A new method for corrosion protection of Al-based metal matrix composites (MMC) was developed using two-step process, which involves anodizing in H2SO4 solution and sealing in rare earth solution. Corrosion resistance...A new method for corrosion protection of Al-based metal matrix composites (MMC) was developed using two-step process, which involves anodizing in H2SO4 solution and sealing in rare earth solution. Corrosion resistance of the treated surface was evaluated with polarization curves. The results showed that the effect of the protection using rare earth sealing is equivalent to that using chromate sealing for Al6061/SiCp. The rare earth metal salt can be an alternative to the toxic chromate for sealing anodized Al MMC.展开更多
Lithium(Li)metal is believed to be the“Holy Grail”among all anode materials for next-generation Li-based batteries due to its high theoretical specific capacity(3860 mAh/g)and lowest redox potential(−3.04 V).Disappo...Lithium(Li)metal is believed to be the“Holy Grail”among all anode materials for next-generation Li-based batteries due to its high theoretical specific capacity(3860 mAh/g)and lowest redox potential(−3.04 V).Disappointingly,uncontrolled dendrite formation and“hostless”deposition impede its further development.It is well accepted that the construction of three-dimensional(3D)composite Li metal anode could tackle the above problems to some extent by reducing local current density and maintaining electrode volume during cycling.However,most strategies to build 3D composite Li metal anode require either electrodeposition or melt-infusion process.In spite of their effectiveness,these procedures bring multiple complex processing steps,high temperature,and harsh experimental conditions which cannot meet the actual production demand in consideration of cost and safety.Under this condition,a novel method to construct 3D composite anode via simple mechanical modification has been recently proposed which does not involve harsh conditions,fussy procedures,or fancy equipment.In this mini review,a systematic and in-depth investigation of this mechanical deformation technique to build 3D composite Li metal anode is provided.First,by summarizing a number of recent studies,different mechanical modification approaches are classified clearly according to their specific procedures.Then,the effect of each individual mechanical modification approach and its working mechanisms is reviewed.Afterwards,the merits and limits of different approaches are compared.Finally,a general summary and perspective on construction strategies for next-generation 3D composite Li anode are presented.展开更多
文摘A new method for corrosion protection of Al-based metal matrix composites (MMC) was developed using two-step process, which involves anodizing in H2SO4 solution and sealing in rare earth solution. Corrosion resistance of the treated surface was evaluated with polarization curves. The results showed that the effect of the protection using rare earth sealing is equivalent to that using chromate sealing for Al6061/SiCp. The rare earth metal salt can be an alternative to the toxic chromate for sealing anodized Al MMC.
文摘Lithium(Li)metal is believed to be the“Holy Grail”among all anode materials for next-generation Li-based batteries due to its high theoretical specific capacity(3860 mAh/g)and lowest redox potential(−3.04 V).Disappointingly,uncontrolled dendrite formation and“hostless”deposition impede its further development.It is well accepted that the construction of three-dimensional(3D)composite Li metal anode could tackle the above problems to some extent by reducing local current density and maintaining electrode volume during cycling.However,most strategies to build 3D composite Li metal anode require either electrodeposition or melt-infusion process.In spite of their effectiveness,these procedures bring multiple complex processing steps,high temperature,and harsh experimental conditions which cannot meet the actual production demand in consideration of cost and safety.Under this condition,a novel method to construct 3D composite anode via simple mechanical modification has been recently proposed which does not involve harsh conditions,fussy procedures,or fancy equipment.In this mini review,a systematic and in-depth investigation of this mechanical deformation technique to build 3D composite Li metal anode is provided.First,by summarizing a number of recent studies,different mechanical modification approaches are classified clearly according to their specific procedures.Then,the effect of each individual mechanical modification approach and its working mechanisms is reviewed.Afterwards,the merits and limits of different approaches are compared.Finally,a general summary and perspective on construction strategies for next-generation 3D composite Li anode are presented.