1 Introduction Sareke glutenite-type copper deposit is the large size copper deposit discovered in recent years,and it is located Sarekebayi intracontinental pull-apart basin in the western margin of the Tarim basin.C...1 Introduction Sareke glutenite-type copper deposit is the large size copper deposit discovered in recent years,and it is located Sarekebayi intracontinental pull-apart basin in the western margin of the Tarim basin.Conglomerate of展开更多
Qinling orogen is one of the five main repository distribution provinces of large scale graphite resources. Graphite occurrence strata are multitudinous including NeoArchaean group to Neopaleozoic. Mineral deposit typ...Qinling orogen is one of the five main repository distribution provinces of large scale graphite resources. Graphite occurrence strata are multitudinous including NeoArchaean group to Neopaleozoic. Mineral deposit types are complete consisting of crystal flaky graphite deposit and aphanitic graphite deposit, ore types of the former are main graphite gneiss, graphite schist and graphitized marble, and ore types of the latter are main graphite layer metamorphosised from coal bed and graphitic carbargilite. At present, most graphite deposits with low research degree only implement preliminary investigations of the graphite resource, which has a good prospect. Based on the basic material of dozens of graphite deposits, spots and plays discovered in the Qinling orogen, this paper applied geologic multidisciplinary analysis method to disclose the graphite deposit types of the Qinling orogen, mainly through outdoors geologic survey and specimen examination with analysis of some typical deposits: regional metamorphism crystal graphite deposits and thermo-contact metamorphic aphanitic graphite deposits, with the control of latitudinally trending regional tectonic, graphite deposits of the Qinling orogen distribute sublatitudinally trending three large ore belts: I the Neoarchean-Proterozoic basement crystal graphite enrichment deposits zone along the south margin of North China plate; II the Carboniferous intermountain basin group aphanitic graphite enrichment deposits zone near the Shangdan suture of the West Qinling; III Paleozoic crystal graphite enrichment deposits zone in the Qinling paleomicroplate of the west part of the East Qinling.Conclusions are reached from multiple inquiries: Qinling multi-cycle complex continental collision orogen zone has experienced multiple tectonic framework transformation and polyphase tectonic thermal event from NeoArchean Erathem adjointing multiple graphite tectonic mineralization cycle. In the light of chief control of mineralization and ore types, each of the three large graphite deposits belts of the Qinling orogen has its own genesis: I graphite deposits enriched metallogenetic zone is that regional tectogenetic movement from NeoArchaean caused polyphase metapepsis, which superimposed up and reconstructed NeoArchean Erathem to Proterozoic basement, forming regional metamorphic big flake crystal graphite deposits; I! graphite deposits enriched metallogenetic zone is that polyphase regional tectogenetic movement associated with multiple heating caused by multiphase igneous intrusion, which resulted in original coal layers emerging multiple thermo-contact metamorphisms and formed thermo-contact metamorphic aphanitic graphite deposits. III graphite deposits enriched metallogenetic zone is that Palaeozoic cap- rock experienced polyphase metapepsis, forming regional metamorphic finely flake crystal graphite deposits. Cemprehensive research of metallogenetic mechanism in graphite deposits and its associated profitable deposits of the Qinling orogen is importance for future exploration.展开更多
Tungsten ore resources are abundant in China with relatively complete types of deposits. Skarn type and quartz vein type deposits are dominated in the tungsten resources, whereas quartz vein type wolframite deposits a...Tungsten ore resources are abundant in China with relatively complete types of deposits. Skarn type and quartz vein type deposits are dominated in the tungsten resources, whereas quartz vein type wolframite deposits are most important in terms of exploitation and utilization. Skarn type tungsten deposits are concentratedly distributed in the central Nanling region, such as South Hunan, South Anhui and the eastern Qinling region, while quartz vein type tungsten deposits occur mainly in South China, such as West Fujian, South Jiangxi, North Guangdong and South Hunan. The most important metallogenic epoch of tungsten is the Mesozoic, while the metallogenic tectonic setting is featured by an intracontinental environment after orogeny with sever tectonic movements, deep-seated faults and frequent magmatic activities, especially Mesozoic granitoids closely related to tungsten-tin mineralization. 22 metallogenic series of ore deposits characterized by or significantly related to tungsten were defined based on precise statistic information of 1199 tungsten mining areas and thorough the summary of metallogenic regularities. Based on studies of the metallogenic regularity of tungsten deposits, skarn type (or greisen type), quartz vein type and massif-type of tungsten deposits are thought to be the key prediction types. 65 tungsten-forming belts and 22 key ore concentration areas were ascertained and a distribution map of tungsten-forming belts of China was compiled, which provided a theoretical basis for evaluation and prediction of potential tungsten resources.展开更多
Copper resources in China are rich, but imported copper products are still required. Researches on metallogenic regularity of major types of copper deposits by geologists have involved in worldwide classification, sig...Copper resources in China are rich, but imported copper products are still required. Researches on metallogenic regularity of major types of copper deposits by geologists have involved in worldwide classification, significant copper belts, representative copper deposits, etc. Studies on metallogenic regularity of copper deposits in China also have made achievements with a long-term work. Combined with latest exploration advances obtained in recent ten years, this review aims to conclude the achievements of researches on copper metallogenic regularity in China. Based on data of 814 copper deposits and other ore (mineralized) occurrences, ten prediction types of copper deposits have been suggested. Porphyry and skarn copper ores are taken as the key targets. Porphyry copper deposits are the most important one which concentrate in Gangdese, Changdu-Sanjiang, Dexing and East Tianshan. The Cenozoic and Mesozoic are the major metallogenic epochs. Four main metallogenic epochs are been studied based on the copper ore geochronological data including Precambrian Era (Archean and Proterozoic), Paleozoic Era, Mesozoic Era and Cenozoic Era. Based on the study of metallogenic series of ore deposits in China, twenty-seven metallogenic series of copper deposits are proposed. This is suggested to deepen the study of metallogenic regularity of copper ore and provide the theory guide for copper resources prediction in China.展开更多
