume fraction.Moreover,the resistances of components in the contact regions are used to define the contact resistance,which inversely affects the effective conductivity.The obtained model is utilized to predict the effective conductivity for some examples.The discrepancy of the effective conductivity at various ranks of all factors is clarified.The interfacial conductivity directly controls the effective conductivity,while the filler conductivity plays a dissimilar role in the effective conductivity,due to the incomplete interfacial adhesion.A high operative conductivity is also achieved by small contact distances and high interfacial properties.Additionally,big contact diameters and little tunnel resistivity decrease the contact resistance,thus enhancing the effective conductivity. 展开更多
关键词 polymer nanocomposite operative conductivity GRAPHENE interfacial property contact region
下载PDF
Deflagration to detonation transition in weakly confined conditions for a type of potentially novel green primary explosive:Al/Fe_(2)O_(3)/RDX hybrid nanocomposites 被引量:2
7
作者 Qing-ping Luo Xin-ping Long +2 位作者 Fu-de Nie Gui-xiang Liu Chao Wu 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2023年第4期28-36,共9页
The properties of the combustion and deflagration to detonation transition(DDT)of Al/Fe_(2)O_(3)/RDX hybrid nanocomposites,a type of potentially novel lead-free primary explosives,were tested in weakly confined condit... The properties of the combustion and deflagration to detonation transition(DDT)of Al/Fe_(2)O_(3)/RDX hybrid nanocomposites,a type of potentially novel lead-free primary explosives,were tested in weakly confined conditions,and the interaction of Al/Fe_(2)O_(3)nanothermite and RDX in the DDT process was studied in detail.Results show that the amount of the Al/Fe_(2)O_(3)nanothermite has a great effect on the DDT properties of Al/Fe_(2)O_(3)/RDX nanocomposites.The addition of Al/Fe_(2)O_(3)nanothermite to RDX apparently improves the firing properties of RDX.A small amount of Al/Fe_(2)O_(3)nanothermite greatly increases the initial combustion velocity of Al/Fe_(2)O_(3)/RDX nanocomposites,accelerating their DDT process.When the contents of Al/Fe_(2)O_(3)nanothermite are less than 20 wt%,the DDT mechanisms of Al/Fe_(2)O_(3)/RDX nanocomposites follow the distinct abrupt mode,and are consistent with that of RDX,though their DDT processes are different.The RDX added into the Al/Fe_(2)O_(3)nanothermite increases the latter's peak combustion velocity and makes it generate the DDT when the RDX content is at least 10 wt%.RDX plays a key role in the shock compressive combustion,the formation and the properties of the DDT in the flame propagation of nanocomposites.Compared with RDX,the fast DDT of Al/Fe_(2)O_(3)/RDX nanocomposites could be obtained by adjusting the chemical constituents of nanocomposites. 展开更多
关键词 Green primary explosives Al/Fe_(2)O_(3)/RDX nanocomposites Deflagration to detonation transition Mechanism
下载PDF
Layered Potassium Titanium Niobate/Reduced Graphene Oxide Nanocomposite as a Potassium‑Ion Battery Anode 被引量:2
8
作者 Charlie A.F.Nason Ajay Piriya Vijaya Kumar Saroja +3 位作者 Yi Lu Runzhe Wei Yupei Han Yang Xu 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第1期1-16,共16页
With graphite currently leading as the most viable anode for potassium-ion batteries(KIBs),other materials have been left relatively underexamined.Transition metal oxides are among these,with many positive attributes ... With graphite currently leading as the most viable anode for potassium-ion batteries(KIBs),other materials have been left relatively underexamined.Transition metal oxides are among these,with many positive attributes such as synthetic maturity,longterm cycling stability and fast redox kinetics.Therefore,to address this research deficiency we report herein a layered potassium titanium niobate KTiNbO5(KTNO)and its rGO nanocomposite(KTNO/rGO)synthesised via solvothermal methods as a high-performance anode for KIBs.Through effective distribution across the electrically conductive rGO,the electrochemical performance of the KTNO nanoparticles was enhanced.The potassium storage performance of the KTNO/rGO was demonstrated by its first charge capacity of 128.1 mAh g^(−1) and reversible capacity of 97.5 mAh g^(−1) after 500 cycles at 20 mA g^(−1),retaining 76.1%of the initial capacity,with an exceptional rate performance of 54.2 mAh g^(−1)at 1 A g^(−1).Furthermore,to investigate the attributes of KTNO in-situ XRD was performed,indicating a low-strain material.Ex-situ X-ray photoelectron spectra further investigated the mechanism of charge storage,with the titanium showing greater redox reversibility than the niobium.This work suggests this lowstrain nature is a highly advantageous property and well worth regarding KTNO as a promising anode for future high-performance KIBs. 展开更多
