In our previous study, metals have been used as absorbers in the clear plastic laser transmission welding. The effects of metal thermal conductivity on the welding quality are investigated in the present work. Four me...In our previous study, metals have been used as absorbers in the clear plastic laser transmission welding. The effects of metal thermal conductivity on the welding quality are investigated in the present work. Four metals with distinctly different thermal conductivities, i.e., titanium, nickel, molybdenum, and copper, are selected as light absorbers. The lap welding is conducted with an 808 nm diode laser and simulation experiments are also conducted. Nickel electroplating test is carried out to minimize the side-effects from different light absorptivities of different metals. The results show that the welding with an absorber of higher thermal conductivity can accommodate higher laser input power before smoking, which produces a wider and stronger welding seam.The positive role of the higher thermal conductivity can be attributed to the fact that a desirable thermal field distribution for the molecular diffusion and entanglement is produced from the case with a high thermal conductivity.展开更多
The electrocatalytic CO_(2)reduction reaction(CO_(2)RR)has attracted increasing attention in recentyears.Practical electrocatalysis of CO_(2)RR must be carried out in aqueous solutions containing electrolytesof alkali...The electrocatalytic CO_(2)reduction reaction(CO_(2)RR)has attracted increasing attention in recentyears.Practical electrocatalysis of CO_(2)RR must be carried out in aqueous solutions containing electrolytesof alkali metal cations such as sodium and potassium.Although considerable efforts havebeen made to design efficient electrocatalysts for CO_(2)RR and to investigate the structure–activityrelationships using molecular model complexes,only a few studies have been investigated the effectof alkali metal cations on electrocatalytic CO_(2)RR.In this study,we report the effect of alkali metalcations(Na^(+)and K^(+))on electrocatalytic CO_(2)RR with Fe porphyrins.By running CO_(2)RR electrocatalysisin dimethylformamide(DMF),we found that the addition of Na^(+)or K^(+)considerably improves thecatalytic activity of Fe chloride tetrakis(3,4,5‐trimethoxyphenyl)porphyrin(FeP).Based on thisresult,we synthesized an Fe porphyrin^(N)18C6‐FeP bearing a tethered 1‐aza‐18‐crown‐6‐ether(^(N)18C6)group at the second coordination sphere of the Fe site.We showed that with the tethered^(N)18C6 to bind Na^(+)or K^(+),^(N)18C6‐FeP is more active than FeP for electrocatalytic CO_(2)RR.This workdemonstrates the positive effect of alkali metal cations to improve CO_(2)RR electrocatalysis,which isvaluable for the rational design of new efficient catalysts.展开更多
A comparative optimal design of fluid-saturated prismatic cellular metal honeycombs (PCMHs) having different cell shapes is presented for thermal management applications. Based on the periodic topology of each PCMH,...A comparative optimal design of fluid-saturated prismatic cellular metal honeycombs (PCMHs) having different cell shapes is presented for thermal management applications. Based on the periodic topology of each PCMH, a unit cell (UC) for thermal transport analysis was selected to calculate its effective thermal conductivity. Without introducing any empirical coefficient, we modified and extended the analytical model of parallel-series thermal-electric network to a wider porosity range (0.7 ~ 0.98) by considering the effects of two-dimensional local heat conduction in solid ligaments inside each UC. Good agreement was achieved between analytical predictions and numerical simulations based on the method of finite volume. The concept of ligament heat conduction efficiency (LTCE) was proposed to physically explain the mechanisms underlying the effects of ligament configuration on effective thermal conductivity (ETC). Based upon the proposed theory, a construct strategy was developed for designing the ETC by altering the equivalent interaction angle with the direction of heat flow: relatively small average interaction angle for thermal conduction and relatively large one for thermal insulation.展开更多
The positron lifetime spectra of severalAl_(93.3-x)Fe_(4.3)V_(0.7)Si_(1.7)Mm_x (x = 0.5%, 1.0%, 3.0%, atom fraction) alloys with differentcontent of misch metal prepared by rapid solidification were measured, and the ...The positron lifetime spectra of severalAl_(93.3-x)Fe_(4.3)V_(0.7)Si_(1.7)Mm_x (x = 0.5%, 1.0%, 3.0%, atom fraction) alloys with differentcontent of misch metal prepared by rapid solidification were measured, and the variations on theinterfacial defects with the content of misch metal were revealed by an analysis of the lifetimeresults. The interface characteristics derived from the lifetime results could be used to give asatisfactory interpretation of the dependence of mechanical properties on the content of mischmetal.展开更多