The central Zhuguang Mountains in Hunan Province is located at the junction of the three provinces,namely Hunan,Jiangxi,and Guangdong,where the famous Lujing uranium ore field lies.The uranium deposits occurring in th...The central Zhuguang Mountains in Hunan Province is located at the junction of the three provinces,namely Hunan,Jiangxi,and Guangdong,where the famous Lujing uranium ore field lies.The uranium deposits occurring in this area are all granite-related and they can be divided into three types,namely endogranitic ones,perigranitic ones,and contact zone types.The endogranitic uranium deposits are mainly controlled by the structural alteration zones developing within granites,with fragmentation,hematitization,and alkali metasomatism as their main mineralization characteristics.The perigranitic uranium deposits are mainly produced in the carbonaceous,siliceous,and argillaceous composite layers of epimetamorphic rocks and are controlled by fractured zones formed due to interlayer compression.The contact zone type uranium deposits mainly occur in the contact parts between the granites and favorable horizons.They have developed in favorable sections where multiple sets of structures are combined and intersected.The main metallogenic regularities of uranium in the central Zhuguang Mountains are as follows.The basic conditions for the uranium mineralization in this area include the framework consisting of regional deep large faults and their associated multi-set multi-direction favorable metallogenic structures,multi-cycle and multi-stage uranium-rich rock masses,and uranium-rich folded basement.Meanwhile,the uranium deposits in this area are closely related to granites in terms of genesis and space and they are formed in different structural parts subject to the same metallization.Furthermore,based on the summary of the characteristics and regularities of uranium mineralization in this area,the controlling factors of different types of uranium deposits in the area were explored and six metallogenic target areas were predicted.All these will provide references for the exploration of uranium deposits in this area.展开更多
Fluorite is one of the important mineral raw materials in the industry.In China,it is mainly distributed in the provinces and regions such as Hunan,Zhejiang,Jiangxi,Inner Mongolia,Fujian,and Henan provinces,boasting h...Fluorite is one of the important mineral raw materials in the industry.In China,it is mainly distributed in the provinces and regions such as Hunan,Zhejiang,Jiangxi,Inner Mongolia,Fujian,and Henan provinces,boasting huge reserves and large numbers of deposits.However,most of the fluorite deposits are on a small or medium scale.The main fluorite deposits in China were studied in this paper.Their geological features and metallogenic regularity were summarized and compared.Meanwhile,based on their main genetic factors including metallogenic fluid sources and main metallogenic geological processes,they were divided into two groups,namely meso-epithermal deposits and magmatic-hydrothermal deposits.Furthermore,based on the prospecting achievements and research progress obtained in fluorite deposits in recent years,prospecting potential predictions were made for the metallogenic prospect areas and major prospecting areas of fluorite in China.This aims to provide a theoretical basis and direction for future fluorite prospecting in China.展开更多
Gold is one of the most important mineral resources in China with its rich mineral resources. In recent years, significant progress has been made on the process of gold resource exploration. Some large and giant gold ...Gold is one of the most important mineral resources in China with its rich mineral resources. In recent years, significant progress has been made on the process of gold resource exploration. Some large and giant gold deposits were newly found and some important expansions in the main mining regions were also been completed. Studies on metailogenic regularity of gold deposits in China also have made achievements with a long-term work. This review aims to conclude the achievements of research on gold metallogenic regularity in China. Based on the data of about 2000 gold deposits and other ore (mineralized) occurrences, gold deposits in China were classified into five prediction types: gold deposits genetically related to granite-greenstone formation, gold deposits related to sedimentary formation (including the Carlin type and the metamorphosed clastic rock related vein gold deposit), gold deposits genetically related to volcanic rocks (including the continental and marine types), gold deposits genetically related to intrusions (including the porphyry type and the inner intrusion and contact zone related gold deposit), gold deposits of supergenesis (including fracture zone-altered rock gold deposit, placer gold deposit, gossan type gold precise chronology data of gold deposits indicate deposit and soil type gold deposit). Statistics on that there occurred 5 main periods of gold- mineralization in geological history of China. They were Neoarchean to Paleoproterozoic, Meso- Neoproterozoic, Paleozoic, Mesozoic, and Cenozoic. Gold deposits in China mainly formed in the Mesozoic and the Cenozoic. On the studies of the spatial-temporal distribution characteristics of gold deposits, 53 gold-forming belts were delineated in China. The metallogenic regularity of gold deposits was preliminarily summarized and 71 gold metallogenic series were proposed in China. This suggests that it is necceary to deepen the study on metallogenic regularity of gold deposits and to provide the theory guide for the ore-prospecting for gold resources in China.展开更多