关键词 Potassium-ion batteries INTERCALATION Transition metal oxides Anodes nanocompositE
下载PDF
Bio-capped and green synthesis of ZnO/g-C_(3)N_(4) nanocomposites and its improved antibiotic and photocatalytic activities: An exceptional approach towards environmental remediation 被引量:1
9
作者 Iltaf Khan Chunjuan Wang +7 位作者 Shoaib Khan Jinyin Chen Aftab Khan Sayyar Ali Shah Aihua Yuan Sohail Khan Mehwish KButt Humaira Asghar 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第4期215-224,共10页
In this research study, we have synthesized the bio-capped ZnO/g-C_(3)N_(4) nanocomposites by employing lemon juice(Citrus limon) as a stabilizer and mediator. Fruitfully, lemon juice which contains various acidic fun... In this research study, we have synthesized the bio-capped ZnO/g-C_(3)N_(4) nanocomposites by employing lemon juice(Citrus limon) as a stabilizer and mediator. Fruitfully, lemon juice which contains various acidic functional groups and citric acid has the capability to block the surface of g-C_(3)N_(4) from chemical reactivity and activated the surface of g-C_(3)N_(4) for various reactions. Consequently, the agglomeration behavior and controlled shape of g-C_(3)N_(4) has also been achieved. Our experimental results i.e. XRD,TEM, HRTEM, PL, FS, XPS, and PEC have confirmed that the lemon juice mediated and green g-C_(3)N_(4)(L-CN) have good performances and remarkable visible light photocatalytic activities as compared to the chemically synthesized g-C_(3)N_(4)(CN). Furthermore, the small surface area and low charge separation of g-C_(3)N_(4) is upgraded by coupling with Zn O nanoparticles. It is proved that the coupling of Zn O worked as a facilitator and photoelectron modulator to enhance the charge separation of g-C_(3)N_(4). Compared to pristine lemon-mediated green g-C_(3)N_(4)(L-CN), the most active sample 5Zn O/L-CN showed ~ 5-fold improvement in activities for ciprofloxacin(CIP) and methylene blue(MB) degradation. More specifically,the mineralization process and degradation pathways, and the mineralization process of ciprofloxacin(CIP) and methylene blue(MB) are suggested. Finally, our present novel research work will provide new access to synthesize the eco-friendly and bio-caped green g-C_(3)N_(4)nanomaterials and their employment for pollutants degradation and environmental purification. 展开更多
关键词 Bio-caped green g-C_(3)N_(4) Lemon juice mediators ZnO/g-C_(3)N_(4)nanocomposite Environmental remediation Degradation pathways
下载PDF
Nacre-inspired Zirconia/Carbon Nanocomposites with High Strength and Toughness
10
作者 刘泽星 PING Hang 王堃 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2023年第4期771-777,共7页
Inspired by structures of natural shells,zirconia-carbon nanocomposites were obtained by using natural chitin from shrimp shells as templates via the sol-gel route in this study.Chitin was dispersed in the water and c... Inspired by structures of natural shells,zirconia-carbon nanocomposites were obtained by using natural chitin from shrimp shells as templates via the sol-gel route in this study.Chitin was dispersed in the water and chelated with the zirconia precursors by amidogen.After a heat treatment for carbonization,nacre-like structures of carbon-zirconia nanocomposites were successfully synthesized.Due to the toughening mechanism of tetragonal zirconia,the mechanical properties of carbon-zirconia composites are further improved.The as-received zirconia/carbon nanocomposite with best mechanical property has a hardness of 5.88GPa and an elastic modulus of 80.6 GPa,which is even stronger than natural shells.This work might facilitate a versatile platform for developing green nanocomposites with reasonably good mechanical properties. 展开更多
关键词 zirconia/carbon nanocomposites SOL-GEL CHELATION hardness elastic modulus
下载PDF
Correlating the Interfacial Polar-Phase Structure to the Local Chemistry in Ferroelectric Polymer Nanocomposites by Combined Scanning Probe Microscopy
11
作者 Jiajie Liang Shaojie Wang +4 位作者 Zhen Luo Jing Fu Jun Hu Jinliang He Qi Li 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第1期80-93,共14页
