Introduction It is well known that organometallic hydrides of rare earth metals are the catalysts and reducing reagents for the catalysis polymerization of alkenes and the catalysis hydrogenation of alkenoalkynes. The...Introduction It is well known that organometallic hydrides of rare earth metals are the catalysts and reducing reagents for the catalysis polymerization of alkenes and the catalysis hydrogenation of alkenoalkynes. There are four methods for the syntheses of organometallic hydrides of rare earth metals:(1) the thermal atomization of metals, i.e., the interaction of a rare earth metal with alkenes with a terminal alkyne;(2) the Ln—Cσ bond is broken with H;;(3) metal-展开更多
Metal hydrides (MeH) on solid surfaces, i.e., surface MeH, are ubiquitous but criticalspecies in heterogeneous catalysis, and their intermediate roles have been proposed innumerous reactions such as (de)hydrogenation ...Metal hydrides (MeH) on solid surfaces, i.e., surface MeH, are ubiquitous but criticalspecies in heterogeneous catalysis, and their intermediate roles have been proposed innumerous reactions such as (de)hydrogenation and alkanes activation, etc., however, thedetailed spectroscopic characterizations remain challenging. Solid-state nuclear magnetic resonance (ssNMR) spectroscopy has become a powerful tool in surface studies, asit provides access to local structural characterizations at atomic level from multipleviews, with comprehensive information on chemical bonding and spatial structures. Inthis review, we summarized and discussed the latest research developments on thesuccessful application of ssNMR to characterize surface MeH species on solid catalystsincluding supported single-site heterogeneous catalysts, bulk metal oxides and metalmodified zeolites. We also discussed the opportunities and challenges in this field, aswell as the potential application/development of state-of-the-art ssNMR technologies toenable further exploration of metal hydrides in heterogeneous catalysis.展开更多
Ab initio calculations based on the density functional theory have been performed to investigate the migrations of hydrogen(H) and helium(He) atoms in β-phase scandium(Sc),yttrium(Y),and erbium(Er) hydrides...Ab initio calculations based on the density functional theory have been performed to investigate the migrations of hydrogen(H) and helium(He) atoms in β-phase scandium(Sc),yttrium(Y),and erbium(Er) hydrides with three different ratios of H to metal.The results show that the migration mechanisms of H and He atoms mainly depend on the crystal structures of hydrides,but their energy barriers are affected by the host-lattice in metal hydrides.The formation energies of octahedral-occupancy H(H oct) and tetrahedral vacancy(V tet) pairs are almost the same(about 1.2 eV).It is of interest to note that the migration barriers of H increase with increasing host-lattice atomic number.In addition,the results show that the favorable migration mechanism of He depends slightly on the V tet in the Sc hydride,but strongly on that in the Y and Er hydrides,which may account for different behaviours of initial He release from ScT2 and ErT2.展开更多
Given its high gravimetric energy density and status as a clean fuel when derived from renewables,hydrogen(H2)is considered a premier candidate for energy storage;however,its low volumetric density limits its broader ...Given its high gravimetric energy density and status as a clean fuel when derived from renewables,hydrogen(H2)is considered a premier candidate for energy storage;however,its low volumetric density limits its broader application.Chemical storage through the reversible incorporation of H2 into chemical bonds offers a promising solution to its low volumetric density,circumventing subpar energy densities and substantial infrastructure investments associated with physical storage methods.Metal hydrides are promising candidates for chemical storage because of their high gravimetric capacity and tunability through nanostructuring and alloying.Moreover,metal hydride/H2 interconversion may be interfaced with electrochemistry,which offers potential solutions to some of the challenges associated with traditional thermochemical platforms.In this Perspective,we describe anticipated challenges associated with electrochemically mediated metal hydride/H2 interconversion,including thermodynamic efficiencies of metal hydride formation,sluggish kinetics,and electrode passivation.Additionally,we propose potential solutions to these problems through the design of molecular mediators that may control factors such as metal hydride solubility,particle morphology,and hydride affinity.Realization of an electrochemically mediated metal hydride/H2 interconversion platform introduces new tools to address challenges associated with hydrogen storage platforms and contributes toward the development of room-temperature hydrogen storage platforms.展开更多
High hydrogen absorption and desorption rates are two significant index parameters for the applications of hydrogen storage tanks.The analysis of the hydrogen absorption and desorption behavior using the isothermal ki...High hydrogen absorption and desorption rates are two significant index parameters for the applications of hydrogen storage tanks.The analysis of the hydrogen absorption and desorption behavior using the isothermal kinetic models is an efficient way to investigate the kinetic mechanism.Multitudinous kinetic models have been developed to describe the kinetic process.However,these kinetic models were de-duced based on some assumptions and only appropriate for specific kinetic measurement methods and rate-controlling steps(RCSs),which sometimes lead to confusion during application.The kinetic analysis procedures using these kinetic models,as well as the key kinetic parameters,are unclear for many researchers who are unfamiliar with this field.These problems will prevent the kinetic models and their analysis methods from revealing the kinetic mechanism of hydrogen storage alloys.Thus,this review mainly focuses on the summarization of kinetic models based on different kinetic measurement methods and RCSs for the chemisorption,surface penetration,diffusion of hydrogen,nucleation and growth,and chemical reaction processes.The analysis procedures of kinetic experimental data are expounded,as well as the effects of temperature,hydrogen pressure,and particle radius.The applications of the kinetic models for different hydrogen storage alloys are also introduced.展开更多
