As promising catalysts for the degradation of organic pollutants,metal–organic frameworks(MOFs)often face limitations due to the particle agglomeration and challenging recovery in liquid-catalysis application,stemmin...As promising catalysts for the degradation of organic pollutants,metal–organic frameworks(MOFs)often face limitations due to the particle agglomeration and challenging recovery in liquid-catalysis application,stemming from their powdery nature.Engineering macroscopic structures from pulverous MOF is thus of great importance for broadening their practical applications.In this study,three-dimensional porous MOF aerogel catalysts were successfully fabricated for degrading organic dyes by activating peroxymonosulfate(PMS).MOF/gelatin aerogel(MOF/GA)catalysts were prepared by directly integrating bimetallic FeCo-BDC with gelatin solutions,followed by freeze-drying and low-temperature calcination.The FeCo-BDC-0.15/GA/PMS system exhibited remarkable performance in degrading various organic dyes,eliminating 99.2%of rhodamine B within a mere 5 min.Compared to the GA/PMS system,there was over a 300-fold increase in the reaction rate constant.Remarkably,high removal efficiency was maintained across varying conditions,including different solution pH,co-existing inorganic anions,and natural water matrices.Radical trapping experiments and electron paramagnetic resonance analysis revealed that the degradation involved radical(SO_(4)^(-)·)and non-radical routes(^(1)O_(2)),of which ^(1)O_(2) was dominant.Furthermore,even after a continuous 400-min reaction in a fixed-bed reactor at a liquid hourly space velocity of 27 h^(-1),the FeCo-BDC/GA composite sustained a degradation efficiency exceeding 98.7%.This work presents highly active MOF-gelatin aerogels for dye degradation and expands the potential for their large-scale,continuous treatment application in organic dye wastewater management.展开更多
The catalytic effects of the organic compounds of iron,tin and manganese on the degradation of low density polyethylene (LDPE) at compost temperature are discussed.A series of samples were aged in a simulating compost...The catalytic effects of the organic compounds of iron,tin and manganese on the degradation of low density polyethylene (LDPE) at compost temperature are discussed.A series of samples were aged in a simulating compost environment.The mechanical properties,viscosity average molecular weight (M η) of PE and hydroperoxide (POOH) concentration in the samples were measured.FT IR and DSC were also applied to characterize some samples.It was shown that the above mentioned metallic organic compounds can catalyze the degradation of LDPE efficiently.After 2 months aging,all samples with catalysts became fragile and the M η of the material decreased dramatically.Furthermore,the concentration of carbonyl and the degree of crystallinity of the material increased with the aging time.展开更多
Adsorption coupled with photocatalytic degradation is proposed to fulfill the removal and thorough elimination of organic dyes.Herein,we report a facile hydrothermal synthesis of MIL-100(Fe)/GO photocatalysts.The adso...Adsorption coupled with photocatalytic degradation is proposed to fulfill the removal and thorough elimination of organic dyes.Herein,we report a facile hydrothermal synthesis of MIL-100(Fe)/GO photocatalysts.The adsorption and photocatalytic degradation process of methylene blue(MB)on MIL‐100(Fe)/GO composites were systematically studied from performance and kinetic perspectives.A possible adsorption‐photocatalytic degradation mechanism is proposed.The optimized 1M8G composite achieves 95%MB removal(60.8 mg/g)in 210 min and displays well recyclability over ten cycles.The obtained MB adsorption and degradation results are well fitted onto Langmuir isotherm and pseudo‐second order kinetic model.This study shed light on the design of MOFs based composites for water treatment.展开更多
Polyethylene terephthalate (PET) as one of non-degradable wastes has become a huge threat to the environment and human health.Chemical Recycle of PET is a sustainable way to release 1,4-benzenedicarboxylic acid (BDC) ...Polyethylene terephthalate (PET) as one of non-degradable wastes has become a huge threat to the environment and human health.Chemical Recycle of PET is a sustainable way to release 1,4-benzenedicarboxylic acid (BDC) the monomer of PET as common used organiclinker for synthesis of functional Metal–organic-frameworks (PET-derived MOFs) such as UiO-66, MIL-101, etc. This sustainable and costeffective“Waste-to-MOFs” model is of great significant to be intensively investigated in the past years. Attributes of substantial porosity, specificsurface area, exposed metal centers, uniform structure, and flexible morphology render PET-derived MOFs are well-suited for applications inadsorption, energy storage, catalysis, among others. Herein, in the present work, we have summarized recent advances in synthesis of PETderived MOFs using ex-situ and in-situ methods for typical applications of adsorption, catalysis and energy storage. Despite those improvementsin synthesis methods and potential applications, challenges still remain in development of green and economical routes to fully utilize waste PETfor massive manufacture of valuable MOF materials and chemicals. This review provides insights into the conversion of non-degradable PETwaste to value-added MOF materials, and further suggests promising perspectives to develop the sustainable “Waste-to-MOFs” model inaddressing environmental pollution and energy crises.展开更多
Water stability is one of the most important factors restricting the practical application of metal organic frameworks (MOFs). In this work, wefabricate a highly defective HKUST-1 framework with a mixed valence of CuI...Water stability is one of the most important factors restricting the practical application of metal organic frameworks (MOFs). In this work, wefabricate a highly defective HKUST-1 framework with a mixed valence of CuI/CuIIby mechanical ball milling method. This defective HKUST-1is embellished by functionalized ionic liquids as hydrophobic armor, making the hybrid HIL1@HKUST-1 exhibits outstanding water stability,remarkable SO_(2) adsorption (up to 5.71 mmol g^(-1)), and record-breaking selectivity (1070 for SO_(2)/CO_(2) and 31,515 for SO_(2)/N_(2)) at 25 ℃ and0.1 bar, even in wet conditions.展开更多