Ferroelectric polymer nanocomposites possess exceptional electric properties with respect to the two otherwise uniform phases,which is commonly attributed to the critical role of the matrix-particle interfacial region... Ferroelectric polymer nanocomposites possess exceptional electric properties with respect to the two otherwise uniform phases,which is commonly attributed to the critical role of the matrix-particle interfacial region.However,the structure-property correlation of the interface remains unestablished,and thus,the design of ferroelectric polymer nanocompos-ite has largely relied on the trial-and-error method.Here,a strategy that combines multi-mode scanning probe microscopy-based electrical charac-terization and nano-infrared spectroscopy is developed to unveil the local structure-property correlation of the interface in ferroelectric polymer nano-composites.The results show that the type of surface modifiers decorated on the nanoparticles can significantly influence the local polar-phase content and the piezoelectric effect of the polymer matrix surrounding the nano-particles.The strongly coupled polar-phase content and piezoelectric effect measured directly in the interfacial region as well as the computed bonding energy suggest that the property enhancement originates from the formation of hydrogen bond between the surface modifiers and the ferroelectric polymer.It is also directly detected that the local domain size of the ferroelectric polymer can impact the energy level and distribution of charge traps in the interfacial region and eventually influence the local dielectric strength. 展开更多
关键词 INTERFACES Ferroelectric polymers nanocomposites Scanning probe microscopy Nano-infrared spectroscopy
下载PDF
Enhancing energetic performance of metal-organic complex-based metastable energetic nanocomposites by spray crystallization
12
作者 Ke-xin Wang Li-xiao Shen +5 位作者 Bin Yuan Yan Li Shun-guan Zhu Lin Zhang Zhen-xin Yi Chen-guang Zhu 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2023年第6期203-213,共11页
Energetic metal-organic complexes have been involved in nanothermites as novel oxidants.However,the existing preparation methods often lead to mixing inhomogeneity and small contact area of ingredients,the reactivity ... Energetic metal-organic complexes have been involved in nanothermites as novel oxidants.However,the existing preparation methods often lead to mixing inhomogeneity and small contact area of ingredients,the reactivity and functionality of the novel energetic nanocomposites are still limited.In this work,spray crystallization(SC)method was used to prepare novel energetic nanocomposites,the high-energy metal-organic complex[Ni(CHZ)_(3)](ClO_(4))_(2)(CHZ=1,3-diaminourea)was composited with nanoaluminum(n-Al).Results showed that n-Al/[Ni(CH_(2))_(3)](ClO_(4))_(2)energetic nanocomposites prepared by SC method increased heat release to 2977.6 J/g and peak pressure to 3.91 MPa with higher pressurization rate(1324.06 MPa/s),decreased sensitivity thresholds(>100 mJ)to electrostatic discharge(ESD)and enhanced detonation ability compared with[Ni(CHZ)_(3)](ClO_(4))_(2)alone and physically mixed(PM)n-Al/[Ni(CHZ)_(3)](ClO_(4))_(2).These results proved that it is significant to introduce energetic metal-organic complexes with inherent high energy in new-concept n-Al/energetic metal-organic complexes nanocomposites through SC method for a better performance of its application. 展开更多
关键词 Energetic metal-organic complexes Nano aluminum Energetic nanocomposites Spray crystallization Thermite reaction
下载PDF
A Generic Strategy to Create Mechanically Interlocked Nanocomposite/Hydrogel Hybrid Electrodes for Epidermal Electronics
13
作者 Qian Wang Yanyan Li +7 位作者 Yong Lin Yuping Sun Chong Bai Haorun Guo Ting Fang Gaohua Hu Yanqing Lu Desheng Kong 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第5期120-133,共14页
Stretchable electronics are crucial enablers for next-generation wearables intimately integrated into the human body.As the primary compliant conductors used in these devices,metallic nanostructure/elastomer composite... Stretchable electronics are crucial enablers for next-generation wearables intimately integrated into the human body.As the primary compliant conductors used in these devices,metallic nanostructure/elastomer composites often struggle to form conformal contact with the textured skin.Hybrid electrodes have been consequently developed based on conductive nanocomposite and soft hydrogels to establish seamless skin-device interfaces.However,chemical modifications are typically needed for reliable bonding,which can alter their original properties.To overcome this limitation,this study presents a facile fabrication approach for mechanically interlocked nanocomposite/hydrogel hybrid electrodes.In this physical process,soft microfoams are thermally laminated on silver nanowire nanocomposites as a porous interface,which forms an interpenetrating network with the hydrogel.The microfoam-enabled bonding strategy is generally compatible with various polymers.The resulting interlocked hybrids have a 28-fold improved interfacial toughness compared to directly stacked hybrids.These electrodes achieve firm attachment to the skin and low contact impedance using tissue-adhesive hydrogels.They have been successfully integrated into an epidermal sleeve to distinguish hand gestures by sensing mus-cle contractions.Interlocked nanocomposite/hydrogel hybrids reported here offer a promising platform to combine the benefits of both materials for epidermal devices and systems. 展开更多