Over the last decade’s magnesium and magnesium based compounds have been intensively investigated as potential hydrogen storage as well as thermal energy storage materials due to their abundance and availability as w...Over the last decade’s magnesium and magnesium based compounds have been intensively investigated as potential hydrogen storage as well as thermal energy storage materials due to their abundance and availability as well as their extraordinary high gravimetric and volumetric storage densities.This review work provides a broad overview of the most appealing systems and of their hydrogenation/dehydrogenation properties.Special emphasis is placed on reviewing the efforts made by the scientific community in improving the material’s thermodynamic and kinetic properties while maintaining a high hydrogen storage capacity.展开更多
In order to investigate the effect of substituting La with Pr on structural and hydrogen storage properties of La-Mg-Ni system (AB3.5-type) hydrogen storage alloys, a series of La0.65-xPrxNd0.12Mg0.23Ni3.4Al0.1(x=0...In order to investigate the effect of substituting La with Pr on structural and hydrogen storage properties of La-Mg-Ni system (AB3.5-type) hydrogen storage alloys, a series of La0.65-xPrxNd0.12Mg0.23Ni3.4Al0.1(x=0, 0.10, 0.15, 0.2) hydrogen storage alloys were prepared. X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive spectrometer (EDS) analyses revealed that two alloys (x=0.0 and 0.10) were composed of (La,Mg)2(Ni,Al)7 phase, La(Ni,A1)5 phase and (La,Mg)Ni2 phase, while other alloys (x=0.15 and 0.20) consisted of (La,Mg)2(Ni,A1)7 phase, La(Ni,A1)5 phase, (La,Mg)Ni2 phase and (La,Mg)(Ni,A1)3 phase. All alloys showed, however, only one pressure plateau in P-C isotherms. The Pr/La ratio in alloy composition influenced hydrogen storage capacity and kinetics properties. Electrochemical studies showed that the discharge capacity decreased from 360 mAh/g (x=-0.00) to 335 mAh/g (x=-0.20) as x increased. But the high-rate dischargeability (HRD) of alloy electrodes increased from 26% (x=0.00) to 56% (x=-0.20) at a discharge current density of Id=1800 mA/g. Anode polarization measurements were done to further understand the electrochemical kinetics properties after Pr substitution.展开更多
Rare earth-Mg-Ni-based alloys with superlattice structures are new generation negative electrode materials for the nickel metal hydride batteries.Among them,the novel AB_(4)-type superlattice structure alloy is suppos...Rare earth-Mg-Ni-based alloys with superlattice structures are new generation negative electrode materials for the nickel metal hydride batteries.Among them,the novel AB_(4)-type superlattice structure alloy is supposed to have superior cycling stability and rate capability.Yet its preparation is hindered by the crucial requirement of temperature and the special composition which is close to the other superlattice structure.Here,we prepare rare earth-Mg-Ni-based alloy and study the phase transformation of alloys to make clear the formation of AB_(4)-type phase.It is found Pr_(5)Co_(19)-type phase is converted from Ce_(5)Co_(19)-type phase and shows good stability at higher temperature compared to the Ce_(5)Co_(19)-type phase in the range of 930-970℃.Afterwards,with further 5℃increasing,AB_(4)-type superlattice structure forms at a temperature of 975℃by consuming Pr_(5)Co_(19)-type phase.In contrast with A_(5)B_(19)-type alloy,AB_(4)-type alloy has superior rate capability owing to the dominant advantages of charge transfer and hydrogen diffusion.Besides,AB_(4)-type alloy shows long lifespan whose capacity retention rates are 89.2%at the 100;cycle and 82.8%at the 200;cycle,respectively.AB_(4)-type alloy delivers 1.53 wt.%hydrogen storage capacity at room temperature and exhibits higher plateau pressure than Pr_(5)Co_(19)-type alloy.The work provides novel AB_(4)-type alloy with preferable electrochemical performance as negative electrode material to inspire the development of nickel metal hydride batteries.展开更多
The degradation mechanism of electrochemical performance of sealed type nickel/metal hydride batteries was investigated. The results indicate that the degradation behavior of Ni/MH battery is not only owing to the l...The degradation mechanism of electrochemical performance of sealed type nickel/metal hydride batteries was investigated. The results indicate that the degradation behavior of Ni/MH battery is not only owing to the lack of electrolyte, but also the deterioration of the active materials on the positive and negative electrodes of Ni/MH batteries. Scanning electron micrographs (SEM), X ray diffraction (XRD) and laser granularity analyses are presented. The particle pulverization and oxidation during charge/discharge are identified as the main causes for deterioration of the negative and positive electrode in nickel/metal hydride batteries, as well as the cross section cracking of both anode and cathode.展开更多
Cylindrical nickel metal hydride (Ni-MH) battery with high specific volume capacity was prepared by using the oxyhydroxide Ni(OH)2 and AB5 type hydrogen storage alloy and adjusting the designing parameters of posi...Cylindrical nickel metal hydride (Ni-MH) battery with high specific volume capacity was prepared by using the oxyhydroxide Ni(OH)2 and AB5 type hydrogen storage alloy and adjusting the designing parameters of positive and negative electrodes. The oxyhydroxide Ni(OH)2 was synthesized by oxidizing spherical β-Ni(OH)2 with chemical method. The X-ray diffraction (XRD) patterns and the Fourier transform infrared (PT-IR) spectra indicated that 7-NiOOH was formed on the oxyhydroxide Ni(OH)2 powders, and some H2O molecules were inserted into their crystal lattice spacing. The battery capacity could not be improved when the oxyhydroxide Ni(OH)2 sample was directly used as the positive active materials. However, based on the conductance and residual capacity of the oxyhydroxide Ni(OH)2 powders, AA size Ni-MH battery with 2560 mA.h capacity and 407 W·h·L^-1 specific volume energy at 0.2C was obtained by using the commercial spherical β-Ni(OH)2 and AB5-type hydrogen-storage alloy powders as the active materials when 10% mass amount of the oxyhydroxide Ni(OH)2 with 2.50 valence was added to the positive active materials and subsequently the battery designing parameters were adjusted as well. The as-prepared battery showed 70% initial capacity after 80 cycles at 0.5C. The possibility for adjusting the capacity ratio of positive and negative electrodes from 1 : 1.35 to 1 : 1.22 was demonstrated preliminarily. It is considered the as-prepared battery can meet the requirement of some special portable electrical instruments.展开更多