A new analytical model to describe the drain-induced barrier lowering (DIBL) effect has been obtained by solving the two-dimensional (2D) Poisson's equation for the dual-channel 4H-SiC MESFET (DCFET). Using thi...A new analytical model to describe the drain-induced barrier lowering (DIBL) effect has been obtained by solving the two-dimensional (2D) Poisson's equation for the dual-channel 4H-SiC MESFET (DCFET). Using this analytical model, we calculate the threshold voltage shift and the sub-threshold slope factor of the DCFET, which characterize the DIBL effect. The results show that they are significantly dependent on the drain bias, gate length as well as the thickness and doping concentration of the two channel layers. Based on this analytical model, the structure parameters of the DCFET have been optimized in order to suppress the DIBL effect and improve the performance.展开更多
1 IntrodutionInterleukin-2(IL-2)was found to selectively keep growth of T lymphocytes for longperiod in vitro in 1976,and was then named T cell growth factor,TCGF.After that,IL-2 was found to promote proliferation of ...1 IntrodutionInterleukin-2(IL-2)was found to selectively keep growth of T lymphocytes for longperiod in vitro in 1976,and was then named T cell growth factor,TCGF.After that,IL-2 was found to promote proliferation of various cells,mainly including T,B,NK,and to in-crease activity of T cell and NK cell.Discovery of its surprising effect in treatment of can-cer,tumor through inducing LAK(lymphokine-activated killer cells)or activating TIL(tumor infiltrated lymphocytes)to kill cancer cell made it very attractive.Therefore it wasfound a wide application in therapy of cancer,immunodeficiency and diseases relating toinfection.However,in its application,problem was found that it had very serious side-effect,and very high dose made the side effect even more serious.The aim of this study was to find a simple way to stabilize IL-2 so as to lower the doserequired in application and in turn to solve the problem.展开更多
Based on an analytical solution of the two-dimensional Poisson equation in the subthreshold region, this paper investigates the behavior of DIBL (drain induced barrier lowering) effect for short channel 4H-SiC metal...Based on an analytical solution of the two-dimensional Poisson equation in the subthreshold region, this paper investigates the behavior of DIBL (drain induced barrier lowering) effect for short channel 4H-SiC metal semiconductor field effect transistors (MESFETs). An accurate analytical model of threshold voltage shift for the asymmetric short channel 4H-SiC MESFET is presented and thus verified. According to the presented model, it analyses the threshold voltage for short channel device on the L/a (channel length/channel depth) ratio, drain applied voltage VDS and channel doping concentration ND, thus providing a good basis for the design and modelling of short channel 4H-SiC MESFETs device.展开更多
The slow tensile tests,dynamic hydrogen charging tensile tests and hydrogen evolution tests after hydrogen charging were used to study the effects of rare earth metal(REM)on hydrogen behaviour in a steel 16Mn(St.52).T...The slow tensile tests,dynamic hydrogen charging tensile tests and hydrogen evolution tests after hydrogen charging were used to study the effects of rare earth metal(REM)on hydrogen behaviour in a steel 16Mn(St.52).The ratios of RE/S were chosen as 0,0.7,2.2 and 7.7,respectively.It was shown that the steel with RE/S = 2.2 give a lower hydrogen embrittlement susceptibility than others.The steels without REM can adsorb much more amount of hydrogen than that with REM under the same hydrogen charging conditions.And the amount of adsorbed hydrogen for the foriner can be evolved easier than that for the latter at room temperature,50℃ and 80℃,respectively.The experimental results were explained by the trap theory of hydrogen,the short-circuit diffusion paths in the interfaces between the elongated MnS inclusions and the matrix,and strong ability of REM to adsorb hydrogen.展开更多
A new self-heating effect model for 4H-SiC MESFETs is proposed based on a combination of an analytical and a computer aided design (CAD) oriented drain current model. The circuit oriented expressions of 4H-SiC low-f...A new self-heating effect model for 4H-SiC MESFETs is proposed based on a combination of an analytical and a computer aided design (CAD) oriented drain current model. The circuit oriented expressions of 4H-SiC low-field electron mobility and incomplete ionization rate, which are related to temperature, are presented in this model, which are used to estimate the self-heating effect of 4H-SiC MESFETs. The verification of the present model is made, and the good agreement between simulated results and measured data of DC I - V curves with the self-heating effect is obtained.展开更多