关键词 Stretchable electronics Epidermal electronics Silver nanowire Conductive nanocomposites HYDROGEL
下载PDF
Predicting the Mechanical Behavior of a Bioinspired Nanocomposite through Machine Learning
14
作者 Xingzi Yang Wei Gao +1 位作者 Xiaodu Wang Xiaowei Zeng 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第8期1299-1313,共15页
The bioinspired nacre or bone structure represents a remarkable example of tough,strong,lightweight,and multifunctional structures in biological materials that can be an inspiration to design bioinspired high-performa... The bioinspired nacre or bone structure represents a remarkable example of tough,strong,lightweight,and multifunctional structures in biological materials that can be an inspiration to design bioinspired high-performance materials.The bioinspired structure consists of hard grains and soft material interfaces.While the material interface has a very low volume percentage,its property has the ability to determine the bulk material response.Machine learning technology nowadays is widely used in material science.A machine learning model was utilized to predict the material response based on the material interface properties in a bioinspired nanocomposite.This model was trained on a comprehensive dataset of material response and interface properties,allowing it to make accurate predictions.The results of this study demonstrate the efficiency and high accuracy of the machine learning model.The successful application of machine learning into the material property prediction process has the potential to greatly enhance both the efficiency and accuracy of the material design process. 展开更多
关键词 Bioinspired nanocomposite computational model machine learning finite element material interface
下载PDF
Advanced Nanocomposite Arabic Gum Polyacrylic Acid Hydrogels for Flexible Supercapacitors
15
作者 Borhan Albiss Asala Saleh 《Journal of Renewable Materials》 EI CAS 2024年第7期1219-1236,共18页
In this work,the fabrication and characterization of the nanocomposite hydrogel,as a solid electrode in electro-chemical cell and gel electrolyte material using Indium titanium oxide/polyethylene terephthalate(ITO/PET... In this work,the fabrication and characterization of the nanocomposite hydrogel,as a solid electrode in electro-chemical cell and gel electrolyte material using Indium titanium oxide/polyethylene terephthalate(ITO/PET)flex-ible substrate for double-layer supercapacitors have been reported.The nanocomposite hydrogel composed of Arabic gum(AG),Acrylic acid(AA),reduced graphene oxide(RGO),and silver nanoparticles(AgNPs)was fab-ricated via a physical cross-linked polymerization reaction,in which the ascorbic acid was used as a reducing agent to generate AgNPs and to convert Graphene oxide(GO)to RGO during the polymerization reaction.The morphology and structural characteristics of nanocomposite hydrogel were investigated using atomic force microscopy(AFM),scanning electron microscope(SEM),Fourier transfer infrared(FTIR),and X-rayfluores-cence(XRF).Additionally,the effect of RGO and AgNPs on hydrogel stability was assessed through Thermogra-vimetric analysis(TGA)and differential scanning calorimetry(DSC),while its mechanical properties were studied using the nanoindentation test.Electrochemical impedance spectroscopy(EIS),and cyclic voltammetry(CV)were also conducted to study the electrochemical properties of the prepared hydrogel.The effects of AgNPs,RGO,and water content were all considered in the study of supercapacitor performance.The microstructural tests showed that the nanocomposite hydrogel has a relatively high swelling rate,which has a crucial effect on the capa-citance.Furthermore,the effects of increasing AgNP concentration and water content in the hydrogel matrix showed a significant improvement in its electrochemical performance,compared with that for Arabic gum poly acrylic acid(AGPAA)hydrogel itself,were the specific capacitance exhibited a significant enhancement,convert-ing from a low value to a substantially higher capacitance value.Moreover,when the nanocomposite hydrogel was used as the working electrode in an electrochemical cell with a hydrochloric acid(HCl)electrolyte solution,it exhibited good electrode performance.Additionally,using(ITO/PET)as aflexible substrate for nanocomposite hydrogel shows an improvement in their suitability for supercapacitor applications.Therefore,it is suggested that the fabricated hydrogel supercapacitor has potential applications in thefield of renewable and clean energy harvesting. 展开更多