With the increased use of renewable energy sources,the need to store large amounts of energy will become increasingly important in the near future.A cost efficient possibility is to use the reaction of recycled Mg was...With the increased use of renewable energy sources,the need to store large amounts of energy will become increasingly important in the near future.A cost efficient possibility is to use the reaction of recycled Mg waste with hydrogen as thermo-chemical energy storage.Owing to the high reaction enthalpy,the moderate pressure and appropriate temperature conditions,the broad abundance and the recyclability,the Mg/Al alloy is perfectly suitable for this purpose.As further development of a previous work,in which the performance of recycled Mg/Al waste was presented,a kinetic model for hydro-and dehydrogenation is derived in this study.Temperature and pressure dependencies are determined,as well as the rate limiting step of the reaction.First experiments are carried out in an autoclave with a scaled-up powder mass,which is also used to validate the model by simulating the geometry with the scaled-up experiments at different conditions.展开更多
The La0.8Mg0.2Ni2.4Mn0.10Co0.55Al0.10 alloy was prepared by induction melting. The structural and morphological characterizations were performed by means of X-ray powder diffraction (XRD) and scanning electron micro...The La0.8Mg0.2Ni2.4Mn0.10Co0.55Al0.10 alloy was prepared by induction melting. The structural and morphological characterizations were performed by means of X-ray powder diffraction (XRD) and scanning electron microscopy (SEM). The electrochemical measurements were performed using LAND and CH/660b electrochemical workstation. The main phases of the alloy were LaNi5 and (La,Mg)Ni3. After annealing, the maximum discharge capacity, cycle stability and high rate dischargeability (HRD) were improved obviously. The maximum discharge capacity reached 373.80 mAh/g (T=1173 K), the C100/Cmax(%) was 72.63% (T=1173 K), and the value of HRD reached 51.8% at a discharge current density of 1150 mA/g (T=1173 K). The cyclic voltammetry (CV) and potentiodynamic polarization were also studied.展开更多
The influence of microstructure homogeneity on the electrochemical performance for MmNi 3 5 Co 0 8 Mn 0 4 Al 0 3 alloy system was studied. It was found that technological parameters, such as tempe...The influence of microstructure homogeneity on the electrochemical performance for MmNi 3 5 Co 0 8 Mn 0 4 Al 0 3 alloy system was studied. It was found that technological parameters, such as temperature and refining time during alloy melting process have effects on the microstructure homogeneity and latter obviously influences the electrode performance, such as discharge potential plateau and cycle life of the alloys.展开更多
The electrochemical properties of RE(NiCoMnTi) 5 hydrogen storage alloy with different composition of rare earth(RE=La 1-x-y-z Ce x Nd y Pr z ) components were systematically examined To display...The electrochemical properties of RE(NiCoMnTi) 5 hydrogen storage alloy with different composition of rare earth(RE=La 1-x-y-z Ce x Nd y Pr z ) components were systematically examined To display the effect of rare earth elements on the electrode properties, the comprehensive electrochemical property graphs including the discharge capacity, high dischargeability and cycling life of alloy electrode vs quasi ternary rare earth composition of multicomponent alloys were drawn by first dividing the component elements into two groups with fixed ratios between the two groups and then using a computer program for engineering graphics By the optimizaiton of the La∶Ce∶Nd∶Pr ratio, the alloy RE(NiCoMnTi) 5 shows a maximum capacity of 290 mAh/g and good cycling stability The higher capacity was due to the larger unit cell volume of the alloy with RE=La 0 4 Ce 0 1 Nd 0 3 Pr 0 2 , as determined by X ray diffraction analysis展开更多
Pd-capped Mg78Y22 thin films have been prepared by direct current magnetron co-sputtering system at different substrate temperatures and their electrochemical hydrogen storage properties have been investigated.It is f...Pd-capped Mg78Y22 thin films have been prepared by direct current magnetron co-sputtering system at different substrate temperatures and their electrochemical hydrogen storage properties have been investigated.It is found that rising substrate temperature to 60 ℃ can coarsen the surface of thin film,thus facilitating the diffusion of hydrogen atoms and then enhancing its discharge capacity to 1725 mAh·g-1.Simultaneously,the cyclic stability is effectively improved due to the increased adhesion force between film and substrate as a function of temperature.In addition,the specimen exhibits a very long and flat discharge plateau at about —0.67 V,at which nearly 60%of capacity is maintained.The property is favorable for the application in metal hydride/nickel secondary batteries.The results indicate that rising optimal substrate temperature has a beneficial effect on the electrochemical hydrogen storage of Mg-Y thin films.展开更多