This article describes the effective channel length degradation under hot carrier stressing. The extraction is based on the IDs-Vcs characteristics by maximum transconductance (maximum slope of IDs & VGS) in the li...This article describes the effective channel length degradation under hot carrier stressing. The extraction is based on the IDs-Vcs characteristics by maximum transconductance (maximum slope of IDs & VGS) in the linear region. The transconductance characteristics are determine for the several devices of difference drawn channel length. The effective channel length of submicron LDD (Lightly Doped Drain) NMOSFETs (Metal Oxide Semiconductor Field Effect Transistor) under hot carrier stressing was measured at the stress time varying from zero to 10,000 seconds. It is shown that the effective channel length was increased with time. This is caused by charges trapping in the oxide during stress. The increased of effective channel length (△Leff) is seem to be increased sharply as the gate channel length is decrease.展开更多
Development of graphene field effect transistors (GFETs) faces a serious challenge of graphene interface to the dielectric material. A single layer of intrinsic graphene has an average sheet resistance of the order ...Development of graphene field effect transistors (GFETs) faces a serious challenge of graphene interface to the dielectric material. A single layer of intrinsic graphene has an average sheet resistance of the order of 1-5 kΩ/□. The intrinsic nature of graphene leads to higher contact resistance yielding into the outstanding properties of the material. We design a graphene matrix with minimized sheet resistance of 0.185 kΩ/□ with Ag contacts. The developed matrices on silicon substrates provide a variety of transistor design options for subsequent fabrication. The graphene layer is developed over 400 nm nickel in such a way as to analyze hypersensitive electrical properties of the interface for exfoliation. This work identifies potential of the design in the applicability of few-layer GFETs with less process steps with the help of analyzing the effect of metal contact and post-process anneMing on its electrical fabrication.展开更多
CNMC combines social responsibility with corporate vision as it expands in Africa TODAY non-ferrous metals(metals other than iron and alloys that do not contain an appreciable amount of iron) are an indispensable par...CNMC combines social responsibility with corporate vision as it expands in Africa TODAY non-ferrous metals(metals other than iron and alloys that do not contain an appreciable amount of iron) are an indispensable part of every aspect of our lives. From daily necessities like telephones and electric cookers,to sophisticated equipment like satellites and radar,non-ferrous展开更多
Biomaterials for restoration or replacement of diseased tissues may have any origin.The major characteristic for biomaterials is biocompatibility.All biomaterials,used in medicine (dentistry,in particular),interreact ...Biomaterials for restoration or replacement of diseased tissues may have any origin.The major characteristic for biomaterials is biocompatibility.All biomaterials,used in medicine (dentistry,in particular),interreact with the organism tissues.And the changes occur both in the materials and the organism tissues.It is considered that there are no "inert biomaterials." The number of allergic diseases and complications is constantly growing all over the world,taking an important place in the structure of infectious and noninfectious pathology[1].Pollen,household,epidermal,and food-borne allergens,and haptens are the most frequent sources of sensibilization.展开更多
Applying marine enclosed ecosystem extensively to study the nutrient variation and its relation to biochemical process by marine ecologists and biogeologists in North America, Europe, Japan and Australia has been last...Applying marine enclosed ecosystem extensively to study the nutrient variation and its relation to biochemical process by marine ecologists and biogeologists in North America, Europe, Japan and Australia has been lasting for many years. Santschi (1982) reviewed the geochemical recirculation of nutrients systematically. Kremling et al. (1978) described the changes in nutrient in marine enclosed e-展开更多
A new analytical model to describe the drain-induced barrier lowering(DIBL) effect has been obtained by solving the two-dimensional(2D) Poisson’s equation for the dual-channel 4H-SiC MESFET(DCFET).Using this analytic...A new analytical model to describe the drain-induced barrier lowering(DIBL) effect has been obtained by solving the two-dimensional(2D) Poisson’s equation for the dual-channel 4H-SiC MESFET(DCFET).Using this analytical model,we calculate the threshold voltage shift and the sub-threshold slope factor of the DCFET,which characterize the DIBL effect.The results show that they are significantly dependent on the drain bias,gate length as well as the thickness and doping concentration of the two channel layers.Based on this analytical model,the structure parameters of the DCFET have been optimized in order to suppress the DIBL effect and improve the performance.展开更多
