The mechanisms of oxide metallurgy include inducing the formation of intragranular acicular ferrite(IAF)using micron-sized inclusions and restricting the growth of prior austenite grains(PAGs)by nanosized particles du...The mechanisms of oxide metallurgy include inducing the formation of intragranular acicular ferrite(IAF)using micron-sized inclusions and restricting the growth of prior austenite grains(PAGs)by nanosized particles during welding.The chaotically oriented IAF and refined PAGs inhibit crack initiation and propagation in the steel,resulting in high impact toughness.This work summarizes the com-bined effect of deoxidizers and alloying elements,with the aim to provide a new perspective for the research and practice related to im-proving the impact toughness of the heat affected zone(HAZ)during the high heat input welding.Ti complex deoxidation with other strong deoxidants,such as Mg,Ca,Zr,and rare earth metals(REMs),can improve the toughness of the heat-affected zone(HAZ)by re-fining PAGs or increasing IAF contents.However,it is difficult to identify the specific phase responsible for IAF nucleation because ef-fective inclusions formed by complex deoxidation are usually multiphase.Increasing alloying elements,such as C,Si,Al,Nb,or Cr,con-tents can impair HAZ toughness.A high C content typically increases the number of coarse carbides and decreases the potency of IAF formation.Si,Cr,or Al addition leads to the formation of undesirable microstructures.Nb reduces the high-temperature stability of the precipitates.Mo,V,and B can enhance HAZ toughness.Mo-containing precipitates present good thermal stability.VN or V(C,N)is ef-fective in promoting IAF nucleation due to its good coherent crystallographic relationship with ferrite.The formation of the B-depleted zone around the inclusion promotes IAF formation.The interactions between alloying elements are complex,and the effect of adding dif-ferent alloying elements remains to be evaluated.In the future,the interactions between various alloying elements and their effects on ox-ide metallurgy,as well as the calculation of the nucleation effects of effective inclusions using first principles calculations will become the focus of oxide metallurgy.展开更多
How to ensure the reliable operation of the complex and huge electrical system composed of a large number of electrical equipment in iron and steel enterprises?Combined with working experience,the author introduces fo...How to ensure the reliable operation of the complex and huge electrical system composed of a large number of electrical equipment in iron and steel enterprises?Combined with working experience,the author introduces four main factors affecting the normal operation of equipment,analyzes five main problems existing in the operation and management of electrical equipment,and puts forward corresponding improvement measures,so as to improve the management level of electrical equipment in iron and steel enterprises.展开更多
The abnormal corrosion of hot iron ladles was investigated.The performance,the composition and the structure of bricks for hot iron ladles were analyzed.The results show that(1)compared with the alumina-silicon carbid...The abnormal corrosion of hot iron ladles was investigated.The performance,the composition and the structure of bricks for hot iron ladles were analyzed.The results show that(1)compared with the alumina-silicon carbide-carbon bricks for the ladle bottom,those for the ladle wall have more pyrophyllite and the Al2O3 content of 36.32 mass%;their bulk density,apparent porosity and cold compressive strength are lower than the requirement of industry standard;they have poor anti-oxidation performance and are oxidized to form a porous layer during service,which loosens the brick lining structure thus leading to fracture,local wear and structural damage of bricks;(2)without preheating,steel scraps are not completely melted,resulting in slag or steel attachment at the mouth or the bottom of ladles thus increasing damage of ladles;(3)and the residual bricks react with the attached slag to form low melting point phases affecting their hot properties.The refractories for the lining of hot iron ladles must be improved in combination with process changes,not entirely by raw materials replacement to reduce costs.展开更多