Reactive mechanical alloying(RMA)was carried out in a planetary ball mill for the synthesis of ternary hydride Mg2FeH6 for hydrogen storage.The formation mechanism of Mg2FeH6 in RMA process and the sorption properties...Reactive mechanical alloying(RMA)was carried out in a planetary ball mill for the synthesis of ternary hydride Mg2FeH6 for hydrogen storage.The formation mechanism of Mg2FeH6 in RMA process and the sorption properties of the products were investigated.The results show that Mg2FeH6 has a yield ratio around 80%,and a grain size below 10 nm in the powder synthesized by milling 3Mg+Fe mixture for 150 h under the hydrogen pressure of 1 MPa.The synthesized powder possesses a high hydrogen capacity and good sorption kinetics,and absorbs 4.42%(mass fraction)of hydrogen within 200 s at 623 K under the hydrogen pressure of 4.0 MPa.In releasing hydrogen at 653 K under 0.1 MPa,it desorbs 4.43%(mass fraction)of hydrogen within 2 000 s.The addition of Ti increases the hydrogen desorption rate of the complex in the initial 120 s of the desorption process.展开更多
Investigation has been carried out to find the effects of Nd substitution and Cu addition on the hydrogen storage properties of AB5-type alloy with a multicomponent La0.6M0.4Ni4.8Mn0.2 (M=Y, Nd) system. La0.6Y0.4Ni4.8...Investigation has been carried out to find the effects of Nd substitution and Cu addition on the hydrogen storage properties of AB5-type alloy with a multicomponent La0.6M0.4Ni4.8Mn0.2 (M=Y, Nd) system. La0.6Y0.4Ni4.8Mn0.2, which was used in an air-conditioning system, showed poor hysteresis and sloping characteristics, which led to a decrease concerning the coefficient of performance of the system. By the substitution of Nd for Y, the hydrogen storage capacity increased, and the plateau pressure decreased a little, but the hydrogen absorption kinetics decreased dramatically. Cu addition can effectively improve the kinetics of hydride formation without changing the hydrogen storage capacity of La0.6Nd0.4Ni4.8Mn0.2. It has been found that La0.6Nd0.4Ni4.8Mno0.2Cu0.1 alloy showed good hydrogen storage characteristics for metal hydride air-conditioning system. The results showed that, for each component of La0.6M0.4Ni4.8Mn0.2. the effective hydrogen storage capacity increased with decrease of the unit cell parameter c/a and the hydrogen absorption plateau pressure increased with decrease of the parameter a.展开更多
Alkali metal hydroxide and hydride composite systems contain both protic (H bonded with O) and hydridic hydrogen. The interaction of these two types of hydrides produces hydrogen. The enthalpy of dehydrogenation inc...Alkali metal hydroxide and hydride composite systems contain both protic (H bonded with O) and hydridic hydrogen. The interaction of these two types of hydrides produces hydrogen. The enthalpy of dehydrogenation increased with the increase of atomic number of alkali metals, i.e., -23 kJ/molnz for LiOH-LiH, 55.34 kJ/moln: for NaOH-NaH and 222 kJ/molH2 for KOH-KH. These thermodynamic calculation results were consistent with our experimental results. H2 was released from LiOH-LiH system during ball milling. The dehydrogenation temperature of NaOH-NaH system was about 150 ℃; whereas KOH and KH did not interact with each other during the heating process. Instead, KH decomposed by itself. In these three systems, NaOH-NaH was the only reversible hydrogen storage system, the enthalpy of dehydrogenation was about 55.65 kJ/molHz, and the corresponding entropy was ca. 101.23 J/(molHz .K), so the temperature for releasing 1.0 bar H2 was as high as 518 ℃, showing unfavorable thermodynamic properties. The activation energy for hydrogen desorption of NaOH-NaH was found to be 57.87 kJ/mol, showing good kinetic properties.展开更多
Aiming at developing exhaust gas driving automobile air conditioning systems, a hydride pair LaNi4.61Mn0.26A10.13/ La0.6Y0.4Ni4.8Mn0.2 was developed working at 393-473 K/293-323 K/263-273 K. Property tests showed that...Aiming at developing exhaust gas driving automobile air conditioning systems, a hydride pair LaNi4.61Mn0.26A10.13/ La0.6Y0.4Ni4.8Mn0.2 was developed working at 393-473 K/293-323 K/263-273 K. Property tests showed that both alloys have flat plateau slopes and small hystereses; system theoretical coefficient of performance (COP) is 0.711. Based on this work pair, a function proving automobile metal hydride refrigeration system was constructed. The equivalent thermal conductivities of the activated reaction beds were merely 1.1-1.6 W/(m-K), which had not met practical requirement. Intermittent refrigeration cycles were achieved and the average cooling power was 84.6 W at 423 K/303 K/273 K with COP being 0.26. By altering cycling parameters, experiment data showed that cooling power and system COP increase with the growth of heat source temperature as well as pre-heating and regeneration time while decrease with heat sink temperature increment. This study confirms the feasibility of automobile metal hydride refrigeration systems, while heat transfer properties of reaction beds still need to be improved for better performance.展开更多
The electrochemical characteristics and crystal structure of metal hydride electrode of AB_(3.5)-type alloy was studied. The electrochemical properties of the metal hydride electrode were investigated at room temperat...The electrochemical characteristics and crystal structure of metal hydride electrode of AB_(3.5)-type alloy was studied. The electrochemical properties of the metal hydride electrode were investigated at room temperature and -30 ℃. The partial substitution of Ni by Al element causes an expansion of the lattice cell and increases the specific capacity and rate discharge ability of the alloy.展开更多
文摘Introduction It is well known that organometallic hydrides of rare earth metals are the catalysts and reducing reagents for the catalysis polymerization of alkenes and the catalysis hydrogenation of alkenoalkynes. There are four methods for the syntheses of organometallic hydrides of rare earth metals:(1) the thermal atomization of metals, i.e., the interaction of a rare earth metal with alkenes with a terminal alkyne;(2) the Ln—Cσ bond is broken with H;;(3) metal-
基金the National Natural Science Foundation of China(Grant Nos.21902158,21773230,91945302)the National Key R&D Program of China(No.2021YFA1502803)LiaoNing Revitalization Talents Program(XLYC1807207),DICP I202104.
