期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
MXenes for metal-ion and metal-sulfur batteries:Synthesis,properties,and electrochemistry 被引量:1
1
作者 Siyang Liu Zihui Song +3 位作者 Xin Jin Runyue Mao Tianpeng Zhang Fangyuan Hu 《Materials Reports(Energy)》 2022年第1期17-40,共24页
In 2011,a new class of 2D materials was discovered;after 2012,they began to be concerned;in 2017,the“gold rush”of the materials was triggered,and they are exactly MXenes.2D MXenes,a new class of transition metal car... In 2011,a new class of 2D materials was discovered;after 2012,they began to be concerned;in 2017,the“gold rush”of the materials was triggered,and they are exactly MXenes.2D MXenes,a new class of transition metal carbides,carbonitrides and nitrides,have become the star and cutting-edge research materials in the field of emerging batteries systems due to their unique 2D structure,abundant surface chemistry,and excellent physical and electrochemical properties.This review focuses on the MXene materials and summarizes the recent advancements in the synthesis techniques and properties,in addition to a detailed discussion on the electrochemical energy storage applications,including alkali-ion(Li^(+),Na^(+),K^(+))storage,lithium-sulfur(Li–S)batteries,sodiumsulfur(Na–S)batteries,and metal anode protection.Special attentions are given to the elaborate design of nano-micro structures of MXenes for the various roles as electrodes,multifunctional components,S hosts,modified separators,and metal anode protective layers.The paper ends with a prospective summary of the promising research directions in terms of synthesis,structure,properties,analysis,and production on MXene materials. 展开更多
关键词 MXenes Electrochemical energy storage Lithium-ion battery Sodium-ion battery Lithium-sulfur battery Sodium-sulfur battery Metal anode protective layer Modified separator
下载PDF
Electrical and Corrosion Properties of Titanium Aluminum Nitride Thin Films Prepared by Plasma-Enhanced Atomic Layer Deposition
2
作者 Eun-Young Yun Woo-Jae Lee +1 位作者 Qi Min Wang Se-Hun Kwon 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2017年第3期295-299,共5页
Titanium-aluminum-nitride(TiAlN) films were grown by plasma-enhanced atomic layer deposition(PEALD)on 316 L stainless steel at a deposition temperature of 200 °C. A supercycle, consisting of one AlN and ten T... Titanium-aluminum-nitride(TiAlN) films were grown by plasma-enhanced atomic layer deposition(PEALD)on 316 L stainless steel at a deposition temperature of 200 °C. A supercycle, consisting of one AlN and ten TiN subcycles, was used to prepare TiAlN films with a chemical composition of Ti(0.25)Al(0.25)N(0.50). The addition of AlN to TiN resulted in an increased electrical resistivity of TiAlN films of 2800 μΩ cm, compared with 475 μΩ cm of TiN films, mainly due to the high electrical resistivity of AlN and the amorphous structure of TiAlN. However, potentiostatic polarization measurements showed that amorphous TiAlN films exhibited excellent corrosion resistance with a corrosion current density of 0.12 μA/cm^2, about three times higher than that of TiN films, and about 12.5 times higher than that of 316 L stainless steel. 展开更多
关键词 Titanium-aluminum nitride Plasma-enhanced atomic layer deposition Corrosion protection Ternary transition metal nitrides
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部