China is rich in abundant lithium resources characterized by considerable reserves and a concentrated distribution of metallogenic zones or belts,with proven reserves of 4046.8×10^(3) t(calculated based on Li_(2)...China is rich in abundant lithium resources characterized by considerable reserves and a concentrated distribution of metallogenic zones or belts,with proven reserves of 4046.8×10^(3) t(calculated based on Li_(2)O)by 2021.China is also a big consumer of lithium.By 2019,China’s lithium consumption in the battery sector alone had reached 99×10^(3) t,with an average annual growth rate of nearly 26%.China has become the world’s largest importer of lithium resources,showing a severely unbalanced relationship between supply and demand for lithium resources.Therefore,there is an urgent need for the prospecting,exploitation,and study of lithium resources in China.This study collected,organized,and summarized the data on the major lithium deposits in China,analyzed and compared the spatial-temporal distribution patterns,geological characteristics,and metallogenic regularity of these lithium deposits,and summarized the prospecting and research achievements over the last decade.The major lithium deposits in China are distributed in provinces and regions such as Qinghai,Jiangxi,Sichuan,Tibet,and Xinjiang.These deposits are mostly small in scale.According to different genetic types,this study divided lithium deposits into granitic pegmatite type,granite type,saline lake brine type,underground brine type,and sedimentary type,as well as new types including hot spring type and magmatic-hydrothermal type,and summarized the characteristics and key metallogenic factors of these different types of deposits.Sixteen metallogenic prospect areas of lithium deposits were delineated according to the deposit types and the distribution patterns of metallogenic belts.The paper introduced the research progress in major metallogenic models and lithium extraction techniques made over the past decade.Based on the comprehensive analysis of the prospecting potential of lithium deposits,the authors concluded that the future prospecting of lithium resources in China should focus on lithium metallogenic belts,the deep and peripheral areas of currently determined large-scale pegmatite-type lithium deposits,geophysical-geochemical anomalous areas with mineralization clues,and areas with developed large-scale low-grade associated granite-type and sedimentary lithium resources.The study aims to serve as a guide for the future prospecting of lithium deposits in China.展开更多
China has abundant reserves of magnesite, making it the world’s leading source of this strategic mineral.Sparry magnesite is the main type of magnesite deposit, and is easy to exploit.It occurs mainly as the sediment...China has abundant reserves of magnesite, making it the world’s leading source of this strategic mineral.Sparry magnesite is the main type of magnesite deposit, and is easy to exploit.It occurs mainly as the sedimentary-metamorphic type.Production is centred on eastern Liaoning Province, where a world-class large to super large magnesite ore processing and production facility has been developed.Hydrothermal metasomatic deposits, associated with ultramafic complexes and eluvial deposits produced by weathering, are two other important types found in China.The Western section of the Bangonghu-Nujiang metallogenic belt is an important target region for prospecting lake-sedimentary magnesite deposits.Based on a systematic analysis of material from 62 magnesite production areas, this study investigated the metallogeny of magnesite and delineated 13 magnesite metallogenic belts.Maps were produced showing metallogenic regularities in magnesite deposits, the metallogenic system of the magnesite deposits, and the distribution of the metallogenic belts of Chinese magnesite deposits.It provides a theoretical basis for forecasting the location of potential magnesite resources in China.Finally, it explores some key scientific issues, including the formation processes of ultra magnesite ore-concentrated areas, and their sources of magnesium.展开更多
The nickel deposits mainly distributed in 19 provinces and autonomous regions in China are 339 ore deposits/occurrences, including 4 super large-scale deposits, 14 large-scale deposits, 26 middle- scale deposits, 75 s...The nickel deposits mainly distributed in 19 provinces and autonomous regions in China are 339 ore deposits/occurrences, including 4 super large-scale deposits, 14 large-scale deposits, 26 middle- scale deposits, 75 small-scale deposits, and 220 mineralized occurrences. The prediction types of mineral resources of nickel deposits are magmatic type, marine sedimentary type and regolith type. The formation age is from the Neoarchean to the Cenozoic with two peaks in the Neoproterozoic and the late Paleozoic. The nickel deposits formed in the Neoproterozoic are located on the margin of the North China Block and Yangtze Block, and those formed in the late Paleozoic are mainly distributed in the Central Asian Orogenic Belt (CAOB), Emeishan and the Tarim Large Igneous Provinces (LIPs). Magmatic nickel deposits are mainly related with broken-up continental margin, post-collision extension of the orogenic belt and mantle plume. According to different tectonic backgrounds and main characteristics of magmatism, the Ni-Cu-Co-PGE metallogenie series types of ore deposits related with mantle-derived mafic-ultramafic rocks can be divided into 4 subtypes: (1) the Ni-Cu-Co- PGE metallogenic series subtype of ore deposits related with mantle-derived mafic-ultramafic rocks in the broken-up continental margin, (2) the Ni-Cu-Co-PGE metallogenic series subtype of ore deposits related with mantle-derived mafic-ultramafic rocks in mantle plume magmatism, (3) the Ni-Cu-Co- PGE metallogenic series subtype of ore deposits related with mantle-derived mafic-ultramafic rocks in the subduction of the orogenic belt, and (4) the Ni-Cu-Co-PGE metallogenic series subtype of ore deposits related with mantle-derived mafic-ultramafic rocks in post-collision extension of the orogenic belt. We have discussed in this paper the typical characteristics and metaliogenic models for Neoproterozoic Ni-Cu-(PGE) deposits related with broken-up continental margin, Cambrian marine sedimentary Ni-Mo-V deposits related with black shale, early Permian Ni-Cu deposits related with post-collision extension of the orogenic belt, late Permian Ni-Cu-(PGE) deposits related with Large Igneous Provinces (LIPs), and Cenozoic Ni-Au deposits related with regolith. The broken-up continental margin, mantle plume and post-collision extension of the orogenic belt are important ore- forming geological backgrounds, and the discordogenic fault, mafic-ultramafic intrusion, high MgO primitive magma (high-MgO basaltic magma), deep magmatism, sulfur saturation and sulfide segregation are 6 important geological conditions for the magmatic nickel deposits.展开更多