文摘Metal hydrides (MeH) on solid surfaces, i.e., surface MeH, are ubiquitous but criticalspecies in heterogeneous catalysis, and their intermediate roles have been proposed innumerous reactions such as (de)hydrogenation and alkanes activation, etc., however, thedetailed spectroscopic characterizations remain challenging. Solid-state nuclear magnetic resonance (ssNMR) spectroscopy has become a powerful tool in surface studies, asit provides access to local structural characterizations at atomic level from multipleviews, with comprehensive information on chemical bonding and spatial structures. Inthis review, we summarized and discussed the latest research developments on thesuccessful application of ssNMR to characterize surface MeH species on solid catalystsincluding supported single-site heterogeneous catalysts, bulk metal oxides and metalmodified zeolites. We also discussed the opportunities and challenges in this field, aswell as the potential application/development of state-of-the-art ssNMR technologies toenable further exploration of metal hydrides in heterogeneous catalysis.
基金Project supported by the National Natural Science Foundation of China(Grant No.10976007)the Fundamental Research Funds for the Central Universities(Grant No.ZYGX2009J040)+1 种基金the Science and Technology Foundation of China Academy of Engineering Physics(Grant No.2009A0301015)the US Department of Energy,Office of Fusion Energy Science(under Contract DE-AC06-76RLO 1830)
文摘Ab initio calculations based on the density functional theory have been performed to investigate the migrations of hydrogen(H) and helium(He) atoms in β-phase scandium(Sc),yttrium(Y),and erbium(Er) hydrides with three different ratios of H to metal.The results show that the migration mechanisms of H and He atoms mainly depend on the crystal structures of hydrides,but their energy barriers are affected by the host-lattice in metal hydrides.The formation energies of octahedral-occupancy H(H oct) and tetrahedral vacancy(V tet) pairs are almost the same(about 1.2 eV).It is of interest to note that the migration barriers of H increase with increasing host-lattice atomic number.In addition,the results show that the favorable migration mechanism of He depends slightly on the V tet in the Sc hydride,but strongly on that in the Y and Er hydrides,which may account for different behaviours of initial He release from ScT2 and ErT2.
文摘Given its high gravimetric energy density and status as a clean fuel when derived from renewables,hydrogen(H2)is considered a premier candidate for energy storage;however,its low volumetric density limits its broader application.Chemical storage through the reversible incorporation of H2 into chemical bonds offers a promising solution to its low volumetric density,circumventing subpar energy densities and substantial infrastructure investments associated with physical storage methods.Metal hydrides are promising candidates for chemical storage because of their high gravimetric capacity and tunability through nanostructuring and alloying.Moreover,metal hydride/H2 interconversion may be interfaced with electrochemistry,which offers potential solutions to some of the challenges associated with traditional thermochemical platforms.In this Perspective,we describe anticipated challenges associated with electrochemically mediated metal hydride/H2 interconversion,including thermodynamic efficiencies of metal hydride formation,sluggish kinetics,and electrode passivation.Additionally,we propose potential solutions to these problems through the design of molecular mediators that may control factors such as metal hydride solubility,particle morphology,and hydride affinity.Realization of an electrochemically mediated metal hydride/H2 interconversion platform introduces new tools to address challenges associated with hydrogen storage platforms and contributes toward the development of room-temperature hydrogen storage platforms.
基金This work was financially supported by the Chongqing Special Key Project of Technology Innovation and Applica-tion Development,China(No.cstc2019jscx-dxwtB0029)the National Natural Science Foundation of China(Nos.51871143 and U2102212)+1 种基金the Science and Technology Committee of Shanghai,China(No.19010500400)the Shanghai Rising-Star Program(No.21QA1403200).