The iron and steel industry(ISI) involves high energy consumption and high pollution. ISI in China, a leading country in the ISI,consumed 15% of the country’s total energy and produced more than 50% of the global ISI...The iron and steel industry(ISI) involves high energy consumption and high pollution. ISI in China, a leading country in the ISI,consumed 15% of the country’s total energy and produced more than 50% of the global ISI’s carbon emissions. Therefore, in the context of global low-carbon economy and emission reduction requirements, low-carbon smelting technology in the ISI has attracted increasingly more attention in China. This review summarizes the current status of carbon emissions and energy consumption in China’s ISI and discusses the development status and prospects of low-carbon ironmaking technology. The main route to effectively reducing carbon emissions is to develop a gas-based direct reduction process and replace sintering with pelletizing, both of which focus on developing pelletizing technology. However,the challenge of pelletizing process development is to obtain high-quality iron concentrates. Consequently, the present paper also summarizes the development status of China’s mineral processing technology, including fine-grained mineral processing technology, magnetization roasting technology, and flotation collector application. This paper aims to provide a theoretical basis for the low-carbon development of China’s ISI in terms of a dressing–smelting combination.展开更多
In the present work,Fe–Mn–Al–C powder mixtures were manufactured by elemental powders with different ball milling time,and the porous high-Mn and high-Al steel was fabricated by powder sintering.The results indicat...In the present work,Fe–Mn–Al–C powder mixtures were manufactured by elemental powders with different ball milling time,and the porous high-Mn and high-Al steel was fabricated by powder sintering.The results indicated that the powder size significantly decreased,and the morphology of the Fe powder tended to be increasingly flat as the milling time increased.However,the prolonged milling duration had limited impact on the phase transition of the powder mixture.The main phases of all the samples sintered at 640℃ were α-Fe,α-Mn and Al,and a small amount of Fe2Al5 and Al8Mn5.When the sintering temperature increased to 1200℃,the phase composition was mainly comprised of γ-Fe and α-Fe.The weight loss fraction of the sintered sample decreased with milling time,i.e.,8.3wt% after 20 h milling compared to15.3wt% for 10 h.The Mn depletion region(MDR) for the 10,15,and 20 h milled samples was about 780,600,and 370 μm,respectively.The total porosity of samples sintered at 640℃ decreased from ~46.6vol% for the 10 h milled powder to ~44.2vol% for 20 h milled powder.After sintering at 1200℃,the total porosity of sintered samples prepared by 10 and 20 h milled powder was ~58.3vol% and ~51.3vol%,respectively.The compressive strength and ductility of the 1200℃ sintered porous steel increased as the milling time increased.展开更多
This paper establishes a model for the production cost of iron and steel enterprise.The variation rule of the production cost versus the iron/steel ratio for two cases, namely,fixed steel production and a fixed amount...This paper establishes a model for the production cost of iron and steel enterprise.The variation rule of the production cost versus the iron/steel ratio for two cases, namely,fixed steel production and a fixed amount of molten iron,is analyzed,and the concept of a steel scrap threshold price is proposed.According to the analysis results,when the steel scrap unit price exceeds the steel scrap threshold price, an increase in the iron/steel ratio can reduce the production cost,and vice versa.When the gap between the steel scrap unit price and the steel scrap threshold price is relatively large, the impact of the iron/steel ratio on the production cost is more prominent.According to the calculation example,when steel production is fixed (284 358 t/month)and the steel scrap unit price is 263.2 yuan/t more than the steel scrap threshold price,an increase of 0.01 in the iron/steel ratio causes a monthly production cost reduction of approximately 750 000 yuan (2.63 yuan/t).When the amount of molten iron is fixed (270 425 t/month)and the steel scrap unit price is 140.7 yuan/t more than the threshold price,an increase of 0.01 in the iron/steel ratio causes a monthly production cost reduction of approximately 430 000 yuan (1.5 yuan/t).The results indicate that iron and steel enterprise should adjust the production strategy in time when the scrap price fluctuates, and then the production cost will be reduced.展开更多
The fatigue strength of a high V alloyed powder metallurgy tool steel with two different inclusion size levels, tempered at different temperatures, was investigated by a series of high cycle fatigue tests. It was show...The fatigue strength of a high V alloyed powder metallurgy tool steel with two different inclusion size levels, tempered at different temperatures, was investigated by a series of high cycle fatigue tests. It was shown that brittle inclusions with large sizes above 30μm prompted the occurrence of subsurface crack initiation and the reduction in fatigue strength. The fracture toughness and the stress amplitude both exerted a significant influence on the fish-eye size. A larger fish-eye area would form in the sample with a higher fracture toughness subjected to a lower stress amplitude. The stress intensity factor of the inclusion was found to lie above a typical value of the threshold stress intensity factor of 4 MPa.m^1/2. The fracture toughness of the sample with a hardness above HRC 56 could be estimated by the mean value of the stress intensity factor of the fish-eye. According to fractographic evaluation, the critical inclusion size can be calculated by linear fracture mechanics.展开更多