1 Introduction The Kangdian axis is an important polymetallic metallogenic belt in Southwest China,and it is also an area with a lot of hydrothermal uranium mineralization(Wang Hongjun,et al.,2009.The basic
Uranium,as one of twenty-six kinds of important minerals in China,is strategic resource and energy mineral,which has been thoroughly investigated in the project of National Potential Evaluation of Uranium Resource.Dur...Uranium,as one of twenty-six kinds of important minerals in China,is strategic resource and energy mineral,which has been thoroughly investigated in the project of National Potential Evaluation of Uranium Resource.During the implementation of this project,the authors summarized the metallogenic regularity of uranium resource in China systematically,through the researches of geological characteristics of uranium resource,uranium deposits type(genetic and prediction type),temporal and spatial distribution,and metallogenic series.Based on the investigation of present situation and progress in uranium exploration,this paper proposes the uranium deposits in China should be divided into 4 classes,9 types,21 subtypes in genetic,and 50 types in prediction;suggests to divide China into 29 uranium metallogenic belts and 20 uranium prospective area,and constructs 20uranium-polymetallic metallogenic series,through summarizing temporal and spatial distribution characteristics and metallogenic regularity of uranium deposits in China.The above research is beneficial to the comprehensive understanding of regional uranium metallogenic regularity,and will direct the uranium exploration in the future.展开更多
The Songpan-Ganze orogenic belt on the northeastern margin of the Tibetan Plateau extends westward from the Songpan-Ganze terrain in western Sichuan to the Tianshuihai region in West Kunlun,Xinjiang.It hosts numerous ...The Songpan-Ganze orogenic belt on the northeastern margin of the Tibetan Plateau extends westward from the Songpan-Ganze terrain in western Sichuan to the Tianshuihai region in West Kunlun,Xinjiang.It hosts numerous giant spodumene pegmatite deposits and ore fields,including Jiajika and Ke’eryin in western Sichuan Province,Zhawulong on the border between the Sichuan and Qinghai Provinces,and Dahongliutan in Xinjiang Region.These form the Songpan-Ganze-West Kunlun(SP-GZ-WK) pegmatite-type rare-metal metallogenic belt.The pegmatite type rare-metal deposits in this belt are hosted in the metamorphic thermal domes in the metamorphosed flysh of the Triassic Xikang and Bayankalashan Groups.The mineralized pegmatites are intimately related to the Li-and volatile-rich two-mica granites that are peraluminous and have high(Li+Na+K)/(Mn+Fe+Mg+Ca+Ti) ratios.Pegmatites and granites in individual ore field throughout the belt typically form a cogenetic granite-pegmatite system,in which pegmatite dikes commonly surround granites.Spodumene is the predominant ore mineral in most pegmatites with limited hydrothermal alteration.In the granite-pegmatite systems,granitic magmas were emplaced under P-T conditions of 800–850°C and ~550 MPa,while spodumene crystallized in an alkaline environment.The granite-pegmatite systems share similar Sr-Nd-Hf-Li isotopic compositions to the metasediments of the Xikang and Bayankalashan Groups.The δ7Li values tend to increase from the granites to the Li-poor pegmatites,whereas the reverse is observed between the Li-poor and Li-rich pegmatites.These geochronological data suggest that the granite-pegmatite systems formed in the Late Triassic and tend to be progressively younger from the outer to the inner zones of the metallogenic belt.These characteristics show that the granitic-pegmatitic melts were derived from the anatexis of the Xikang and Bayankalashan Groups during the Paleo-Tethyan orogeny in the Late Triassic.The separation of pegmatitic melts from granitic magmas can be best explained using the Jiajika-style “melt-melt immiscibility” or the Ke’eryin-style “fractional crystallization+melt-melt immiscibility” model.High-maturity terrestrial sediments are of key importance for the anatexis that results in the granitepegmatite melts.The bidirectional tectonic stresses in the Songpan-Ganze orogenic belt may have caused the mineralization difference between the Jiajika deposit and the Ke’eryin ore field.These features indicate the controls of the combination of orogenic deformation,metapelites anatexis,and magmatic differentiation on the rare-metal mineralization of pegmatites.We suggest that pegmatites,pegmatite–parental granite,and their protoliths are important indicators for rare-metal mineralization in the SP-GZ-WK pegmatite type rare-metal metallogenic belt.Based on the widespread presence of fertile metasediments and well development of metamorphic thermal dome,highly differentiated granites,and regional zonation of pegmatites,the Zhawulong ore field is the most prospective area for rare metals and thus should be the priority for future exploration.展开更多
基金supported by the metallogenic regularities and prediction of glutenite type Cu-Pb-Zn deposit in Tarim west margin(201511016-1)the special mapping techniques and its application demonstration in Sareke overall-exploration area in Xinjiang(12120114081501)
文摘1 Introduction Sareke glutenite-type copper deposit is the large size copper deposit discovered in recent years,and it is located Sarekebayi intracontinental pull-apart basin in the western margin of the Tarim basin.Conglomerate of
基金financially supported by National Natural Science Foundation of China (NO.41390451 and NO.41172101)Science and technology research projects of China Coal Geological Bureau (2013-I-03)basic geological survey project of China Geological Survey (12120114083001)
