Herein,we prepared a bimetallic layered double hydroxide(FeCo LDH)featuring a dandelion-like structure.Anchoring of CeO_(2)onto FeCo LDH produced interfaces between the functionalizing CeO_(2)and the parent LDH.Compar...Herein,we prepared a bimetallic layered double hydroxide(FeCo LDH)featuring a dandelion-like structure.Anchoring of CeO_(2)onto FeCo LDH produced interfaces between the functionalizing CeO_(2)and the parent LDH.Comparative electrochemical studies were carried out.Onset potential,overpotential,and Tafel slope point to the superior oxygen-evolving performance of CeO_(2)-FeCo LDH with respect to FeCo LDH,therefore,demonstrating the merits of CeO_(2)functionalization.The electronic structures of Fe,Co,and Ce were analyzed by X-ray photoelectron spectroscopy(XPS)and electron energy loss spectroscopy(EELS)from which the increase of Co^(3+)and the concurrent lowering of Ce^(4+)were established.With the use of CeO_(2)-FeCo LDH,accelerated formation at a sizably reduced potential of Co-OOH,one of the key intermediates preceding the release of O_(2)was observed by in situ Raman spectroscopy.We now have the atomic-level and location-specific evidence,the increase of the active Co^(3+)across the interface to correlate the enhanced catalytic performance with CeO_(2)functionalization.展开更多
基金This work was financially supported by Shenzhen Nobel Prize Scientists Laboratory Project(No.C17213101)Guangdong Provincial Key Laboratory of Catalysis(No.2020B121201002)+6 种基金Guangdong Provincial Key Laboratory of Energy Materials for Electric Power(No.2018B030322001)China Postdoctoral Science Foundation(No.2018M642133,X.Y.Z.)Post-doctorate Scientific Research Fund for staying(coming to)Shenzhen(No.K21217502,X.Y.Z.)the National Natural Science Foundation of China(No.21671096,Z.G.L.)Shenzhen Key Laboratory of Interfacial Science and Engineering of Materials(No.ZDSYS20200421111401738,Z.G.L.)The authors also acknowledge the assistance of Southern University of Science and Technology Core Research Facilities(SUSTech CRF)Key Laboratory of Energy Conversion and Storage Technologies(Southern University of Science and Technology).
文摘Herein,we prepared a bimetallic layered double hydroxide(FeCo LDH)featuring a dandelion-like structure.Anchoring of CeO_(2)onto FeCo LDH produced interfaces between the functionalizing CeO_(2)and the parent LDH.Comparative electrochemical studies were carried out.Onset potential,overpotential,and Tafel slope point to the superior oxygen-evolving performance of CeO_(2)-FeCo LDH with respect to FeCo LDH,therefore,demonstrating the merits of CeO_(2)functionalization.The electronic structures of Fe,Co,and Ce were analyzed by X-ray photoelectron spectroscopy(XPS)and electron energy loss spectroscopy(EELS)from which the increase of Co^(3+)and the concurrent lowering of Ce^(4+)were established.With the use of CeO_(2)-FeCo LDH,accelerated formation at a sizably reduced potential of Co-OOH,one of the key intermediates preceding the release of O_(2)was observed by in situ Raman spectroscopy.We now have the atomic-level and location-specific evidence,the increase of the active Co^(3+)across the interface to correlate the enhanced catalytic performance with CeO_(2)functionalization.