The effects of 4 passivators, zeolite, lime, red mud and peanut shell biochar, on the fixation of Cd, Pb, Cu and Zn in acidic multi-metal contaminated soils were studied by passivator culture experiment in order to sc...The effects of 4 passivators, zeolite, lime, red mud and peanut shell biochar, on the fixation of Cd, Pb, Cu and Zn in acidic multi-metal contaminated soils were studied by passivator culture experiment in order to screen out the passivator with better fixation effects. The results showed that the soil pH values of zeolite, lime, red mud and peanut shell biochar increased significantly by 0.511.02, 0.821.29, 0.720.89 and 0.300.35 respectively. The effects of 4 passivators on the fixation of Cd and Zn in soil are lime>red mud>zeolite>peanut shell biochar. The order of effects on the fixation of Pb is red mud>lime>zeolite>peanut shell biochar. The order of the fixation effects of Cu is red mud>lime>peanut shell carbon>zeolite. The contents of Cd, Pb, Cu and Zn in the extractable state of CaCl2 decreased with the increase in the dosage of 4 passivators. Lime and red mud showed good fixation effects on Cd, Pb, Cu and Zn. The contents of Cd, Pb, Cu and Zn in the extractable state of CaCl2 at the low dosage(2.5 g/kg) of lime and red mud decreased by 41%, 84%, 76% and 83% respectively. Soil pH value was negatively correlated with CaCl2-Cd, Pb, Cu and Zn(P<0.01). Lime and red mud had significant fixation effects on Cd, Pb, Cu and Zn in acidic multi-metal contaminated soils at low application dosages.展开更多
Negative bias temperature instability(NBTI) has become a serious reliability issue, and the interface traps and oxide charges play an important role in the degradation process. In this paper, we study the recovery o...Negative bias temperature instability(NBTI) has become a serious reliability issue, and the interface traps and oxide charges play an important role in the degradation process. In this paper, we study the recovery of NBTI systemically under different conditions in the P-type metal–oxide–semiconductor field effect transistor(PMOSFET), explain the various recovery phenomena, and find the possible processes of the recovery.展开更多
In this study, we designed and fabricated optical materials consisting of alternating ITO and Ag layers. This approach is considered to be a promising way to obtain a light-weight, ultrathin and transparent shielding ...In this study, we designed and fabricated optical materials consisting of alternating ITO and Ag layers. This approach is considered to be a promising way to obtain a light-weight, ultrathin and transparent shielding medium, which not only transmits visible light but also inhibits the transmission of microwaves, despite the fact that the total thickness of the Ag film is much larger than the skin depth in the visible range and less than that in the microwave region. Theoretical results suggest that a high dielectric/metal thickness ratio can enhance the broadband and improve the transmittance in the optical range. Accordingly, the central wavelength was found to be red-shifted with increasing dielectric/metal thickness ratio. A physical mechanism behind the controlling transmission of visible light is also proposed. Meanwhile, the electromagnetic shielding effectiveness of the prepared structures was found to exceed 40 dB in the range from 0.1 GHz to 18 GHz, even reaching up to 70 dB at 0.1 GHz, which is far higher than that of a single ITO film of the same thickness.展开更多
In order to analyze the influences of the different tool’s shape and surface conditions (such as different coated and material) and their interaction on the cutting temperature, a coupled thermo-mechanical finite ele...In order to analyze the influences of the different tool’s shape and surface conditions (such as different coated and material) and their interaction on the cutting temperature, a coupled thermo-mechanical finite element analysis (FEA) model of plane-strain orthogonal metal cutting process is constructed, and 16 simulation cases with 16 different types of tools, which cover 4 rake angles, -10°, 0°, 10°, 20°, and 4 friction coefficient values, 0, 0.1, 0.2, 0.3 in the same cutting condition (cutting depth and cutting speed) have been performed. Finally the simulation results are analyzed according to the variance analysis method (VAM) of orthogonal array designs (OADs), the relationships between the rake angle, tool-workpiece interface’s friction coefficient and their interact effect to the maximum temperature value and the temperature field of the chip are obtained. This result has some instructive meaning to analyze the causes of the cutting temperature and to control the maximum temperature value and the overall temperature field in the metal cutting process.展开更多