Steel production involves the transfer and transformation of material and energy at different levels, structures, and scales, and this process incurs substantial information in the material and energy dimensions. Give...Steel production involves the transfer and transformation of material and energy at different levels, structures, and scales, and this process incurs substantial information in the material and energy dimensions. Given the black-box feature of iron and steel production processes, process visualization plays an important role and inevitably benefits parameter correction, technical support decision-making, personnel training, and other aspects of the steel metallurgy industry. The technological characteristics of the entire process in the steel industry were analyzed in this study, a visualization technology route based on virtual reality(VR) was built, and the important components of visual simulation system for steel industry and the important technical points needed to realize the system were proposed. On the foundation, a visual simulation model for the process scheduling of the iron and steel enterprise raw materials' field, slab, and hot rolling processes was built, and a visualization simulation platform of the iron and steel metallurgy plant-wide process, including ironmaking, steelmaking, hot rolling, and cold rolling, was developed. Lastly, the effectiveness of platform was illustrated by practical application.展开更多
Recently procured outstanding achievements in iron and steel industry in China are presented by data or facts in steel output, energy consumption, technical and economical indicators and advanced technologies that are...Recently procured outstanding achievements in iron and steel industry in China are presented by data or facts in steel output, energy consumption, technical and economical indicators and advanced technologies that are being adopted. The latest achievements in refractonries for this biggest user industry are reviewed, covering new refractories for CDQ coke oven, BF hearth, AOD Lining, long life tundish, SEN for clean steel making and regenerative reheating furnace . The reciprocal relationship is obvious that the rapid development of iron and steel industry has given an impetus to the advance of refractories industry, which in return has contributed greatly to the former.展开更多
In the past 25 years in China, to meet with the rapid increase in steel production accompanied by adoption of advanced metallurgical technologies, there has been fast development of China' s refractories industry in ...In the past 25 years in China, to meet with the rapid increase in steel production accompanied by adoption of advanced metallurgical technologies, there has been fast development of China' s refractories industry in production capacity, in quality improvement and in development of new products. Sophisticated high performance refractory materials mainly based on our rich reserves of magncsite, bauxite and flake graphite have been developed, such as carbon-bonded products, high purity oxide products, bauxite-based low creep and high strength high alumina bricks and LC, ULC and ZC castables. They have been used in blast furnaces, BOFs, EAFs, secondary refining and continuous casting with considerable improvement in service pecformance.展开更多
Electrolytic hardening process was developed in USSR in the 1950s. The process was developed but was not commercially exploited. There is no evidence of work done on this process in India. The author has done this ori...Electrolytic hardening process was developed in USSR in the 1950s. The process was developed but was not commercially exploited. There is no evidence of work done on this process in India. The author has done this original work applied to different materials like steel, cast iron and aluminum-bronze. This paper gives details of microstructural transformations along with hardness value achieved. There is vital scope for this process to become viable for surface hardening and selective hardening of small components.展开更多
China has the biggest rare earths resource in the world,no wonder she pays much at-tention to the application of rare earth metals (REM).The application of REM in iron andsteel in China began at the end of 1950’s.The...China has the biggest rare earths resource in the world,no wonder she pays much at-tention to the application of rare earth metals (REM).The application of REM in iron andsteel in China began at the end of 1950’s.The production of REM-treated iron and steelhad been made steady progress in the period of 1980’s.The production of REM-treatediron and steel in 1989 was 1.4 million tons and 250,000 tons respectively.The interest oftreating steel with REM in China keeps growing even in these years,It comes from the nat-展开更多