文摘Qinling orogen is one of the five main repository distribution provinces of large scale graphite resources. Graphite occurrence strata are multitudinous including NeoArchaean group to Neopaleozoic. Mineral deposit types are complete consisting of crystal flaky graphite deposit and aphanitic graphite deposit, ore types of the former are main graphite gneiss, graphite schist and graphitized marble, and ore types of the latter are main graphite layer metamorphosised from coal bed and graphitic carbargilite. At present, most graphite deposits with low research degree only implement preliminary investigations of the graphite resource, which has a good prospect. Based on the basic material of dozens of graphite deposits, spots and plays discovered in the Qinling orogen, this paper applied geologic multidisciplinary analysis method to disclose the graphite deposit types of the Qinling orogen, mainly through outdoors geologic survey and specimen examination with analysis of some typical deposits: regional metamorphism crystal graphite deposits and thermo-contact metamorphic aphanitic graphite deposits, with the control of latitudinally trending regional tectonic, graphite deposits of the Qinling orogen distribute sublatitudinally trending three large ore belts: I the Neoarchean-Proterozoic basement crystal graphite enrichment deposits zone along the south margin of North China plate; II the Carboniferous intermountain basin group aphanitic graphite enrichment deposits zone near the Shangdan suture of the West Qinling; III Paleozoic crystal graphite enrichment deposits zone in the Qinling paleomicroplate of the west part of the East Qinling.Conclusions are reached from multiple inquiries: Qinling multi-cycle complex continental collision orogen zone has experienced multiple tectonic framework transformation and polyphase tectonic thermal event from NeoArchean Erathem adjointing multiple graphite tectonic mineralization cycle. In the light of chief control of mineralization and ore types, each of the three large graphite deposits belts of the Qinling orogen has its own genesis: I graphite deposits enriched metallogenetic zone is that regional tectogenetic movement from NeoArchaean caused polyphase metapepsis, which superimposed up and reconstructed NeoArchean Erathem to Proterozoic basement, forming regional metamorphic big flake crystal graphite deposits; I! graphite deposits enriched metallogenetic zone is that polyphase regional tectogenetic movement associated with multiple heating caused by multiphase igneous intrusion, which resulted in original coal layers emerging multiple thermo-contact metamorphisms and formed thermo-contact metamorphic aphanitic graphite deposits. III graphite deposits enriched metallogenetic zone is that Palaeozoic cap- rock experienced polyphase metapepsis, forming regional metamorphic finely flake crystal graphite deposits. Cemprehensive research of metallogenetic mechanism in graphite deposits and its associated profitable deposits of the Qinling orogen is importance for future exploration.
基金supported by the National Natural Science Foundation (Grant No.41202025,41302058)Funds on Basic Researches for Central Public Welfare Academic Institutes (Grant No.ZS1103,K1325,YK1401)the Chinese Geological Survey Project--Geology of Mineral Resources in China (No.1212011220369,1212010633903,12120114039601 and 1212011121037)
文摘Tungsten ore resources are abundant in China with relatively complete types of deposits. Skarn type and quartz vein type deposits are dominated in the tungsten resources, whereas quartz vein type wolframite deposits are most important in terms of exploitation and utilization. Skarn type tungsten deposits are concentratedly distributed in the central Nanling region, such as South Hunan, South Anhui and the eastern Qinling region, while quartz vein type tungsten deposits occur mainly in South China, such as West Fujian, South Jiangxi, North Guangdong and South Hunan. The most important metallogenic epoch of tungsten is the Mesozoic, while the metallogenic tectonic setting is featured by an intracontinental environment after orogeny with sever tectonic movements, deep-seated faults and frequent magmatic activities, especially Mesozoic granitoids closely related to tungsten-tin mineralization. 22 metallogenic series of ore deposits characterized by or significantly related to tungsten were defined based on precise statistic information of 1199 tungsten mining areas and thorough the summary of metallogenic regularities. Based on studies of the metallogenic regularity of tungsten deposits, skarn type (or greisen type), quartz vein type and massif-type of tungsten deposits are thought to be the key prediction types. 65 tungsten-forming belts and 22 key ore concentration areas were ascertained and a distribution map of tungsten-forming belts of China was compiled, which provided a theoretical basis for evaluation and prediction of potential tungsten resources.
基金funded by the National Natural Science Fund for Youth(Grant No.41302058)grant from Ministry of Science and Technology of the People’s Republic of China(Grant No.2011YQ05006908)+1 种基金Chinese Geological Survey Grants(Grant No.1212010633903,1212011220369,12120114039601,12120114019401)open funds from MLR Key Laboratory of Metallogeny and Mineral Assessment,Institute of Mineral Resources,Chinese Academy of Geological Sciences(Grant No.ZS1103)
文摘Copper resources in China are rich, but imported copper products are still required. Researches on metallogenic regularity of major types of copper deposits by geologists have involved in worldwide classification, significant copper belts, representative copper deposits, etc. Studies on metallogenic regularity of copper deposits in China also have made achievements with a long-term work. Combined with latest exploration advances obtained in recent ten years, this review aims to conclude the achievements of researches on copper metallogenic regularity in China. Based on data of 814 copper deposits and other ore (mineralized) occurrences, ten prediction types of copper deposits have been suggested. Porphyry and skarn copper ores are taken as the key targets. Porphyry copper deposits are the most important one which concentrate in Gangdese, Changdu-Sanjiang, Dexing and East Tianshan. The Cenozoic and Mesozoic are the major metallogenic epochs. Four main metallogenic epochs are been studied based on the copper ore geochronological data including Precambrian Era (Archean and Proterozoic), Paleozoic Era, Mesozoic Era and Cenozoic Era. Based on the study of metallogenic series of ore deposits in China, twenty-seven metallogenic series of copper deposits are proposed. This is suggested to deepen the study of metallogenic regularity of copper ore and provide the theory guide for copper resources prediction in China.