This paper investigates gate current through ultra-thin gate oxide of nano-scale metal oxide semiconductor field effect transistors (MOSFETs), using two-dimensional (2D) full-band self-consistent ensemble Montc Ca...This paper investigates gate current through ultra-thin gate oxide of nano-scale metal oxide semiconductor field effect transistors (MOSFETs), using two-dimensional (2D) full-band self-consistent ensemble Montc Carlo method based on solving quantum Boltzmann equation. Direct tunnelling, Fowler-Nordheim tunnelling and thermionic emission currents have been taken into account for the calculation of total gate current. The 2D effect on the gate current is investigated by including the details of the energy distribution for electron tunnelling through the barrier. In order to investigate the properties of nano scale MOSFETs, it is necessary to simulate gate tunnelling current in 2D including non-equilibrium transport.展开更多
基金Supported by the National Key R&D Program of China under Grant No 2016YFA0401100the National Natural Science Foundation of China under Grant No 61575129the National High-Technology Research and Development Program of China under Grant No 2015AA021102
文摘In our previous study, metals have been used as absorbers in the clear plastic laser transmission welding. The effects of metal thermal conductivity on the welding quality are investigated in the present work. Four metals with distinctly different thermal conductivities, i.e., titanium, nickel, molybdenum, and copper, are selected as light absorbers. The lap welding is conducted with an 808 nm diode laser and simulation experiments are also conducted. Nickel electroplating test is carried out to minimize the side-effects from different light absorptivities of different metals. The results show that the welding with an absorber of higher thermal conductivity can accommodate higher laser input power before smoking, which produces a wider and stronger welding seam.The positive role of the higher thermal conductivity can be attributed to the fact that a desirable thermal field distribution for the molecular diffusion and entanglement is produced from the case with a high thermal conductivity.
文摘The electrocatalytic CO_(2)reduction reaction(CO_(2)RR)has attracted increasing attention in recentyears.Practical electrocatalysis of CO_(2)RR must be carried out in aqueous solutions containing electrolytesof alkali metal cations such as sodium and potassium.Although considerable efforts havebeen made to design efficient electrocatalysts for CO_(2)RR and to investigate the structure–activityrelationships using molecular model complexes,only a few studies have been investigated the effectof alkali metal cations on electrocatalytic CO_(2)RR.In this study,we report the effect of alkali metalcations(Na^(+)and K^(+))on electrocatalytic CO_(2)RR with Fe porphyrins.By running CO_(2)RR electrocatalysisin dimethylformamide(DMF),we found that the addition of Na^(+)or K^(+)considerably improves thecatalytic activity of Fe chloride tetrakis(3,4,5‐trimethoxyphenyl)porphyrin(FeP).Based on thisresult,we synthesized an Fe porphyrin^(N)18C6‐FeP bearing a tethered 1‐aza‐18‐crown‐6‐ether(^(N)18C6)group at the second coordination sphere of the Fe site.We showed that with the tethered^(N)18C6 to bind Na^(+)or K^(+),^(N)18C6‐FeP is more active than FeP for electrocatalytic CO_(2)RR.This workdemonstrates the positive effect of alkali metal cations to improve CO_(2)RR electrocatalysis,which isvaluable for the rational design of new efficient catalysts.
基金supported by the National Natural Science Foundation of China(51506160,11472208,11472209)China Post-Doctoral Science Foundation Project(2015M580845)+1 种基金the Fundamental Research Funds for Xi’an Jiaotong University(xjj2015102)the Beijing Key Lab of Heating,Gas Supply,Ventilating and Air Conditioning Engineering(NR2016K01)
文摘A comparative optimal design of fluid-saturated prismatic cellular metal honeycombs (PCMHs) having different cell shapes is presented for thermal management applications. Based on the periodic topology of each PCMH, a unit cell (UC) for thermal transport analysis was selected to calculate its effective thermal conductivity. Without introducing any empirical coefficient, we modified and extended the analytical model of parallel-series thermal-electric network to a wider porosity range (0.7 ~ 0.98) by considering the effects of two-dimensional local heat conduction in solid ligaments inside each UC. Good agreement was achieved between analytical predictions and numerical simulations based on the method of finite volume. The concept of ligament heat conduction efficiency (LTCE) was proposed to physically explain the mechanisms underlying the effects of ligament configuration on effective thermal conductivity (ETC). Based upon the proposed theory, a construct strategy was developed for designing the ETC by altering the equivalent interaction angle with the direction of heat flow: relatively small average interaction angle for thermal conduction and relatively large one for thermal insulation.