Sodium dentrite formed by uneven plating/stripping can reduce the utilization of active sodium with poor cyclic stability and,more importantly,cause internal short circuit and lead to thermal runaway and fire.Therefor...Sodium dentrite formed by uneven plating/stripping can reduce the utilization of active sodium with poor cyclic stability and,more importantly,cause internal short circuit and lead to thermal runaway and fire.Therefore,sodium dendrites and their related problems seriously hinder the practical application of sodium metal batteries(SMBs).Herein,a design concept for the incorporation of metal-organic framework(MOF)in polymer matrix(polyvinylidene fluoride-hexafluoropropylene)is practiced to prepare a novel gel polymer electrolyte(PH@MOF polymer-based electrolyte[GPE])and thus to achieve high-performance SMBs.The addition of the MOF particles can not only reduce the movement hindrance of polymer chains to promote the transfer of Na^(+)but also anchor anions by virtue of their negative charge to reduce polarization during electrochemical reaction.A stable cycling performance with tiny overpotential for over 800 h at a current density of 5 mA cm^(-2)with areal capacity of 5 mA h cm^(-2)is achieved by symmetric cells based on the resulted GPE while the Na_(3)V_(2)O_(2)(PO_(4))_(2)F@rGO(NVOPF)|PH@MOF|Nacell also displays impressive specific cycling capacity(113.3 mA h g^(-1)at 1 C)and rate capability with considerable capacity retention.展开更多
Metal–organic frameworks(MOFs)are highly promising porous materials known for their exceptional porosity,extensive surface area,and customizable pore structures,making them an ideal solution for hydrogen storage.Howe...Metal–organic frameworks(MOFs)are highly promising porous materials known for their exceptional porosity,extensive surface area,and customizable pore structures,making them an ideal solution for hydrogen storage.However,most MOFs research remains confined to the laboratory,lacking practical applications.To address this,the author proposes a shift towards practical applications,the creation of a comprehensive MOFs database,alignment of synthesis with practical considerations,and diversification of MOFs applications.These steps are crucial for harnessing the full potential of MOFs in real-world energy challenges.展开更多
Electrochemical reduction of CO_(2) to syngas(CO and H_(2))offers an efficient way to mitigate carbon emissions and store intermittent renewable energy in chemicals.Herein,the hierarchical one‐dimensional/three‐dime...Electrochemical reduction of CO_(2) to syngas(CO and H_(2))offers an efficient way to mitigate carbon emissions and store intermittent renewable energy in chemicals.Herein,the hierarchical one‐dimensional/three‐dimensional nitrogen‐doped porous carbon(1D/3D NPC)is prepared by carbonizing the composite of Zn‐MOF‐74 crystals in situ grown on a commercial melamine sponge(MS),for electrochemical CO_(2) reduction reaction(CO_(2)RR).The 1D/3D NPC exhibits a high CO/H_(2) ratio(5.06)and CO yield(31 mmol g^(−1)h^(−1))at−0.55 V,which are 13.7 times and 21.4 times those of 1D porous carbon(derived from Zn‐MOF‐74)and N‐doped carbon(carbonized by MS),respectively.This is attributed to the unique spatial environment of 1D/3D NPC,which increases the adsorption capacity of CO_(2) and promotes electron transfer from the 3D N‐doped carbon framework to 1D carbon,improving the reaction kinetics of CO_(2)RR.Experimental results and charge density difference plots indicate that the active site of CO_(2)RR is the positively charged carbon atom adjacent to graphitic N on 1D carbon and the active site of HER is the pyridinic N on 1D carbon.The presence of pyridinic N and pyrrolic N reduces the number of electron transfer,decreasing the reaction kinetics and the activity of CO_(2)RR.The CO/H_(2) ratio is related to the distribution of N species and the specific surface area,which are determined by the degree of spatial confinement effect.The CO/H_(2) ratios can be regulated by adjusting the carbonization temperature to adjust the degree of spatial confinement effect.Given the low cost of feedstock and easy strategy,1D/3D NPC catalysts have great potential for industrial application.展开更多
Controllable design of the catalytic electrodes with hierarchical superstructures is expected to improve their electrochemical performance.Herein,a self-supported integrated electrode(NiCo-ZLDH/NF)with a unique hierar...Controllable design of the catalytic electrodes with hierarchical superstructures is expected to improve their electrochemical performance.Herein,a self-supported integrated electrode(NiCo-ZLDH/NF)with a unique hierarchical quaternary superstructure was fabricated through a self-sacrificing template strategy from the metal–organic framework(Co-ZIF-67)nanoplate arrays,which features an intriguing well-defined hierarchy when taking the unit cells of the NiCo-based layered double hydroxide(NiCo-LDH)as the primary structure,the ultrathin LDH nanoneedles as the secondary structure,the mesoscale hollow plates of the LDH nanoneedle arrays as the tertiary structure,and the macroscale three-dimensional frames of the plate arrays as the quaternary structure.Notably,the distinctive structure of NiCo-ZLDH/NF can not only accelerate both mass and charge transfer,but also expose plentiful accessible active sites with high intrinsic activity,endowing it with an excellent electrochemical performance for urea oxidation reaction(UOR).Specially,it only required the low potentials of 1.335,1.368 and 1.388 V to deliver the current densities of 10,100 and 200 mA cm^(-2),respectively,much superior to those for typical NiCo-LDH.Employing NiCo-ZLDH/NF as the bifunctional electrode for both anodic UOR and cathodic HER,an energy-saving electrolysis system was further explored which can greatly reduce the needed voltage of 213 mV to deliver the current density of 100 mA cm^(-2),as compared to the conventional water electrolysis system composed of OER.This work manifests that it is prospective to explore the hierarchically nanostructured electrodes and the innovative electrolytic technologies for high-efficiency electrocatalysis.展开更多
The Co@NC catalysts with different morphologies were prepared by two step process,solvent control growth and pyrolysis method.The polyhedral Co@NC-67P-450 catalyst has a relatively high CoNx content and exhibits excel...The Co@NC catalysts with different morphologies were prepared by two step process,solvent control growth and pyrolysis method.The polyhedral Co@NC-67P-450 catalyst has a relatively high CoNx content and exhibits excellent phenol hydrogenation activity(conversion 96.9%)at 160℃,3 MPa,which is higher than that of leaf shaped Co@NC-67L-450 catalyst(conversion 75.4%).We demonstrated Co_(3)O_(4)was reduced to the Co^(0)during the reaction.Moreover,CoNx species contribute to the superior hydrogenation activity of phenol.The Co-based catalysts can be easily recovered through the magnetic separation and performed the high stability.展开更多