文摘High hydrogen absorption and desorption rates are two significant index parameters for the applications of hydrogen storage tanks.The analysis of the hydrogen absorption and desorption behavior using the isothermal kinetic models is an efficient way to investigate the kinetic mechanism.Multitudinous kinetic models have been developed to describe the kinetic process.However,these kinetic models were de-duced based on some assumptions and only appropriate for specific kinetic measurement methods and rate-controlling steps(RCSs),which sometimes lead to confusion during application.The kinetic analysis procedures using these kinetic models,as well as the key kinetic parameters,are unclear for many researchers who are unfamiliar with this field.These problems will prevent the kinetic models and their analysis methods from revealing the kinetic mechanism of hydrogen storage alloys.Thus,this review mainly focuses on the summarization of kinetic models based on different kinetic measurement methods and RCSs for the chemisorption,surface penetration,diffusion of hydrogen,nucleation and growth,and chemical reaction processes.The analysis procedures of kinetic experimental data are expounded,as well as the effects of temperature,hydrogen pressure,and particle radius.The applications of the kinetic models for different hydrogen storage alloys are also introduced.
文摘Over the last decade’s magnesium and magnesium based compounds have been intensively investigated as potential hydrogen storage as well as thermal energy storage materials due to their abundance and availability as well as their extraordinary high gravimetric and volumetric storage densities.This review work provides a broad overview of the most appealing systems and of their hydrogenation/dehydrogenation properties.Special emphasis is placed on reviewing the efforts made by the scientific community in improving the material’s thermodynamic and kinetic properties while maintaining a high hydrogen storage capacity.
基金supported by the Key Projects in International Science and Technology Cooperation from Ministry of Science and Technology of the PRC (2006DFB52550, 2007DFA51020)the National Natural Science Foundation of China (20363001)
文摘In order to investigate the effect of substituting La with Pr on structural and hydrogen storage properties of La-Mg-Ni system (AB3.5-type) hydrogen storage alloys, a series of La0.65-xPrxNd0.12Mg0.23Ni3.4Al0.1(x=0, 0.10, 0.15, 0.2) hydrogen storage alloys were prepared. X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive spectrometer (EDS) analyses revealed that two alloys (x=0.0 and 0.10) were composed of (La,Mg)2(Ni,Al)7 phase, La(Ni,A1)5 phase and (La,Mg)Ni2 phase, while other alloys (x=0.15 and 0.20) consisted of (La,Mg)2(Ni,A1)7 phase, La(Ni,A1)5 phase, (La,Mg)Ni2 phase and (La,Mg)(Ni,A1)3 phase. All alloys showed, however, only one pressure plateau in P-C isotherms. The Pr/La ratio in alloy composition influenced hydrogen storage capacity and kinetics properties. Electrochemical studies showed that the discharge capacity decreased from 360 mAh/g (x=-0.00) to 335 mAh/g (x=-0.20) as x increased. But the high-rate dischargeability (HRD) of alloy electrodes increased from 26% (x=0.00) to 56% (x=-0.20) at a discharge current density of Id=1800 mA/g. Anode polarization measurements were done to further understand the electrochemical kinetics properties after Pr substitution.
基金financially supported by the Natural Science Foundation of Hebei Province(Nos.E2019203414,E2020203081 and E2019203161)the National Natural Science Foundation of China(Nos.51701175 and 51971197)+1 种基金the Innovation Fund for the Graduate Students of Hebei Province(No.CXZZBS2020062)the Doctoral Fund of Yanshan University(No.BL19031)
文摘Rare earth-Mg-Ni-based alloys with superlattice structures are new generation negative electrode materials for the nickel metal hydride batteries.Among them,the novel AB_(4)-type superlattice structure alloy is supposed to have superior cycling stability and rate capability.Yet its preparation is hindered by the crucial requirement of temperature and the special composition which is close to the other superlattice structure.Here,we prepare rare earth-Mg-Ni-based alloy and study the phase transformation of alloys to make clear the formation of AB_(4)-type phase.It is found Pr_(5)Co_(19)-type phase is converted from Ce_(5)Co_(19)-type phase and shows good stability at higher temperature compared to the Ce_(5)Co_(19)-type phase in the range of 930-970℃.Afterwards,with further 5℃increasing,AB_(4)-type superlattice structure forms at a temperature of 975℃by consuming Pr_(5)Co_(19)-type phase.In contrast with A_(5)B_(19)-type alloy,AB_(4)-type alloy has superior rate capability owing to the dominant advantages of charge transfer and hydrogen diffusion.Besides,AB_(4)-type alloy shows long lifespan whose capacity retention rates are 89.2%at the 100;cycle and 82.8%at the 200;cycle,respectively.AB_(4)-type alloy delivers 1.53 wt.%hydrogen storage capacity at room temperature and exhibits higher plateau pressure than Pr_(5)Co_(19)-type alloy.The work provides novel AB_(4)-type alloy with preferable electrochemical performance as negative electrode material to inspire the development of nickel metal hydride batteries.
文摘The degradation mechanism of electrochemical performance of sealed type nickel/metal hydride batteries was investigated. The results indicate that the degradation behavior of Ni/MH battery is not only owing to the lack of electrolyte, but also the deterioration of the active materials on the positive and negative electrodes of Ni/MH batteries. Scanning electron micrographs (SEM), X ray diffraction (XRD) and laser granularity analyses are presented. The particle pulverization and oxidation during charge/discharge are identified as the main causes for deterioration of the negative and positive electrode in nickel/metal hydride batteries, as well as the cross section cracking of both anode and cathode.