基金This work is supported by the National Natural Science Foundation of China (No. 59771020)
文摘The positron lifetime spectra of severalAl_(93.3-x)Fe_(4.3)V_(0.7)Si_(1.7)Mm_x (x = 0.5%, 1.0%, 3.0%, atom fraction) alloys with differentcontent of misch metal prepared by rapid solidification were measured, and the variations on theinterfacial defects with the content of misch metal were revealed by an analysis of the lifetimeresults. The interface characteristics derived from the lifetime results could be used to give asatisfactory interpretation of the dependence of mechanical properties on the content of mischmetal.
基金Project supported by the Pre-research Foundation from the National Ministries and Commissions of China (Grant No. 51308030201).
文摘A new analytical model to describe the drain-induced barrier lowering (DIBL) effect has been obtained by solving the two-dimensional (2D) Poisson's equation for the dual-channel 4H-SiC MESFET (DCFET). Using this analytical model, we calculate the threshold voltage shift and the sub-threshold slope factor of the DCFET, which characterize the DIBL effect. The results show that they are significantly dependent on the drain bias, gate length as well as the thickness and doping concentration of the two channel layers. Based on this analytical model, the structure parameters of the DCFET have been optimized in order to suppress the DIBL effect and improve the performance.
文摘1 IntrodutionInterleukin-2(IL-2)was found to selectively keep growth of T lymphocytes for longperiod in vitro in 1976,and was then named T cell growth factor,TCGF.After that,IL-2 was found to promote proliferation of various cells,mainly including T,B,NK,and to in-crease activity of T cell and NK cell.Discovery of its surprising effect in treatment of can-cer,tumor through inducing LAK(lymphokine-activated killer cells)or activating TIL(tumor infiltrated lymphocytes)to kill cancer cell made it very attractive.Therefore it wasfound a wide application in therapy of cancer,immunodeficiency and diseases relating toinfection.However,in its application,problem was found that it had very serious side-effect,and very high dose made the side effect even more serious.The aim of this study was to find a simple way to stabilize IL-2 so as to lower the doserequired in application and in turn to solve the problem.
基金Project partly supported by National Defense Basic Research Program of China (Grant No 51327010101)
文摘Based on an analytical solution of the two-dimensional Poisson equation in the subthreshold region, this paper investigates the behavior of DIBL (drain induced barrier lowering) effect for short channel 4H-SiC metal semiconductor field effect transistors (MESFETs). An accurate analytical model of threshold voltage shift for the asymmetric short channel 4H-SiC MESFET is presented and thus verified. According to the presented model, it analyses the threshold voltage for short channel device on the L/a (channel length/channel depth) ratio, drain applied voltage VDS and channel doping concentration ND, thus providing a good basis for the design and modelling of short channel 4H-SiC MESFETs device.
文摘The slow tensile tests,dynamic hydrogen charging tensile tests and hydrogen evolution tests after hydrogen charging were used to study the effects of rare earth metal(REM)on hydrogen behaviour in a steel 16Mn(St.52).The ratios of RE/S were chosen as 0,0.7,2.2 and 7.7,respectively.It was shown that the steel with RE/S = 2.2 give a lower hydrogen embrittlement susceptibility than others.The steels without REM can adsorb much more amount of hydrogen than that with REM under the same hydrogen charging conditions.And the amount of adsorbed hydrogen for the foriner can be evolved easier than that for the latter at room temperature,50℃ and 80℃,respectively.The experimental results were explained by the trap theory of hydrogen,the short-circuit diffusion paths in the interfaces between the elongated MnS inclusions and the matrix,and strong ability of REM to adsorb hydrogen.
基金Project supported by the National Defense Foundation of China (Grant No 51327010101)the National Natural Science Foundation of China (Grant No 60606022)
文摘A new self-heating effect model for 4H-SiC MESFETs is proposed based on a combination of an analytical and a computer aided design (CAD) oriented drain current model. The circuit oriented expressions of 4H-SiC low-field electron mobility and incomplete ionization rate, which are related to temperature, are presented in this model, which are used to estimate the self-heating effect of 4H-SiC MESFETs. The verification of the present model is made, and the good agreement between simulated results and measured data of DC I - V curves with the self-heating effect is obtained.