The emergence of the internet of things has promoted wireless communication’s evolution towards multi-band and multi-area utilization.Notably,forthcoming sixth-generation(6G)communication standards,incorporating tera...The emergence of the internet of things has promoted wireless communication’s evolution towards multi-band and multi-area utilization.Notably,forthcoming sixth-generation(6G)communication standards,incorporating terahertz(THz)frequencies alongside existing gigahertz(GHz)modes,drive the need for a versatile multi-band electromagnetic wave(EMW)absorbing and shielding material.This study introduces a pivotal advance via a new strategy,called ultrafast laser-induced thermal-chemical transformation and encapsulation of nanoalloys(LITENs).Employing multivariate metal-organic frameworks,this approach tailors a porous,multifunctional graphene-encased magnetic nanoalloy(GEMN).By fine-tuning pulse laser parameters and material components,the resulting GEMN excels in low-frequency absorption and THz shielding.GEMN achieves a breakthrough of minimum reflection loss of−50.6 dB in the optimal C-band(around 4.98 GHz).Computational evidence reinforces GEMN’s efficacy in reducing radar cross sections.Additionally,GEMN demonstrates superior electromagnetic interference shielding,reaching 98.92 dB under THz band(0.1–2 THz),with the mean value result of 55.47 dB.These accomplishments underscore GEMN’s potential for 6G signal shielding.In summary,LITEN yields the remarkable EMW controlling performance,holding promise in both GHz and THz frequency domains.This contribution heralds a paradigm shift in EM absorption and shielding materials,establishing a universally applicable framework with profound implications for future pursuits.展开更多
Process of crystal growth can be controlled by both surface kinetics and by volume transport as well.Although the complicated relation between the surface kinetics and volume transport exsits,generally,they are studie...Process of crystal growth can be controlled by both surface kinetics and by volume transport as well.Although the complicated relation between the surface kinetics and volume transport exsits,generally,they are studied seprately.Due to the mathematical complexity of heat and mass transport equations,the in depth studies of heat and mass transport process become difficult.Most of the studies on the transport were performed for the growth from melt.Most of the work on Surface kinetics has been done for crystal growth from aqueous solution because the in situ observation of crystal growth is easily carried out.In recent years,the surface kinetics studies on the nanometer scale,even atomic scale,are demonstrated by using AFM.展开更多
Metal organic frameworks(MOFs) are an important platform for heterogeneous catalysts.Although MOFs with a smaller particle size exhibit better catalytic performance because of less diffusion limitations,their separa...Metal organic frameworks(MOFs) are an important platform for heterogeneous catalysts.Although MOFs with a smaller particle size exhibit better catalytic performance because of less diffusion limitations,their separation and recycling after catalytic reactions are difficult.The integration of MOFs with magnetic nanoparticles could facilitate their recovery and separation.Especially,the shell thickness of the core-shell structured composites is controllable.In this study,amino-functionalized Fe3O4@Cu3(BTC)2 was fabricated by a stepwise assembly method and its catalytic performance in Knoevenagel condensation was investigated.The results demonstrated that the magnetic hybrid material exhibited a core-shell structure,with a shell thickness of about 2 00 nm.Furthermore,it not only exhibited high catalytic activity,but remarkably,it could also be easily recovered magnetically and recycled without obvious loss of catalytic efficiency after three cycles.展开更多
The development of a non-precious metal electrocatalyst (NPME) with a performance superior to commercial Pt/C for the oxygen reduction reaction (ORR) is important for the commercialization of fuel cells. We report...The development of a non-precious metal electrocatalyst (NPME) with a performance superior to commercial Pt/C for the oxygen reduction reaction (ORR) is important for the commercialization of fuel cells. We report the synthesis of a NPME by heat-treating Co-based metal organic frameworks (ZIF-67) with a small average size of 44 nm. The electrocatalyst pyrolyzed at 600 ~C showed the best performance and the performance was enhanced when it was supported on BP 2000. The resulting electrocatalyst was composed of 10 nm Co nanoparticles coated by 3-12 layers of N doped graphite layers which as a whole was embedded in a carbon matrix. The ORR performance of the electrocatalyst was tested by rotating disk electrode tests in O2-saturated 0.1 mol/L KOH under ambient conditions. The electrocatalyst (1.0 mg/cm~] showed an onset potential of 1.017 V ([vs. RHE] and a half-wave potential of 0.857 V (vs. RHE], which showed it was as good as the commer- cial Pt/C (20 BgPt/cm2). Furthermore, the electrocatalyst possessed much better stability and re- sistance to methanol crossover than Pt/C.展开更多
The rapid development of electric vehicles and mobile electronic devices is the main driving force to improve advanced high-performance lithium ion batteries(LIBs).The capacity,rate performance and cycle stability of ...The rapid development of electric vehicles and mobile electronic devices is the main driving force to improve advanced high-performance lithium ion batteries(LIBs).The capacity,rate performance and cycle stability of LIBs rely directly on the electrode materials.As far as the development of the advanced LIBs electrode is concerned,the improvement of anode materials is more urgent than the cathode materials.Industrial production of anode materials superior to commercial graphite still faces some challenges.This review sets out the most basic LIBs anode material design.The reaction principles and structural design of carbon materials,various transition metal oxides,silicon and germanium are summarized,and then the progress of other anode materials are analyzed.Due to the rapid development of metal organic frameworks(MOFs)in energy storage and conversion in recent years,the synthesis process and energy storage mechanism of nanostructures derived from MOF precursors are also discussed.From the perspective of novel structural design,the progress of various MOFs-derived materials for alleviating the volume expansion of anode materials is discussed.Finally,challenges for the future development of advanced anode materials for LIBs will be considered.展开更多