The effects of sphere size on the microstructural and mechanical properties of ductile iron–steel hollow sphere(DI–SHS) syntactic foams were investigated in this study. The SHSs were manufactured by fluidized-bed ...The effects of sphere size on the microstructural and mechanical properties of ductile iron–steel hollow sphere(DI–SHS) syntactic foams were investigated in this study. The SHSs were manufactured by fluidized-bed coating via the Fe-based commercial powder–binder suspension onto expanded polystyrene spheres(EPSs). Afterwards, the DI–SHS syntactic foams were produced via a sand-mold casting process. The microstructures of specimens were investigated by optical microscopy, scanning electron microscopy(SEM), and energy-dispersive X-ray spectroscopy(EDS). The microscopic evaluations of specimens reveal distinct regions composed of the DI matrix, SHS shells, and compatible interface. As a result, the microstructures and graphite morphologies of the DI matrix depend on sphere size. When the sphere size decreases, the area fractions of cementite and graphite phases are observed to increase and decrease, respectively. Compression tests were subsequently conducted at ambient temperature on the DI–SHS syntactic foams. The results reveal that the compression behavior of the syntactic foams is enhanced with increasing sphere size. Furthermore, the compressed specimens demonstrate that microcracks start and grow from the interface region.展开更多
BAIRD SPECTROVAC 2000(DV 5) consisting of new type of HR-400 high repeat rate spark spectrosource, air cooled sample stand and an annular purged tungsten counter electrode has been used continuously in the la...BAIRD SPECTROVAC 2000(DV 5) consisting of new type of HR-400 high repeat rate spark spectrosource, air cooled sample stand and an annular purged tungsten counter electrode has been used continuously in the lab for many years and resulted in good economic benefits. The paper describes the application of the spectrometer in quantitative analysis of cast iron and steel products, and the experience and technique may be helpful to those who are using the same kind of instrument.展开更多
The effect of ball scribing on iron loss of conventional grain-oriented ( CGO) and high-permeability grain-oriented ( HGO) electrical steel was investigated. In this paper,ball scribing was achieved by self- designed ...The effect of ball scribing on iron loss of conventional grain-oriented ( CGO) and high-permeability grain-oriented ( HGO) electrical steel was investigated. In this paper,ball scribing was achieved by self- designed ball scribing instrument and a computer-controlled system capable of providing high accuracy and automatic measurements was developed for the magnetisation and measurement at high and low flux densities. The results showed that after ball scribing,iron loss of two types of steel ( C711 and H668 ) apparently decreases ( 5. 5% and 8. 2% respectively after 16mm scribing at 1. 2T) ,and at high and low flux densities, CGO and HGO electrical steel performs differently. Through the formation and development of free magnetic poles and secondary magnetic domains due to compressive stress,primary magnetic domain spacing of grain- oriented electrical steel becomes smaller,which reflects as a reduction of iron loss in the macroscopic magnetic properties. Through iron loss formula derivation,the effect of domain refinement on grain-oriented electrical steel was also interpreted.展开更多
In the present study, pure iron/copper composite metal cladding was deposited onto carbon steel by tungsten inert gas welding. The study focused on interfacial morphological, microstructural, and mechanical analyses o...In the present study, pure iron/copper composite metal cladding was deposited onto carbon steel by tungsten inert gas welding. The study focused on interfacial morphological, microstructural, and mechanical analyses of the composite cladding layers. Iron liquid–solid-phase zones were formed at copper/steel and iron interfaces because of the melting of the steel substrate and iron. Iron concentrated in the copper cladding layer was observed to exhibit belt, globule, and dendrite morphologies. The appearance of iron-rich globules indicated the occurrence of liquid phase separation(LPS) prior to solidification, and iron-rich dendrites crystallized without the occurrence of LPS. The maximum microhardness of the iron/steel interface was lower than that of the copper/steel interface because of the diffusion of elemental carbon. All samples fractured in the cladding layers. Because of a relatively lower strength of the copper layer, a short plateau region appeared when shear movement was from copper to iron.展开更多