基金Supported by the Natural Science Foundation of Department of Education (05Z008) and the Science and Technology Projects of Guangdong Province (2007B030101007).
文摘Cylindrical nickel metal hydride (Ni-MH) battery with high specific volume capacity was prepared by using the oxyhydroxide Ni(OH)2 and AB5 type hydrogen storage alloy and adjusting the designing parameters of positive and negative electrodes. The oxyhydroxide Ni(OH)2 was synthesized by oxidizing spherical β-Ni(OH)2 with chemical method. The X-ray diffraction (XRD) patterns and the Fourier transform infrared (PT-IR) spectra indicated that 7-NiOOH was formed on the oxyhydroxide Ni(OH)2 powders, and some H2O molecules were inserted into their crystal lattice spacing. The battery capacity could not be improved when the oxyhydroxide Ni(OH)2 sample was directly used as the positive active materials. However, based on the conductance and residual capacity of the oxyhydroxide Ni(OH)2 powders, AA size Ni-MH battery with 2560 mA.h capacity and 407 W·h·L^-1 specific volume energy at 0.2C was obtained by using the commercial spherical β-Ni(OH)2 and AB5-type hydrogen-storage alloy powders as the active materials when 10% mass amount of the oxyhydroxide Ni(OH)2 with 2.50 valence was added to the positive active materials and subsequently the battery designing parameters were adjusted as well. The as-prepared battery showed 70% initial capacity after 80 cycles at 0.5C. The possibility for adjusting the capacity ratio of positive and negative electrodes from 1 : 1.35 to 1 : 1.22 was demonstrated preliminarily. It is considered the as-prepared battery can meet the requirement of some special portable electrical instruments.
文摘With the increased use of renewable energy sources,the need to store large amounts of energy will become increasingly important in the near future.A cost efficient possibility is to use the reaction of recycled Mg waste with hydrogen as thermo-chemical energy storage.Owing to the high reaction enthalpy,the moderate pressure and appropriate temperature conditions,the broad abundance and the recyclability,the Mg/Al alloy is perfectly suitable for this purpose.As further development of a previous work,in which the performance of recycled Mg/Al waste was presented,a kinetic model for hydro-and dehydrogenation is derived in this study.Temperature and pressure dependencies are determined,as well as the rate limiting step of the reaction.First experiments are carried out in an autoclave with a scaled-up powder mass,which is also used to validate the model by simulating the geometry with the scaled-up experiments at different conditions.
基金the National Natural Science Foundation of China (50571046, 20573058, 50631020)TJNFS (07JCYBJC03500)+1 种基金863 Pro-gram (2007AA05Z149, 2007AA05Z108, 2006AA05Z110)SRF for ROCS
文摘The La0.8Mg0.2Ni2.4Mn0.10Co0.55Al0.10 alloy was prepared by induction melting. The structural and morphological characterizations were performed by means of X-ray powder diffraction (XRD) and scanning electron microscopy (SEM). The electrochemical measurements were performed using LAND and CH/660b electrochemical workstation. The main phases of the alloy were LaNi5 and (La,Mg)Ni3. After annealing, the maximum discharge capacity, cycle stability and high rate dischargeability (HRD) were improved obviously. The maximum discharge capacity reached 373.80 mAh/g (T=1173 K), the C100/Cmax(%) was 72.63% (T=1173 K), and the value of HRD reached 51.8% at a discharge current density of 1150 mA/g (T=1173 K). The cyclic voltammetry (CV) and potentiodynamic polarization were also studied.
文摘The influence of microstructure homogeneity on the electrochemical performance for MmNi 3 5 Co 0 8 Mn 0 4 Al 0 3 alloy system was studied. It was found that technological parameters, such as temperature and refining time during alloy melting process have effects on the microstructure homogeneity and latter obviously influences the electrode performance, such as discharge potential plateau and cycle life of the alloys.
文摘The electrochemical properties of RE(NiCoMnTi) 5 hydrogen storage alloy with different composition of rare earth(RE=La 1-x-y-z Ce x Nd y Pr z ) components were systematically examined To display the effect of rare earth elements on the electrode properties, the comprehensive electrochemical property graphs including the discharge capacity, high dischargeability and cycling life of alloy electrode vs quasi ternary rare earth composition of multicomponent alloys were drawn by first dividing the component elements into two groups with fixed ratios between the two groups and then using a computer program for engineering graphics By the optimizaiton of the La∶Ce∶Nd∶Pr ratio, the alloy RE(NiCoMnTi) 5 shows a maximum capacity of 290 mAh/g and good cycling stability The higher capacity was due to the larger unit cell volume of the alloy with RE=La 0 4 Ce 0 1 Nd 0 3 Pr 0 2 , as determined by X ray diffraction analysis
基金supported by the MOST of China(No.2010CB631301 and 2012CBA01207)NSFC(No.U1201241,11375020 and 21321001)
文摘Pd-capped Mg78Y22 thin films have been prepared by direct current magnetron co-sputtering system at different substrate temperatures and their electrochemical hydrogen storage properties have been investigated.It is found that rising substrate temperature to 60 ℃ can coarsen the surface of thin film,thus facilitating the diffusion of hydrogen atoms and then enhancing its discharge capacity to 1725 mAh·g-1.Simultaneously,the cyclic stability is effectively improved due to the increased adhesion force between film and substrate as a function of temperature.In addition,the specimen exhibits a very long and flat discharge plateau at about —0.67 V,at which nearly 60%of capacity is maintained.The property is favorable for the application in metal hydride/nickel secondary batteries.The results indicate that rising optimal substrate temperature has a beneficial effect on the electrochemical hydrogen storage of Mg-Y thin films.