Metal–organic framework(MOF)-based materials with high porosity,tunable compositions,diverse structures,and versatile functionalities provide great scope for next-generation rechargeable battery applications.Herein,t...Metal–organic framework(MOF)-based materials with high porosity,tunable compositions,diverse structures,and versatile functionalities provide great scope for next-generation rechargeable battery applications.Herein,this review summarizes recent advances in pristine MOFs,MOF composites,MOF derivatives,and MOF composite derivatives for high-performance sodium-ion batteries,potassiumion batteries,Zn-ion batteries,lithium–sulfur batteries,lithium–oxygen batteries,and Zn–air batteries in which the unique roles of MOFs as electrodes,separators,and even electrolyte are highlighted.Furthermore,through the discussion of MOFbased materials in each battery system,the key principles for controllable synthesis of diverse MOF-based materials and electrochemical performance improvement mechanisms are discussed in detail.Finally,the major challenges and perspectives of MOFs are also proposed for next-generation battery applications.展开更多
Porous structures o er highly accessible surfaces and rich pores, which facilitate the exposure of numerous active sites for photocatalytic reactions, leading to excellent performances. Recently, metal–organic framew...Porous structures o er highly accessible surfaces and rich pores, which facilitate the exposure of numerous active sites for photocatalytic reactions, leading to excellent performances. Recently, metal–organic frameworks(MOFs) have been considered ideal precursors for well-designed semiconductors with porous structures and/or heterostructures, which have shown enhanced photocatalytic activities. In this review, we summarize the recent development of porous structures, such as metal oxides and metal sulfides, and their heterostructures, derived from MOF-based materials as catalysts for various light-driven energy-/environment-related reactions, including water splitting, CO_2 reduction, organic redox reaction, and pollution degradation. A summary and outlook section is also included.展开更多
Direct electrochemical reduction of CO2 into valuable chemicals and fuel is one of the most promising approaches to address the current energy crisis and lower CO2 emission.Recently,numerous metal-organic framework(MO...Direct electrochemical reduction of CO2 into valuable chemicals and fuel is one of the most promising approaches to address the current energy crisis and lower CO2 emission.Recently,numerous metal-organic framework(MOF)and their derived materials have extensively been developed as electrocatalysts for CO2 reduction owing to their unique structure including porosity,large specific surface area,and tunable chemical structures.In this review,the recent progress of MOF-based electrocatalysts for CO2 reduction was summarized and discussed.Detailed discussions mainly focus on the synthesis and mechanism of pristine MOFs and MOF-derived materials for electrocatalytic CO2 reduction.These examples are expected to provide clues to rational design and synthesis of stable and high-performance MOFs-based electrocatalysts for CO2 reduction.展开更多
Zirconium-based MOFs of the UiO family have attracted considerable attention due to their high thermal,chemical and mechanical stability. With the aim of further exploring the applications of zirconium-based UiO-66 in...Zirconium-based MOFs of the UiO family have attracted considerable attention due to their high thermal,chemical and mechanical stability. With the aim of further exploring the applications of zirconium-based UiO-66 in acid-catalyzed reactions and elucidating the effects of the defects in UiO-66 materials on their catalytic performances, in this work, a series of zirconium-containing UiO-66 samples were synthesized by varying the synthesis temperatures and BDC/Zr(terephthalic acid/ZrCl) ratios in the synthesis system.The synthesized UiO-66 samples were characterized by X-ray diffraction(XRD), Nadsorption-desorption,scanning electron microscopy(SEM), thermogravimetrical analysis(TGA), temperature-programmed desorption of NH(NH-TPD). Their catalytic performances were investigated in transesterification of tributyrin and soybean oil with methanol. The results showed that UiO-66 samples with different amounts of defects could be successfully prepared by varying the synthesis temperatures and/or the BDC/Zr ratios used in the synthesis system. The catalytic activities of the UiO-66 materials greatly depended on their linker defects and enhanced with the increase of the defect amount. The UiO-66 was an efficient catalyst for transesterification of tributyrin and soybean oil with methanol under mild reaction conditions and its catalytic activity was comparable to other solid acid catalysts reported in the literatures. The UiO-66 catalyst was relatively stable and could be reused.展开更多
Metal organic frameworks(MOFs) represent a class of porous material which is formed by strong bonds between metal ions and organic linkers. By careful selection of constituents, MOFs can exhibit very high surface area...Metal organic frameworks(MOFs) represent a class of porous material which is formed by strong bonds between metal ions and organic linkers. By careful selection of constituents, MOFs can exhibit very high surface area, large pore volume, and excellent chemical stability.Research on synthesis, structures and properties of various MOFs has shown that they are promising materials for many applications, such as energy storage, gas storage, heterogeneous catalysis and sensing. Apart from direct use, MOFs have also been used as support substrates for nanomaterials or as sacrificial templates/precursors for preparation of various functional nanostructures. In this review, we aim to present the most recent development of MOFs as precursors for the preparation of various nanostructures and their potential applications in energy-related devices and processes. Specifically, this present survey intends to push the boundaries and covers the literatures from the year 2013 to early 2017,on supercapacitors, lithium ion batteries, electrocatalysts, photocatalyst, gas sensing, water treatment, solar cells, and carbon dioxide capture.Finally, an outlook in terms of future challenges and potential prospects towards industrial applications are also discussed.展开更多
基金funded by the Natural Science Foundation of Fujian Province(2023J05180)the President's Foundation of Minnan Normal University(KJ2021011).