In this study, high chromium white iron (HC-Wi) alloy and the Hadfield steel were studied. The microstructure of this high-chromium iron was studied using Metallurgical optical microscopy (OM) and compared to the Hadf...In this study, high chromium white iron (HC-Wi) alloy and the Hadfield steel were studied. The microstructure of this high-chromium iron was studied using Metallurgical optical microscopy (OM) and compared to the Hadfield steel. The hardness and unnotched charpy impact strength of the HC-Wi alloy and Hadfield steel were examined at ambient temperature in the as-cast and heat-treated conditions. A pin-on-disc test at linear speed of 1.18 m/s and a 10 N normal load was employed to evaluate the wear behavior of both steel samples. Microstructural results showed that varying the carbon level in HC-Wi alloys can affect the chromium carbide morphology and its distribution in the austenite matrix which leads to considerable changes of the mechanical properties. Abrasion test showed that HC-Wi alloys have superior wear resistance, about three times of the Hadfield steel.展开更多
The hardening characteristics of medium carbon steel and ductile cast iron using neem oil as quenching medium has been investigated. The samples were quenched to room temperature in Neem oil. To compare the effectiven...The hardening characteristics of medium carbon steel and ductile cast iron using neem oil as quenching medium has been investigated. The samples were quenched to room temperature in Neem oil. To compare the effectiveness of the neem oil samples were also quenched in water and SAE engine oil the commercial quenchants. The microstructures and mechanical properties of the quenched samples were used to determine the quench severity of the neem oil. The result shows that hardness value of the medium carbon steel increased from 18.30HVN in the as-cast condition to 21.60, 20.30and 20.70HVN while that of ductile cast iron samples increased from 18.90HVN in the as-cast condition to 22.65, 20.30 and 21.30HVN for water, neem oil and SAE40 engine oil respectively. The as-received steel sample gave the highest impact strength value and water quenched sample gave the least impact strength. The impact strength of the medium carbon steel samples is 50.84, 41.35, 30.50 and 45.15 Joule and that of ductile iron is 2.71, 1.02, 0.68 and 1.70 Joule for as-cast condition, neem oil, water and SAE 40 engine oil quenched respectively. The microstructure of the samples quenched in the Neem oil revealed the formation of martensite. Hence, neem oil can be used where cooling severity less than that of water but greater than SAE 40 engine oil is required for hardening of plain carbon steels and ductile cast iron.展开更多
基金supported by the National Natural Science Foundation of China(No.U1960202).
文摘The mechanisms of oxide metallurgy include inducing the formation of intragranular acicular ferrite(IAF)using micron-sized inclusions and restricting the growth of prior austenite grains(PAGs)by nanosized particles during welding.The chaotically oriented IAF and refined PAGs inhibit crack initiation and propagation in the steel,resulting in high impact toughness.This work summarizes the com-bined effect of deoxidizers and alloying elements,with the aim to provide a new perspective for the research and practice related to im-proving the impact toughness of the heat affected zone(HAZ)during the high heat input welding.Ti complex deoxidation with other strong deoxidants,such as Mg,Ca,Zr,and rare earth metals(REMs),can improve the toughness of the heat-affected zone(HAZ)by re-fining PAGs or increasing IAF contents.However,it is difficult to identify the specific phase responsible for IAF nucleation because ef-fective inclusions formed by complex deoxidation are usually multiphase.Increasing alloying elements,such as C,Si,Al,Nb,or Cr,con-tents can impair HAZ toughness.A high C content typically increases the number of coarse carbides and decreases the potency of IAF formation.Si,Cr,or Al addition leads to the formation of undesirable microstructures.Nb reduces the high-temperature stability of the precipitates.Mo,V,and B can enhance HAZ toughness.Mo-containing precipitates present good thermal stability.VN or V(C,N)is ef-fective in promoting IAF nucleation due to its good coherent crystallographic relationship with ferrite.The formation of the B-depleted zone around the inclusion promotes IAF formation.The interactions between alloying elements are complex,and the effect of adding dif-ferent alloying elements remains to be evaluated.In the future,the interactions between various alloying elements and their effects on ox-ide metallurgy,as well as the calculation of the nucleation effects of effective inclusions using first principles calculations will become the focus of oxide metallurgy.
文摘How to ensure the reliable operation of the complex and huge electrical system composed of a large number of electrical equipment in iron and steel enterprises?Combined with working experience,the author introduces four main factors affecting the normal operation of equipment,analyzes five main problems existing in the operation and management of electrical equipment,and puts forward corresponding improvement measures,so as to improve the management level of electrical equipment in iron and steel enterprises.