基金funded by the project titled Prospect Survey and Exploration Demonstration of Hardrock Mineral Resources such as Uranium and Thorium(12120115014101)initiated by the Tianjin Center of China Geological Survey.The data and achievements cited in this paper are mainly from relevant scientific research,geological survey,and mineral exploration projects undertaken by the No.302 Brigade of Hunan Nuclear Industry Geology Bureau in recent years.
文摘The central Zhuguang Mountains in Hunan Province is located at the junction of the three provinces,namely Hunan,Jiangxi,and Guangdong,where the famous Lujing uranium ore field lies.The uranium deposits occurring in this area are all granite-related and they can be divided into three types,namely endogranitic ones,perigranitic ones,and contact zone types.The endogranitic uranium deposits are mainly controlled by the structural alteration zones developing within granites,with fragmentation,hematitization,and alkali metasomatism as their main mineralization characteristics.The perigranitic uranium deposits are mainly produced in the carbonaceous,siliceous,and argillaceous composite layers of epimetamorphic rocks and are controlled by fractured zones formed due to interlayer compression.The contact zone type uranium deposits mainly occur in the contact parts between the granites and favorable horizons.They have developed in favorable sections where multiple sets of structures are combined and intersected.The main metallogenic regularities of uranium in the central Zhuguang Mountains are as follows.The basic conditions for the uranium mineralization in this area include the framework consisting of regional deep large faults and their associated multi-set multi-direction favorable metallogenic structures,multi-cycle and multi-stage uranium-rich rock masses,and uranium-rich folded basement.Meanwhile,the uranium deposits in this area are closely related to granites in terms of genesis and space and they are formed in different structural parts subject to the same metallization.Furthermore,based on the summary of the characteristics and regularities of uranium mineralization in this area,the controlling factors of different types of uranium deposits in the area were explored and six metallogenic target areas were predicted.All these will provide references for the exploration of uranium deposits in this area.
基金funded by Geological Survey Program of China Geological Survey(DD20190816,DD20160057,DD20190606).
文摘Fluorite is one of the important mineral raw materials in the industry.In China,it is mainly distributed in the provinces and regions such as Hunan,Zhejiang,Jiangxi,Inner Mongolia,Fujian,and Henan provinces,boasting huge reserves and large numbers of deposits.However,most of the fluorite deposits are on a small or medium scale.The main fluorite deposits in China were studied in this paper.Their geological features and metallogenic regularity were summarized and compared.Meanwhile,based on their main genetic factors including metallogenic fluid sources and main metallogenic geological processes,they were divided into two groups,namely meso-epithermal deposits and magmatic-hydrothermal deposits.Furthermore,based on the prospecting achievements and research progress obtained in fluorite deposits in recent years,prospecting potential predictions were made for the metallogenic prospect areas and major prospecting areas of fluorite in China.This aims to provide a theoretical basis and direction for future fluorite prospecting in China.
基金supported by the National Natural Science Foundation (Grant No.41202025,41302058)Funds on basic researchs for central public welfare academic institutes (Grant No.K1325 and YK1401)the Chinese Geological Survey Project (No.1212010633903,1212011220369,12120114039601 and 12120114019401)
文摘Gold is one of the most important mineral resources in China with its rich mineral resources. In recent years, significant progress has been made on the process of gold resource exploration. Some large and giant gold deposits were newly found and some important expansions in the main mining regions were also been completed. Studies on metailogenic regularity of gold deposits in China also have made achievements with a long-term work. This review aims to conclude the achievements of research on gold metallogenic regularity in China. Based on the data of about 2000 gold deposits and other ore (mineralized) occurrences, gold deposits in China were classified into five prediction types: gold deposits genetically related to granite-greenstone formation, gold deposits related to sedimentary formation (including the Carlin type and the metamorphosed clastic rock related vein gold deposit), gold deposits genetically related to volcanic rocks (including the continental and marine types), gold deposits genetically related to intrusions (including the porphyry type and the inner intrusion and contact zone related gold deposit), gold deposits of supergenesis (including fracture zone-altered rock gold deposit, placer gold deposit, gossan type gold precise chronology data of gold deposits indicate deposit and soil type gold deposit). Statistics on that there occurred 5 main periods of gold- mineralization in geological history of China. They were Neoarchean to Paleoproterozoic, Meso- Neoproterozoic, Paleozoic, Mesozoic, and Cenozoic. Gold deposits in China mainly formed in the Mesozoic and the Cenozoic. On the studies of the spatial-temporal distribution characteristics of gold deposits, 53 gold-forming belts were delineated in China. The metallogenic regularity of gold deposits was preliminarily summarized and 71 gold metallogenic series were proposed in China. This suggests that it is necceary to deepen the study on metallogenic regularity of gold deposits and to provide the theory guide for the ore-prospecting for gold resources in China.