文摘As promising catalysts for the degradation of organic pollutants,metal–organic frameworks(MOFs)often face limitations due to the particle agglomeration and challenging recovery in liquid-catalysis application,stemming from their powdery nature.Engineering macroscopic structures from pulverous MOF is thus of great importance for broadening their practical applications.In this study,three-dimensional porous MOF aerogel catalysts were successfully fabricated for degrading organic dyes by activating peroxymonosulfate(PMS).MOF/gelatin aerogel(MOF/GA)catalysts were prepared by directly integrating bimetallic FeCo-BDC with gelatin solutions,followed by freeze-drying and low-temperature calcination.The FeCo-BDC-0.15/GA/PMS system exhibited remarkable performance in degrading various organic dyes,eliminating 99.2%of rhodamine B within a mere 5 min.Compared to the GA/PMS system,there was over a 300-fold increase in the reaction rate constant.Remarkably,high removal efficiency was maintained across varying conditions,including different solution pH,co-existing inorganic anions,and natural water matrices.Radical trapping experiments and electron paramagnetic resonance analysis revealed that the degradation involved radical(SO_(4)^(-)·)and non-radical routes(^(1)O_(2)),of which ^(1)O_(2) was dominant.Furthermore,even after a continuous 400-min reaction in a fixed-bed reactor at a liquid hourly space velocity of 27 h^(-1),the FeCo-BDC/GA composite sustained a degradation efficiency exceeding 98.7%.This work presents highly active MOF-gelatin aerogels for dye degradation and expands the potential for their large-scale,continuous treatment application in organic dye wastewater management.
文摘The catalytic effects of the organic compounds of iron,tin and manganese on the degradation of low density polyethylene (LDPE) at compost temperature are discussed.A series of samples were aged in a simulating compost environment.The mechanical properties,viscosity average molecular weight (M η) of PE and hydroperoxide (POOH) concentration in the samples were measured.FT IR and DSC were also applied to characterize some samples.It was shown that the above mentioned metallic organic compounds can catalyze the degradation of LDPE efficiently.After 2 months aging,all samples with catalysts became fragile and the M η of the material decreased dramatically.Furthermore,the concentration of carbonyl and the degree of crystallinity of the material increased with the aging time.
基金National Natural Science Foundation of China(Grant No.21902001,22179001)Distinguished Young Research Project of Anhui Higher Education Institution(Grant No.2022AH020007)+1 种基金University Synergy Innovation Program of Anhui Province(Grant No.GXXT-2023-009)Higher Education Natural Science Foundation of Anhui Province(Grant No.2023AH050114).
文摘Adsorption coupled with photocatalytic degradation is proposed to fulfill the removal and thorough elimination of organic dyes.Herein,we report a facile hydrothermal synthesis of MIL-100(Fe)/GO photocatalysts.The adsorption and photocatalytic degradation process of methylene blue(MB)on MIL‐100(Fe)/GO composites were systematically studied from performance and kinetic perspectives.A possible adsorption‐photocatalytic degradation mechanism is proposed.The optimized 1M8G composite achieves 95%MB removal(60.8 mg/g)in 210 min and displays well recyclability over ten cycles.The obtained MB adsorption and degradation results are well fitted onto Langmuir isotherm and pseudo‐second order kinetic model.This study shed light on the design of MOFs based composites for water treatment.
基金supported by the National Natural Science Foundation of China(21902105,52274172)Shenzhen Science and Technology Program(JCYJ20210324094000001)Guangdong Basic and Applied Basic Research Foundation(2020A1515010471).
文摘Polyethylene terephthalate (PET) as one of non-degradable wastes has become a huge threat to the environment and human health.Chemical Recycle of PET is a sustainable way to release 1,4-benzenedicarboxylic acid (BDC) the monomer of PET as common used organiclinker for synthesis of functional Metal–organic-frameworks (PET-derived MOFs) such as UiO-66, MIL-101, etc. This sustainable and costeffective“Waste-to-MOFs” model is of great significant to be intensively investigated in the past years. Attributes of substantial porosity, specificsurface area, exposed metal centers, uniform structure, and flexible morphology render PET-derived MOFs are well-suited for applications inadsorption, energy storage, catalysis, among others. Herein, in the present work, we have summarized recent advances in synthesis of PETderived MOFs using ex-situ and in-situ methods for typical applications of adsorption, catalysis and energy storage. Despite those improvementsin synthesis methods and potential applications, challenges still remain in development of green and economical routes to fully utilize waste PETfor massive manufacture of valuable MOF materials and chemicals. This review provides insights into the conversion of non-degradable PETwaste to value-added MOF materials, and further suggests promising perspectives to develop the sustainable “Waste-to-MOFs” model inaddressing environmental pollution and energy crises.
基金supported by the National Natural Science Foundation of China(nos.22168012 and 22208070)the Key Laboratory of Carbon-based Energy Molecular Chemical Utilization Technology in Guizhou Province(no.2023008)the Guizhou Province Outstanding Young Scientific and Technological Talents Program(no.YQK2023007).
文摘Water stability is one of the most important factors restricting the practical application of metal organic frameworks (MOFs). In this work, wefabricate a highly defective HKUST-1 framework with a mixed valence of CuI/CuIIby mechanical ball milling method. This defective HKUST-1is embellished by functionalized ionic liquids as hydrophobic armor, making the hybrid HIL1@HKUST-1 exhibits outstanding water stability,remarkable SO_(2) adsorption (up to 5.71 mmol g^(-1)), and record-breaking selectivity (1070 for SO_(2)/CO_(2) and 31,515 for SO_(2)/N_(2)) at 25 ℃ and0.1 bar, even in wet conditions.
基金financially supported by National Natural Science Foundation of China(Grans Nos.22179109 and 22005315)Fundamental Research Funds for the Central Universities(SWU120080)Chongqing Key Laboratory of Materials Surface&Interface Science(Project No.KFJJ2002)
文摘Sodium dentrite formed by uneven plating/stripping can reduce the utilization of active sodium with poor cyclic stability and,more importantly,cause internal short circuit and lead to thermal runaway and fire.Therefore,sodium dendrites and their related problems seriously hinder the practical application of sodium metal batteries(SMBs).Herein,a design concept for the incorporation of metal-organic framework(MOF)in polymer matrix(polyvinylidene fluoride-hexafluoropropylene)is practiced to prepare a novel gel polymer electrolyte(PH@MOF polymer-based electrolyte[GPE])and thus to achieve high-performance SMBs.The addition of the MOF particles can not only reduce the movement hindrance of polymer chains to promote the transfer of Na^(+)but also anchor anions by virtue of their negative charge to reduce polarization during electrochemical reaction.A stable cycling performance with tiny overpotential for over 800 h at a current density of 5 mA cm^(-2)with areal capacity of 5 mA h cm^(-2)is achieved by symmetric cells based on the resulted GPE while the Na_(3)V_(2)O_(2)(PO_(4))_(2)F@rGO(NVOPF)|PH@MOF|Nacell also displays impressive specific cycling capacity(113.3 mA h g^(-1)at 1 C)and rate capability with considerable capacity retention.