关键词 SUPERCAPACITOR energy harvesting nanocomposite hydrogel reduced graphene oxide
下载PDF
Flexible Tactile Electronic Skin Sensor with 3D Force Detection Based on Porous CNTs/PDMS Nanocomposites 被引量:17
16
作者 Xuguang Sun Jianhai Sun +9 位作者 Tong Li Shuaikang Zheng Chunkai Wang Wenshuo Tan Jingong Zhang Chang Liu Tianjun Ma Zhimei Qi Chunxiu Liu Ning Xue 《Nano-Micro Letters》 SCIE EI CAS CSCD 2019年第4期35-48,共14页
Flexible tactile sensors have broad applications in human physiological monitoring,robotic operation and human-machine interaction.However,the research of wearable and flexible tactile sensors with high sensitivity,wi... Flexible tactile sensors have broad applications in human physiological monitoring,robotic operation and human-machine interaction.However,the research of wearable and flexible tactile sensors with high sensitivity,wide sensing range and ability to detect three-dimensional(3D)force is still very challenging.Herein,a flexible tactile electronic skin sensor based on carbon nanotubes(CNTs)/polydimethylsiloxane(PDMS)nanocomposites is presented for 3D contact force detection.The 3D forces were acquired from combination of four specially designed cells in a sensing element.Contributed from the double-sided rough porous structure and specific surface morphology of nanocomposites,the piezoresistive sensor possesses high sensitivity of 12.1 kPa?1 within the range of 600 Pa and 0.68 kPa?1 in the regime exceeding 1 kPa for normal pressure,as well as 59.9 N?1 in the scope of<0.05 N and>2.3 N?1 in the region of<0.6 N for tangential force with ultra-low response time of 3.1 ms.In addition,multi-functional detection in human body monitoring was employed with single sensing cell and the sensor array was integrated into a robotic arm for objects grasping control,indicating the capacities in intelligent robot applications. 展开更多
关键词 Flexible TACTILE sensors ELECTRONIC SKIN Piezoresistive sensors CNTs/PDMS nanocomposites 3D force detection
下载PDF
Synthesis, properties, and applications of graphene oxide/reduced graphene oxide and their nanocomposites 被引量:38
17
作者 Andrew T. Smith Anna Marie LaChance +2 位作者 Songshan Zeng Bin Liu Luyi Sun 《Nano Materials Science》 CAS 2019年第1期31-47,共17页
Thanks to their remarkable mechanical, electrical, thermal, and barrier properties, graphene-based nanocomposites have been a hot area of research in the past decade. Because of their simple top-down synthesis, graphe... Thanks to their remarkable mechanical, electrical, thermal, and barrier properties, graphene-based nanocomposites have been a hot area of research in the past decade. Because of their simple top-down synthesis, graphene oxide (GO) and reduced graphene oxide (rGO) have opened new possibilities for gas barrier, membrane separation, and stimuli-response characteristics in nanocomposites. Herein, we review the synthesis techniques most commonly used to produce these graphene derivatives, discuss how synthesis affects their key material properties, and highlight some examples of nanocomposites with unique and impressive properties. We specifically highlight their performances in separation applications, stimuli-responsive materials, anti-corrosion coatings, and energy storage. Finally, we discuss the outlook and remaining challenges in the field of practical industrial-scale production and use of graphene-derivative-based polymer nanocomposites. 展开更多
关键词 GRAPHENE OXIDE Reduced GRAPHENE OXIDE GRAPHENE quantum DOTS polymer nanocomposites SYNTHESIS PROPERTIES of GRAPHENE and GRAPHENE OXIDE Applications
下载PDF
Sandwich-Like Fe&TiO2@C Nanocomposites Derived from MXene/Fe-MOFs Hybrids for Electromagnetic Absorption 被引量:17
18
作者 Baiwen Deng Zhen Xiang +3 位作者 Juan Xiong Zhicheng Liu Lunzhou Yu Wei Lu 《Nano-Micro Letters》 SCIE EI CAS CSCD 2020年第4期121-136,共16页