文摘This article describes the effective channel length degradation under hot carrier stressing. The extraction is based on the IDs-Vcs characteristics by maximum transconductance (maximum slope of IDs & VGS) in the linear region. The transconductance characteristics are determine for the several devices of difference drawn channel length. The effective channel length of submicron LDD (Lightly Doped Drain) NMOSFETs (Metal Oxide Semiconductor Field Effect Transistor) under hot carrier stressing was measured at the stress time varying from zero to 10,000 seconds. It is shown that the effective channel length was increased with time. This is caused by charges trapping in the oxide during stress. The increased of effective channel length (△Leff) is seem to be increased sharply as the gate channel length is decrease.
文摘Development of graphene field effect transistors (GFETs) faces a serious challenge of graphene interface to the dielectric material. A single layer of intrinsic graphene has an average sheet resistance of the order of 1-5 kΩ/□. The intrinsic nature of graphene leads to higher contact resistance yielding into the outstanding properties of the material. We design a graphene matrix with minimized sheet resistance of 0.185 kΩ/□ with Ag contacts. The developed matrices on silicon substrates provide a variety of transistor design options for subsequent fabrication. The graphene layer is developed over 400 nm nickel in such a way as to analyze hypersensitive electrical properties of the interface for exfoliation. This work identifies potential of the design in the applicability of few-layer GFETs with less process steps with the help of analyzing the effect of metal contact and post-process anneMing on its electrical fabrication.
文摘CNMC combines social responsibility with corporate vision as it expands in Africa TODAY non-ferrous metals(metals other than iron and alloys that do not contain an appreciable amount of iron) are an indispensable part of every aspect of our lives. From daily necessities like telephones and electric cookers,to sophisticated equipment like satellites and radar,non-ferrous
文摘Biomaterials for restoration or replacement of diseased tissues may have any origin.The major characteristic for biomaterials is biocompatibility.All biomaterials,used in medicine (dentistry,in particular),interreact with the organism tissues.And the changes occur both in the materials and the organism tissues.It is considered that there are no "inert biomaterials." The number of allergic diseases and complications is constantly growing all over the world,taking an important place in the structure of infectious and noninfectious pathology[1].Pollen,household,epidermal,and food-borne allergens,and haptens are the most frequent sources of sensibilization.
文摘Applying marine enclosed ecosystem extensively to study the nutrient variation and its relation to biochemical process by marine ecologists and biogeologists in North America, Europe, Japan and Australia has been lasting for many years. Santschi (1982) reviewed the geochemical recirculation of nutrients systematically. Kremling et al. (1978) described the changes in nutrient in marine enclosed e-
基金Project supported by the Pre-research Foundation from the National Ministries and Commissions of China (Grant No. 51308030201)
文摘A new analytical model to describe the drain-induced barrier lowering(DIBL) effect has been obtained by solving the two-dimensional(2D) Poisson’s equation for the dual-channel 4H-SiC MESFET(DCFET).Using this analytical model,we calculate the threshold voltage shift and the sub-threshold slope factor of the DCFET,which characterize the DIBL effect.The results show that they are significantly dependent on the drain bias,gate length as well as the thickness and doping concentration of the two channel layers.Based on this analytical model,the structure parameters of the DCFET have been optimized in order to suppress the DIBL effect and improve the performance.