基金supported by the National Natural Science Foundation of China(52270027,52170037,and U20A20322)the Science and Technology Program of Jilin Province(20210201066GX)+1 种基金Scientific research project of Ecological Environment Department of Jilin Province(2023-05)Jilin Provincial Science and Technology Department Science and Technology Innovation and Entrepreneurship outstanding talent program for young and middle-aged(20230508051RC).
文摘Metal–organic frameworks(MOFs)are highly promising porous materials known for their exceptional porosity,extensive surface area,and customizable pore structures,making them an ideal solution for hydrogen storage.However,most MOFs research remains confined to the laboratory,lacking practical applications.To address this,the author proposes a shift towards practical applications,the creation of a comprehensive MOFs database,alignment of synthesis with practical considerations,and diversification of MOFs applications.These steps are crucial for harnessing the full potential of MOFs in real-world energy challenges.
基金National Natural Science Foundation of China,Grant/Award Numbers:51873085,52071171,52202248The Australian Government through the Cooperative Research Centres Projects,Grant/Award Number:CRCPⅩⅢ000077+10 种基金Linkage Project,Grant/Award Numbers:LP210100467,LP210200345,LP210200504,LP220100088Natural Science Foundation of Liaoning Province‐Outstanding Youth Foundation,Grant/Award Number:2022‐YQ‐14Discovery Project,Grant/Award Number:DP220100603China Scholarship Council(CSC Scholarship),Grant/Award Number:202006800009Liaoning Revitalization Talents Program,Grant/Award Number:XLYC2007056Australian Research Council(ARC)through Future Fellowship,Grant/Award Numbers:FT210100298,FT210100806Shenyang Science and Technology Project,Grant/Award Number:21‐108‐9‐04Industrial Transformation Training Centre schemes,Grant/Award Number:IC180100005Natural Science Foundation of Liaoning Province,Grant/Award Number:2020‐MS‐137Key Research Project of Department of Education of Liaoning Province,Grant/Award Number:LJKZZ20220015Liaoning BaiQianWan Talents Program,Grant/Award Number:LNBQW2018B0048。
文摘Electrochemical reduction of CO_(2) to syngas(CO and H_(2))offers an efficient way to mitigate carbon emissions and store intermittent renewable energy in chemicals.Herein,the hierarchical one‐dimensional/three‐dimensional nitrogen‐doped porous carbon(1D/3D NPC)is prepared by carbonizing the composite of Zn‐MOF‐74 crystals in situ grown on a commercial melamine sponge(MS),for electrochemical CO_(2) reduction reaction(CO_(2)RR).The 1D/3D NPC exhibits a high CO/H_(2) ratio(5.06)and CO yield(31 mmol g^(−1)h^(−1))at−0.55 V,which are 13.7 times and 21.4 times those of 1D porous carbon(derived from Zn‐MOF‐74)and N‐doped carbon(carbonized by MS),respectively.This is attributed to the unique spatial environment of 1D/3D NPC,which increases the adsorption capacity of CO_(2) and promotes electron transfer from the 3D N‐doped carbon framework to 1D carbon,improving the reaction kinetics of CO_(2)RR.Experimental results and charge density difference plots indicate that the active site of CO_(2)RR is the positively charged carbon atom adjacent to graphitic N on 1D carbon and the active site of HER is the pyridinic N on 1D carbon.The presence of pyridinic N and pyrrolic N reduces the number of electron transfer,decreasing the reaction kinetics and the activity of CO_(2)RR.The CO/H_(2) ratio is related to the distribution of N species and the specific surface area,which are determined by the degree of spatial confinement effect.The CO/H_(2) ratios can be regulated by adjusting the carbonization temperature to adjust the degree of spatial confinement effect.Given the low cost of feedstock and easy strategy,1D/3D NPC catalysts have great potential for industrial application.
基金support of the National Natural Science Foundation of China(21901246,22105203 and 22175174)the Natural Science Foundation of Fujian Province(2020J01116 and 2021J06033)the China Postdoctoral Science Foundation(2021TQ0332 and 2021M703215).
文摘Controllable design of the catalytic electrodes with hierarchical superstructures is expected to improve their electrochemical performance.Herein,a self-supported integrated electrode(NiCo-ZLDH/NF)with a unique hierarchical quaternary superstructure was fabricated through a self-sacrificing template strategy from the metal–organic framework(Co-ZIF-67)nanoplate arrays,which features an intriguing well-defined hierarchy when taking the unit cells of the NiCo-based layered double hydroxide(NiCo-LDH)as the primary structure,the ultrathin LDH nanoneedles as the secondary structure,the mesoscale hollow plates of the LDH nanoneedle arrays as the tertiary structure,and the macroscale three-dimensional frames of the plate arrays as the quaternary structure.Notably,the distinctive structure of NiCo-ZLDH/NF can not only accelerate both mass and charge transfer,but also expose plentiful accessible active sites with high intrinsic activity,endowing it with an excellent electrochemical performance for urea oxidation reaction(UOR).Specially,it only required the low potentials of 1.335,1.368 and 1.388 V to deliver the current densities of 10,100 and 200 mA cm^(-2),respectively,much superior to those for typical NiCo-LDH.Employing NiCo-ZLDH/NF as the bifunctional electrode for both anodic UOR and cathodic HER,an energy-saving electrolysis system was further explored which can greatly reduce the needed voltage of 213 mV to deliver the current density of 100 mA cm^(-2),as compared to the conventional water electrolysis system composed of OER.This work manifests that it is prospective to explore the hierarchically nanostructured electrodes and the innovative electrolytic technologies for high-efficiency electrocatalysis.