基金Project(50574105)supported by the National Natural Science Foundation of ChinaProject(10JJ2037)supported by Hunan Provincial Natural Science Foundation of ChinaProject(200902)supported by Innovation Foundation of State Key Laboratory for Powder Metallurgy,Central South University,China
文摘Reactive mechanical alloying(RMA)was carried out in a planetary ball mill for the synthesis of ternary hydride Mg2FeH6 for hydrogen storage.The formation mechanism of Mg2FeH6 in RMA process and the sorption properties of the products were investigated.The results show that Mg2FeH6 has a yield ratio around 80%,and a grain size below 10 nm in the powder synthesized by milling 3Mg+Fe mixture for 150 h under the hydrogen pressure of 1 MPa.The synthesized powder possesses a high hydrogen capacity and good sorption kinetics,and absorbs 4.42%(mass fraction)of hydrogen within 200 s at 623 K under the hydrogen pressure of 4.0 MPa.In releasing hydrogen at 653 K under 0.1 MPa,it desorbs 4.43%(mass fraction)of hydrogen within 2 000 s.The addition of Ti increases the hydrogen desorption rate of the complex in the initial 120 s of the desorption process.
基金the National Natural Science Foundation of China under grant No. 50276063.
文摘Investigation has been carried out to find the effects of Nd substitution and Cu addition on the hydrogen storage properties of AB5-type alloy with a multicomponent La0.6M0.4Ni4.8Mn0.2 (M=Y, Nd) system. La0.6Y0.4Ni4.8Mn0.2, which was used in an air-conditioning system, showed poor hysteresis and sloping characteristics, which led to a decrease concerning the coefficient of performance of the system. By the substitution of Nd for Y, the hydrogen storage capacity increased, and the plateau pressure decreased a little, but the hydrogen absorption kinetics decreased dramatically. Cu addition can effectively improve the kinetics of hydride formation without changing the hydrogen storage capacity of La0.6Nd0.4Ni4.8Mn0.2. It has been found that La0.6Nd0.4Ni4.8Mno0.2Cu0.1 alloy showed good hydrogen storage characteristics for metal hydride air-conditioning system. The results showed that, for each component of La0.6M0.4Ni4.8Mn0.2. the effective hydrogen storage capacity increased with decrease of the unit cell parameter c/a and the hydrogen absorption plateau pressure increased with decrease of the parameter a.
基金supported by the National Natural Science Foundation of China(51301161)973 Project(2010CB631304)the Project of National Natural Science Funds for Distinguished Young Scholar(51225206)
文摘Alkali metal hydroxide and hydride composite systems contain both protic (H bonded with O) and hydridic hydrogen. The interaction of these two types of hydrides produces hydrogen. The enthalpy of dehydrogenation increased with the increase of atomic number of alkali metals, i.e., -23 kJ/molnz for LiOH-LiH, 55.34 kJ/moln: for NaOH-NaH and 222 kJ/molH2 for KOH-KH. These thermodynamic calculation results were consistent with our experimental results. H2 was released from LiOH-LiH system during ball milling. The dehydrogenation temperature of NaOH-NaH system was about 150 ℃; whereas KOH and KH did not interact with each other during the heating process. Instead, KH decomposed by itself. In these three systems, NaOH-NaH was the only reversible hydrogen storage system, the enthalpy of dehydrogenation was about 55.65 kJ/molHz, and the corresponding entropy was ca. 101.23 J/(molHz .K), so the temperature for releasing 1.0 bar H2 was as high as 518 ℃, showing unfavorable thermodynamic properties. The activation energy for hydrogen desorption of NaOH-NaH was found to be 57.87 kJ/mol, showing good kinetic properties.
基金Project (No. 50276063) supported by the National Natural Science Foundation of China
文摘Aiming at developing exhaust gas driving automobile air conditioning systems, a hydride pair LaNi4.61Mn0.26A10.13/ La0.6Y0.4Ni4.8Mn0.2 was developed working at 393-473 K/293-323 K/263-273 K. Property tests showed that both alloys have flat plateau slopes and small hystereses; system theoretical coefficient of performance (COP) is 0.711. Based on this work pair, a function proving automobile metal hydride refrigeration system was constructed. The equivalent thermal conductivities of the activated reaction beds were merely 1.1-1.6 W/(m-K), which had not met practical requirement. Intermittent refrigeration cycles were achieved and the average cooling power was 84.6 W at 423 K/303 K/273 K with COP being 0.26. By altering cycling parameters, experiment data showed that cooling power and system COP increase with the growth of heat source temperature as well as pre-heating and regeneration time while decrease with heat sink temperature increment. This study confirms the feasibility of automobile metal hydride refrigeration systems, while heat transfer properties of reaction beds still need to be improved for better performance.
文摘The electrochemical characteristics and crystal structure of metal hydride electrode of AB_(3.5)-type alloy was studied. The electrochemical properties of the metal hydride electrode were investigated at room temperature and -30 ℃. The partial substitution of Ni by Al element causes an expansion of the lattice cell and increases the specific capacity and rate discharge ability of the alloy.