基金Supported by Special Fund for Scientific Research of the Ministry of Agriculture and Finance(Official Letter No.[2016]6 of the Ministry of Agriculture and Finance)National Science and Technology Support Program(2015BAD05B02)+1 种基金Natural Science Foundation of Hunan(2015JJ2081)Postdoctoral Sustentation Fund(2014M562110)~~
文摘The effects of 4 passivators, zeolite, lime, red mud and peanut shell biochar, on the fixation of Cd, Pb, Cu and Zn in acidic multi-metal contaminated soils were studied by passivator culture experiment in order to screen out the passivator with better fixation effects. The results showed that the soil pH values of zeolite, lime, red mud and peanut shell biochar increased significantly by 0.511.02, 0.821.29, 0.720.89 and 0.300.35 respectively. The effects of 4 passivators on the fixation of Cd and Zn in soil are lime>red mud>zeolite>peanut shell biochar. The order of effects on the fixation of Pb is red mud>lime>zeolite>peanut shell biochar. The order of the fixation effects of Cu is red mud>lime>peanut shell carbon>zeolite. The contents of Cd, Pb, Cu and Zn in the extractable state of CaCl2 decreased with the increase in the dosage of 4 passivators. Lime and red mud showed good fixation effects on Cd, Pb, Cu and Zn. The contents of Cd, Pb, Cu and Zn in the extractable state of CaCl2 at the low dosage(2.5 g/kg) of lime and red mud decreased by 41%, 84%, 76% and 83% respectively. Soil pH value was negatively correlated with CaCl2-Cd, Pb, Cu and Zn(P<0.01). Lime and red mud had significant fixation effects on Cd, Pb, Cu and Zn in acidic multi-metal contaminated soils at low application dosages.
基金Project supported by the National Basic Research Program of China(Grant No.2011CBA00606)the National Natural Science Foundation of China(Grant Nos.61404097,61334002,61106106,and 61176130)the Fundamental Research Funds for the Central Universities,China(Grant No.JB140415)
文摘Negative bias temperature instability(NBTI) has become a serious reliability issue, and the interface traps and oxide charges play an important role in the degradation process. In this paper, we study the recovery of NBTI systemically under different conditions in the P-type metal–oxide–semiconductor field effect transistor(PMOSFET), explain the various recovery phenomena, and find the possible processes of the recovery.
基金Project supported by the International Science&Technology Cooperation Program of China(Grant No.2014DFR10020)the Science Foundation of Shanxi Province,China(Grant Nos.201701D121050 and 201701D121007)
文摘In this study, we designed and fabricated optical materials consisting of alternating ITO and Ag layers. This approach is considered to be a promising way to obtain a light-weight, ultrathin and transparent shielding medium, which not only transmits visible light but also inhibits the transmission of microwaves, despite the fact that the total thickness of the Ag film is much larger than the skin depth in the visible range and less than that in the microwave region. Theoretical results suggest that a high dielectric/metal thickness ratio can enhance the broadband and improve the transmittance in the optical range. Accordingly, the central wavelength was found to be red-shifted with increasing dielectric/metal thickness ratio. A physical mechanism behind the controlling transmission of visible light is also proposed. Meanwhile, the electromagnetic shielding effectiveness of the prepared structures was found to exceed 40 dB in the range from 0.1 GHz to 18 GHz, even reaching up to 70 dB at 0.1 GHz, which is far higher than that of a single ITO film of the same thickness.
文摘In order to analyze the influences of the different tool’s shape and surface conditions (such as different coated and material) and their interaction on the cutting temperature, a coupled thermo-mechanical finite element analysis (FEA) model of plane-strain orthogonal metal cutting process is constructed, and 16 simulation cases with 16 different types of tools, which cover 4 rake angles, -10°, 0°, 10°, 20°, and 4 friction coefficient values, 0, 0.1, 0.2, 0.3 in the same cutting condition (cutting depth and cutting speed) have been performed. Finally the simulation results are analyzed according to the variance analysis method (VAM) of orthogonal array designs (OADs), the relationships between the rake angle, tool-workpiece interface’s friction coefficient and their interact effect to the maximum temperature value and the temperature field of the chip are obtained. This result has some instructive meaning to analyze the causes of the cutting temperature and to control the maximum temperature value and the overall temperature field in the metal cutting process.
基金Project supported by the National Key Basic Research Program (Grant No CB302705) and the National Natural Science Foundation of China (Grant No 90307006).
文摘This paper investigates gate current through ultra-thin gate oxide of nano-scale metal oxide semiconductor field effect transistors (MOSFETs), using two-dimensional (2D) full-band self-consistent ensemble Montc Carlo method based on solving quantum Boltzmann equation. Direct tunnelling, Fowler-Nordheim tunnelling and thermionic emission currents have been taken into account for the calculation of total gate current. The 2D effect on the gate current is investigated by including the details of the energy distribution for electron tunnelling through the barrier. In order to investigate the properties of nano scale MOSFETs, it is necessary to simulate gate tunnelling current in 2D including non-equilibrium transport.