基金The National Natural Science Foundation of China(22102194)The Science and Technology Plan of Gansu Province(20JR10RA044)The Youth Innovation Promotion Association of CAS(2022427).
文摘The Co@NC catalysts with different morphologies were prepared by two step process,solvent control growth and pyrolysis method.The polyhedral Co@NC-67P-450 catalyst has a relatively high CoNx content and exhibits excellent phenol hydrogenation activity(conversion 96.9%)at 160℃,3 MPa,which is higher than that of leaf shaped Co@NC-67L-450 catalyst(conversion 75.4%).We demonstrated Co_(3)O_(4)was reduced to the Co^(0)during the reaction.Moreover,CoNx species contribute to the superior hydrogenation activity of phenol.The Co-based catalysts can be easily recovered through the magnetic separation and performed the high stability.
文摘The emergence of the internet of things has promoted wireless communication’s evolution towards multi-band and multi-area utilization.Notably,forthcoming sixth-generation(6G)communication standards,incorporating terahertz(THz)frequencies alongside existing gigahertz(GHz)modes,drive the need for a versatile multi-band electromagnetic wave(EMW)absorbing and shielding material.This study introduces a pivotal advance via a new strategy,called ultrafast laser-induced thermal-chemical transformation and encapsulation of nanoalloys(LITENs).Employing multivariate metal-organic frameworks,this approach tailors a porous,multifunctional graphene-encased magnetic nanoalloy(GEMN).By fine-tuning pulse laser parameters and material components,the resulting GEMN excels in low-frequency absorption and THz shielding.GEMN achieves a breakthrough of minimum reflection loss of−50.6 dB in the optimal C-band(around 4.98 GHz).Computational evidence reinforces GEMN’s efficacy in reducing radar cross sections.Additionally,GEMN demonstrates superior electromagnetic interference shielding,reaching 98.92 dB under THz band(0.1–2 THz),with the mean value result of 55.47 dB.These accomplishments underscore GEMN’s potential for 6G signal shielding.In summary,LITEN yields the remarkable EMW controlling performance,holding promise in both GHz and THz frequency domains.This contribution heralds a paradigm shift in EM absorption and shielding materials,establishing a universally applicable framework with profound implications for future pursuits.
文摘Process of crystal growth can be controlled by both surface kinetics and by volume transport as well.Although the complicated relation between the surface kinetics and volume transport exsits,generally,they are studied seprately.Due to the mathematical complexity of heat and mass transport equations,the in depth studies of heat and mass transport process become difficult.Most of the studies on the transport were performed for the growth from melt.Most of the work on Surface kinetics has been done for crystal growth from aqueous solution because the in situ observation of crystal growth is easily carried out.In recent years,the surface kinetics studies on the nanometer scale,even atomic scale,are demonstrated by using AFM.
基金supported by the National Natural Science Foundation of China (21203017)the Open Fund of State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences(N-11-3)+1 种基金the Program for Liaoning Excellent Talents in University (LNET)the Fundamental Research Funds for the Central Universities (DC201502020304)~~
文摘Metal organic frameworks(MOFs) are an important platform for heterogeneous catalysts.Although MOFs with a smaller particle size exhibit better catalytic performance because of less diffusion limitations,their separation and recycling after catalytic reactions are difficult.The integration of MOFs with magnetic nanoparticles could facilitate their recovery and separation.Especially,the shell thickness of the core-shell structured composites is controllable.In this study,amino-functionalized Fe3O4@Cu3(BTC)2 was fabricated by a stepwise assembly method and its catalytic performance in Knoevenagel condensation was investigated.The results demonstrated that the magnetic hybrid material exhibited a core-shell structure,with a shell thickness of about 2 00 nm.Furthermore,it not only exhibited high catalytic activity,but remarkably,it could also be easily recovered magnetically and recycled without obvious loss of catalytic efficiency after three cycles.
基金supported by the National Basic Research Program of China(973 Program,2015CB932304)the National Natural Science Founda-tion of China(21436003)
文摘The development of a non-precious metal electrocatalyst (NPME) with a performance superior to commercial Pt/C for the oxygen reduction reaction (ORR) is important for the commercialization of fuel cells. We report the synthesis of a NPME by heat-treating Co-based metal organic frameworks (ZIF-67) with a small average size of 44 nm. The electrocatalyst pyrolyzed at 600 ~C showed the best performance and the performance was enhanced when it was supported on BP 2000. The resulting electrocatalyst was composed of 10 nm Co nanoparticles coated by 3-12 layers of N doped graphite layers which as a whole was embedded in a carbon matrix. The ORR performance of the electrocatalyst was tested by rotating disk electrode tests in O2-saturated 0.1 mol/L KOH under ambient conditions. The electrocatalyst (1.0 mg/cm~] showed an onset potential of 1.017 V ([vs. RHE] and a half-wave potential of 0.857 V (vs. RHE], which showed it was as good as the commer- cial Pt/C (20 BgPt/cm2). Furthermore, the electrocatalyst possessed much better stability and re- sistance to methanol crossover than Pt/C.
基金financial support from the National Natural Science Foundation of China(81671737)the support from‘Sponsored by Shanghai Pujiang Program’(18PJD020)the Interdisciplinary Program of Shanghai Jiao Tong University(YG2019QNB31)。
文摘The rapid development of electric vehicles and mobile electronic devices is the main driving force to improve advanced high-performance lithium ion batteries(LIBs).The capacity,rate performance and cycle stability of LIBs rely directly on the electrode materials.As far as the development of the advanced LIBs electrode is concerned,the improvement of anode materials is more urgent than the cathode materials.Industrial production of anode materials superior to commercial graphite still faces some challenges.This review sets out the most basic LIBs anode material design.The reaction principles and structural design of carbon materials,various transition metal oxides,silicon and germanium are summarized,and then the progress of other anode materials are analyzed.Due to the rapid development of metal organic frameworks(MOFs)in energy storage and conversion in recent years,the synthesis process and energy storage mechanism of nanostructures derived from MOF precursors are also discussed.From the perspective of novel structural design,the progress of various MOFs-derived materials for alleviating the volume expansion of anode materials is discussed.Finally,challenges for the future development of advanced anode materials for LIBs will be considered.