Electromagnetic pollution has been causing a series of problems in people’s life,and electromagnetic absorbers with lightweight and broad absorbing bandwidth properties are widely desired.In this work,novel sandwich-... Electromagnetic pollution has been causing a series of problems in people’s life,and electromagnetic absorbers with lightweight and broad absorbing bandwidth properties are widely desired.In this work,novel sandwich-like 2D laminated Fe&TiO2 nanoparticles@C nanocomposites were rationally designed and successfully developed from the MXene–MOFs hybrids.The formation of Fe and rutile-TiO2 nanoparticles sandwiched by the two-dimensional carbon nanosheets provided strong electromagnetic energy attenuation and good impedance matching for electromagnetic wave(EMW)absorption.As expected,the nanocomposites achieved a broad effective absorption bandwidth of 6.5 GHz at a thickness of only 1.6 mm and the minimum reflection loss(RL)value of−51.8 dB at 6.6 GHz with a thickness of 3 mm.This work not only provides a good design and fabricating concept for the laminated metal and functional nanoparticles@C nanocomposites with good EMW absorption,but also offers an important guideline to fabricate various two-dimensional nanocomposites derived from the MXene precursors. 展开更多
关键词 MXene Metal–organic frameworks nanocomposites Electromagnetic wave absorption
下载PDF
Some basic aspects of polymer nanocomposites: A critical review 被引量:8
19
作者 Shaoyun Fu Zheng Sun +2 位作者 Pei Huang Yuanqing Li Ning Hu 《Nano Materials Science》 CAS 2019年第1期2-30,共29页
Polymer nanocomposites have been investigated for about three decades. To get deep insights into the modifying effects of various nanofillers on mechanical and physical properties of polymer nanocomposites, the three ... Polymer nanocomposites have been investigated for about three decades. To get deep insights into the modifying effects of various nanofillers on mechanical and physical properties of polymer nanocomposites, the three basic aspects of processing, characterization and properties are critically reviewed in this paper. Nanofillers can be classified into three major types of two-dimensional (2D) layered, one-dimensional (1D) fibrous and zerodimensional (0D) spherical ones and this review thus discusses in detail the processing, characterization and properties of the three types of polymer nanocomposites. It starts with an introduction of various nanoscale fillers such as two-dimensional (2D) nano-clay, graphene and MXene, one dimensional (1D) carbon nanofibers and nanotubes, zero dimensional (0D) silica nanoparticles and ZnO quantum dots as well as nanofiller-polymer interfaces. The processing of these polymer nanocomposites using different methods and the characterization of nanofillers and polymer nanocomposites using various techniques are described. Finally, the mechanical and physical properties of these polymer nanocomposites are discussed by considering the effects of nanofiller type, dispersion and contents;also, interface properties show significant effects on the mechanical properties of polymer nanocomposites and are discussed in some details. 展开更多
关键词 POLYMER nanocompositE NANOFILLER Processing Characterization Mechanical and PHYSICAL properties
下载PDF
Preparation and Properties of Phenolic Resin/Montmorillonite Intercalation Nanocomposites 被引量:6
20
作者 余剑英 WEILian-qi CAOXian-kum 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2003年第4期64-67,共4页
Phenolic resin/montmorillonite intercalation composites were prepared by using the methods of pressing intercalation and melt intercalation.Properties and structure of the composites were investigated by using XRD,TG ... Phenolic resin/montmorillonite intercalation composites were prepared by using the methods of pressing intercalation and melt intercalation.Properties and structure of the composites were investigated by using XRD,TG and test of softening point.It is indicated that both the pressing intercalation and melt intercalation can be used to prepare the phenolic resin/organo-montmorillonite intercalation nanocomposites.Compared with phenolic resin,the intercalation nanocomposites have better heat-resistance,higher decomposition temperatures and less thermal weight-loss.However,these two intercalation methods have different effects on the softening point of the intercalation nanocomposites.Pressing intercalation almost does not affect the softening point of the intercalation nanocomposites,while melt intercalation significantly increases the softening point of the intercalation nanocomposites, probably due to the chemical actions happening in the process of melt intercalation. 展开更多
关键词 MONTMORILLONITE phenolic resin pressing intercalation melt intercalation nanocompositE
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部