基金funded by the Major Research Plan of the National Natural Science Foundation of China(Grant No.92062217)the project of China Geological Survey(DD20190405).
文摘China is rich in abundant lithium resources characterized by considerable reserves and a concentrated distribution of metallogenic zones or belts,with proven reserves of 4046.8×10^(3) t(calculated based on Li_(2)O)by 2021.China is also a big consumer of lithium.By 2019,China’s lithium consumption in the battery sector alone had reached 99×10^(3) t,with an average annual growth rate of nearly 26%.China has become the world’s largest importer of lithium resources,showing a severely unbalanced relationship between supply and demand for lithium resources.Therefore,there is an urgent need for the prospecting,exploitation,and study of lithium resources in China.This study collected,organized,and summarized the data on the major lithium deposits in China,analyzed and compared the spatial-temporal distribution patterns,geological characteristics,and metallogenic regularity of these lithium deposits,and summarized the prospecting and research achievements over the last decade.The major lithium deposits in China are distributed in provinces and regions such as Qinghai,Jiangxi,Sichuan,Tibet,and Xinjiang.These deposits are mostly small in scale.According to different genetic types,this study divided lithium deposits into granitic pegmatite type,granite type,saline lake brine type,underground brine type,and sedimentary type,as well as new types including hot spring type and magmatic-hydrothermal type,and summarized the characteristics and key metallogenic factors of these different types of deposits.Sixteen metallogenic prospect areas of lithium deposits were delineated according to the deposit types and the distribution patterns of metallogenic belts.The paper introduced the research progress in major metallogenic models and lithium extraction techniques made over the past decade.Based on the comprehensive analysis of the prospecting potential of lithium deposits,the authors concluded that the future prospecting of lithium resources in China should focus on lithium metallogenic belts,the deep and peripheral areas of currently determined large-scale pegmatite-type lithium deposits,geophysical-geochemical anomalous areas with mineralization clues,and areas with developed large-scale low-grade associated granite-type and sedimentary lithium resources.The study aims to serve as a guide for the future prospecting of lithium deposits in China.
基金supported by the China Geological Survey Program (Grant No.1212010633903, 1212011220369)the National Natural Science Foundation of China (Grant No.41372092)the Chinese National Non-profit Institute Research Grant of CAGS-IMR (K1303)
文摘China has abundant reserves of magnesite, making it the world’s leading source of this strategic mineral.Sparry magnesite is the main type of magnesite deposit, and is easy to exploit.It occurs mainly as the sedimentary-metamorphic type.Production is centred on eastern Liaoning Province, where a world-class large to super large magnesite ore processing and production facility has been developed.Hydrothermal metasomatic deposits, associated with ultramafic complexes and eluvial deposits produced by weathering, are two other important types found in China.The Western section of the Bangonghu-Nujiang metallogenic belt is an important target region for prospecting lake-sedimentary magnesite deposits.Based on a systematic analysis of material from 62 magnesite production areas, this study investigated the metallogeny of magnesite and delineated 13 magnesite metallogenic belts.Maps were produced showing metallogenic regularities in magnesite deposits, the metallogenic system of the magnesite deposits, and the distribution of the metallogenic belts of Chinese magnesite deposits.It provides a theoretical basis for forecasting the location of potential magnesite resources in China.Finally, it explores some key scientific issues, including the formation processes of ultra magnesite ore-concentrated areas, and their sources of magnesium.
基金funded by the National Natural Science Fund for Youth (Grant No.41402070,41372101)grant from Chinese Geological Survey Grants (Grant No.1212010633903,1212011220369,12120114039601,1212011121037)open funds from the key laboratory of western mineral resources and geological engineering of ministry of education,Chang’an university (Grant No.310826151138)
文摘The nickel deposits mainly distributed in 19 provinces and autonomous regions in China are 339 ore deposits/occurrences, including 4 super large-scale deposits, 14 large-scale deposits, 26 middle- scale deposits, 75 small-scale deposits, and 220 mineralized occurrences. The prediction types of mineral resources of nickel deposits are magmatic type, marine sedimentary type and regolith type. The formation age is from the Neoarchean to the Cenozoic with two peaks in the Neoproterozoic and the late Paleozoic. The nickel deposits formed in the Neoproterozoic are located on the margin of the North China Block and Yangtze Block, and those formed in the late Paleozoic are mainly distributed in the Central Asian Orogenic Belt (CAOB), Emeishan and the Tarim Large Igneous Provinces (LIPs). Magmatic nickel deposits are mainly related with broken-up continental margin, post-collision extension of the orogenic belt and mantle plume. According to different tectonic backgrounds and main characteristics of magmatism, the Ni-Cu-Co-PGE metallogenie series types of ore deposits related with mantle-derived mafic-ultramafic rocks can be divided into 4 subtypes: (1) the Ni-Cu-Co- PGE metallogenic series subtype of ore deposits related with mantle-derived mafic-ultramafic rocks in the broken-up continental margin, (2) the Ni-Cu-Co-PGE metallogenic series subtype of ore deposits related with mantle-derived mafic-ultramafic rocks in mantle plume magmatism, (3) the Ni-Cu-Co- PGE metallogenic series subtype of ore deposits related with mantle-derived mafic-ultramafic rocks in the subduction of the orogenic belt, and (4) the Ni-Cu-Co-PGE metallogenic series subtype of ore deposits related with mantle-derived mafic-ultramafic rocks in post-collision extension of the orogenic belt. We have discussed in this paper the typical characteristics and metaliogenic models for Neoproterozoic Ni-Cu-(PGE) deposits related with broken-up continental margin, Cambrian marine sedimentary Ni-Mo-V deposits related with black shale, early Permian Ni-Cu deposits related with post-collision extension of the orogenic belt, late Permian Ni-Cu-(PGE) deposits related with Large Igneous Provinces (LIPs), and Cenozoic Ni-Au deposits related with regolith. The broken-up continental margin, mantle plume and post-collision extension of the orogenic belt are important ore- forming geological backgrounds, and the discordogenic fault, mafic-ultramafic intrusion, high MgO primitive magma (high-MgO basaltic magma), deep magmatism, sulfur saturation and sulfide segregation are 6 important geological conditions for the magmatic nickel deposits.