基金supported by the National Natural Science Foundation of China(51972030,51772030)the S&T Major Project of Inner Mongolia Autonomous Region in China(2020ZD0018)+1 种基金Beijing Outstanding Young Scientists Program(BJJWZYJH01201910007023)Guangdong Key Laboratory of Battery Safety(2019B121203008)。
文摘Metal–organic framework(MOF)-based materials with high porosity,tunable compositions,diverse structures,and versatile functionalities provide great scope for next-generation rechargeable battery applications.Herein,this review summarizes recent advances in pristine MOFs,MOF composites,MOF derivatives,and MOF composite derivatives for high-performance sodium-ion batteries,potassiumion batteries,Zn-ion batteries,lithium–sulfur batteries,lithium–oxygen batteries,and Zn–air batteries in which the unique roles of MOFs as electrodes,separators,and even electrolyte are highlighted.Furthermore,through the discussion of MOFbased materials in each battery system,the key principles for controllable synthesis of diverse MOF-based materials and electrochemical performance improvement mechanisms are discussed in detail.Finally,the major challenges and perspectives of MOFs are also proposed for next-generation battery applications.
基金supported by the National Natural Science Foundation of China (Grant Nos. 21671085, 21701063)the Jiangsu Province Science Foundation for Youths (BK20150237)+1 种基金the Natural Science Foundation of Jiangsu Province (BK20161160)the Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions
文摘Porous structures o er highly accessible surfaces and rich pores, which facilitate the exposure of numerous active sites for photocatalytic reactions, leading to excellent performances. Recently, metal–organic frameworks(MOFs) have been considered ideal precursors for well-designed semiconductors with porous structures and/or heterostructures, which have shown enhanced photocatalytic activities. In this review, we summarize the recent development of porous structures, such as metal oxides and metal sulfides, and their heterostructures, derived from MOF-based materials as catalysts for various light-driven energy-/environment-related reactions, including water splitting, CO_2 reduction, organic redox reaction, and pollution degradation. A summary and outlook section is also included.
基金supported by the National Natural Science Foundation of China (51772291, 21673238, 21773242)the Strategic Priority Research Program of the Chinese Academy of Sciences (XDB20000000)
文摘Direct electrochemical reduction of CO2 into valuable chemicals and fuel is one of the most promising approaches to address the current energy crisis and lower CO2 emission.Recently,numerous metal-organic framework(MOF)and their derived materials have extensively been developed as electrocatalysts for CO2 reduction owing to their unique structure including porosity,large specific surface area,and tunable chemical structures.In this review,the recent progress of MOF-based electrocatalysts for CO2 reduction was summarized and discussed.Detailed discussions mainly focus on the synthesis and mechanism of pristine MOFs and MOF-derived materials for electrocatalytic CO2 reduction.These examples are expected to provide clues to rational design and synthesis of stable and high-performance MOFs-based electrocatalysts for CO2 reduction.
基金supported by the National Science Foundation of China (Nos. 20971095 and 21576177)Research Project Supported by Shanxi Scholarship Council of China (2013-047)
文摘Zirconium-based MOFs of the UiO family have attracted considerable attention due to their high thermal,chemical and mechanical stability. With the aim of further exploring the applications of zirconium-based UiO-66 in acid-catalyzed reactions and elucidating the effects of the defects in UiO-66 materials on their catalytic performances, in this work, a series of zirconium-containing UiO-66 samples were synthesized by varying the synthesis temperatures and BDC/Zr(terephthalic acid/ZrCl) ratios in the synthesis system.The synthesized UiO-66 samples were characterized by X-ray diffraction(XRD), Nadsorption-desorption,scanning electron microscopy(SEM), thermogravimetrical analysis(TGA), temperature-programmed desorption of NH(NH-TPD). Their catalytic performances were investigated in transesterification of tributyrin and soybean oil with methanol. The results showed that UiO-66 samples with different amounts of defects could be successfully prepared by varying the synthesis temperatures and/or the BDC/Zr ratios used in the synthesis system. The catalytic activities of the UiO-66 materials greatly depended on their linker defects and enhanced with the increase of the defect amount. The UiO-66 was an efficient catalyst for transesterification of tributyrin and soybean oil with methanol under mild reaction conditions and its catalytic activity was comparable to other solid acid catalysts reported in the literatures. The UiO-66 catalyst was relatively stable and could be reused.
基金financial support from Ningbo Municipal Government (Innovation Team 2012882011,3315 Plan,2014A35001-1)the EPSRC (EP/J000582/1,GR/R68078)
文摘Metal organic frameworks(MOFs) represent a class of porous material which is formed by strong bonds between metal ions and organic linkers. By careful selection of constituents, MOFs can exhibit very high surface area, large pore volume, and excellent chemical stability.Research on synthesis, structures and properties of various MOFs has shown that they are promising materials for many applications, such as energy storage, gas storage, heterogeneous catalysis and sensing. Apart from direct use, MOFs have also been used as support substrates for nanomaterials or as sacrificial templates/precursors for preparation of various functional nanostructures. In this review, we aim to present the most recent development of MOFs as precursors for the preparation of various nanostructures and their potential applications in energy-related devices and processes. Specifically, this present survey intends to push the boundaries and covers the literatures from the year 2013 to early 2017,on supercapacitors, lithium ion batteries, electrocatalysts, photocatalyst, gas sensing, water treatment, solar cells, and carbon dioxide capture.Finally, an outlook in terms of future challenges and potential prospects towards industrial applications are also discussed.