基金supported by the China Nuclear Industry Geological Bureau Foundation (No.201637 and 201638)
文摘1 Introduction The Kangdian axis is an important polymetallic metallogenic belt in Southwest China,and it is also an area with a lot of hydrothermal uranium mineralization(Wang Hongjun,et al.,2009.The basic
基金National Mineral Resource Potential Evaluation Project
文摘Uranium,as one of twenty-six kinds of important minerals in China,is strategic resource and energy mineral,which has been thoroughly investigated in the project of National Potential Evaluation of Uranium Resource.During the implementation of this project,the authors summarized the metallogenic regularity of uranium resource in China systematically,through the researches of geological characteristics of uranium resource,uranium deposits type(genetic and prediction type),temporal and spatial distribution,and metallogenic series.Based on the investigation of present situation and progress in uranium exploration,this paper proposes the uranium deposits in China should be divided into 4 classes,9 types,21 subtypes in genetic,and 50 types in prediction;suggests to divide China into 29 uranium metallogenic belts and 20 uranium prospective area,and constructs 20uranium-polymetallic metallogenic series,through summarizing temporal and spatial distribution characteristics and metallogenic regularity of uranium deposits in China.The above research is beneficial to the comprehensive understanding of regional uranium metallogenic regularity,and will direct the uranium exploration in the future.
基金supported by the Chinese National Key R&D Program (Grant No. 2019YFC0605200)the National Natural Science Foundation of China (Grant Nos. 41872096 and 42002109)the China Geological Survey Project (Grant Nos. DD20221684 and DD20230289)。
文摘The Songpan-Ganze orogenic belt on the northeastern margin of the Tibetan Plateau extends westward from the Songpan-Ganze terrain in western Sichuan to the Tianshuihai region in West Kunlun,Xinjiang.It hosts numerous giant spodumene pegmatite deposits and ore fields,including Jiajika and Ke’eryin in western Sichuan Province,Zhawulong on the border between the Sichuan and Qinghai Provinces,and Dahongliutan in Xinjiang Region.These form the Songpan-Ganze-West Kunlun(SP-GZ-WK) pegmatite-type rare-metal metallogenic belt.The pegmatite type rare-metal deposits in this belt are hosted in the metamorphic thermal domes in the metamorphosed flysh of the Triassic Xikang and Bayankalashan Groups.The mineralized pegmatites are intimately related to the Li-and volatile-rich two-mica granites that are peraluminous and have high(Li+Na+K)/(Mn+Fe+Mg+Ca+Ti) ratios.Pegmatites and granites in individual ore field throughout the belt typically form a cogenetic granite-pegmatite system,in which pegmatite dikes commonly surround granites.Spodumene is the predominant ore mineral in most pegmatites with limited hydrothermal alteration.In the granite-pegmatite systems,granitic magmas were emplaced under P-T conditions of 800–850°C and ~550 MPa,while spodumene crystallized in an alkaline environment.The granite-pegmatite systems share similar Sr-Nd-Hf-Li isotopic compositions to the metasediments of the Xikang and Bayankalashan Groups.The δ7Li values tend to increase from the granites to the Li-poor pegmatites,whereas the reverse is observed between the Li-poor and Li-rich pegmatites.These geochronological data suggest that the granite-pegmatite systems formed in the Late Triassic and tend to be progressively younger from the outer to the inner zones of the metallogenic belt.These characteristics show that the granitic-pegmatitic melts were derived from the anatexis of the Xikang and Bayankalashan Groups during the Paleo-Tethyan orogeny in the Late Triassic.The separation of pegmatitic melts from granitic magmas can be best explained using the Jiajika-style “melt-melt immiscibility” or the Ke’eryin-style “fractional crystallization+melt-melt immiscibility” model.High-maturity terrestrial sediments are of key importance for the anatexis that results in the granitepegmatite melts.The bidirectional tectonic stresses in the Songpan-Ganze orogenic belt may have caused the mineralization difference between the Jiajika deposit and the Ke’eryin ore field.These features indicate the controls of the combination of orogenic deformation,metapelites anatexis,and magmatic differentiation on the rare-metal mineralization of pegmatites.We suggest that pegmatites,pegmatite–parental granite,and their protoliths are important indicators for rare-metal mineralization in the SP-GZ-WK pegmatite type rare-metal metallogenic belt.Based on the widespread presence of fertile metasediments and well development of metamorphic thermal dome,highly differentiated granites,and regional zonation of pegmatites,the Zhawulong ore field is the most prospective area for rare metals and thus should be the priority for future exploration.