文摘The abnormal corrosion of hot iron ladles was investigated.The performance,the composition and the structure of bricks for hot iron ladles were analyzed.The results show that(1)compared with the alumina-silicon carbide-carbon bricks for the ladle bottom,those for the ladle wall have more pyrophyllite and the Al2O3 content of 36.32 mass%;their bulk density,apparent porosity and cold compressive strength are lower than the requirement of industry standard;they have poor anti-oxidation performance and are oxidized to form a porous layer during service,which loosens the brick lining structure thus leading to fracture,local wear and structural damage of bricks;(2)without preheating,steel scraps are not completely melted,resulting in slag or steel attachment at the mouth or the bottom of ladles thus increasing damage of ladles;(3)and the residual bricks react with the attached slag to form low melting point phases affecting their hot properties.The refractories for the lining of hot iron ladles must be improved in combination with process changes,not entirely by raw materials replacement to reduce costs.
基金financially supported by the Natural Science Foundation China (No.52274343)the Youth Natural Science Foundation China (No.51904347)the China Baowu Low Carbon Metallurgy Innovation Foundation (No.BWLCF202102)。
文摘The iron and steel industry(ISI) involves high energy consumption and high pollution. ISI in China, a leading country in the ISI,consumed 15% of the country’s total energy and produced more than 50% of the global ISI’s carbon emissions. Therefore, in the context of global low-carbon economy and emission reduction requirements, low-carbon smelting technology in the ISI has attracted increasingly more attention in China. This review summarizes the current status of carbon emissions and energy consumption in China’s ISI and discusses the development status and prospects of low-carbon ironmaking technology. The main route to effectively reducing carbon emissions is to develop a gas-based direct reduction process and replace sintering with pelletizing, both of which focus on developing pelletizing technology. However,the challenge of pelletizing process development is to obtain high-quality iron concentrates. Consequently, the present paper also summarizes the development status of China’s mineral processing technology, including fine-grained mineral processing technology, magnetization roasting technology, and flotation collector application. This paper aims to provide a theoretical basis for the low-carbon development of China’s ISI in terms of a dressing–smelting combination.
基金financially supported by the National Key R&D Program of China(No.2021YFB3802300)the National Natural Science Foundation of China(No.51804239)Guangdong Major Project of Basic and Applied Basic Research,China(No.2021B0301030001)。
文摘In the present work,Fe–Mn–Al–C powder mixtures were manufactured by elemental powders with different ball milling time,and the porous high-Mn and high-Al steel was fabricated by powder sintering.The results indicated that the powder size significantly decreased,and the morphology of the Fe powder tended to be increasingly flat as the milling time increased.However,the prolonged milling duration had limited impact on the phase transition of the powder mixture.The main phases of all the samples sintered at 640℃ were α-Fe,α-Mn and Al,and a small amount of Fe2Al5 and Al8Mn5.When the sintering temperature increased to 1200℃,the phase composition was mainly comprised of γ-Fe and α-Fe.The weight loss fraction of the sintered sample decreased with milling time,i.e.,8.3wt% after 20 h milling compared to15.3wt% for 10 h.The Mn depletion region(MDR) for the 10,15,and 20 h milled samples was about 780,600,and 370 μm,respectively.The total porosity of samples sintered at 640℃ decreased from ~46.6vol% for the 10 h milled powder to ~44.2vol% for 20 h milled powder.After sintering at 1200℃,the total porosity of sintered samples prepared by 10 and 20 h milled powder was ~58.3vol% and ~51.3vol%,respectively.The compressive strength and ductility of the 1200℃ sintered porous steel increased as the milling time increased.
基金The National Key Technology R&D Program during the 12th Five-Year Plan Period(No.2012BAF10B05)
文摘This paper establishes a model for the production cost of iron and steel enterprise.The variation rule of the production cost versus the iron/steel ratio for two cases, namely,fixed steel production and a fixed amount of molten iron,is analyzed,and the concept of a steel scrap threshold price is proposed.According to the analysis results,when the steel scrap unit price exceeds the steel scrap threshold price, an increase in the iron/steel ratio can reduce the production cost,and vice versa.When the gap between the steel scrap unit price and the steel scrap threshold price is relatively large, the impact of the iron/steel ratio on the production cost is more prominent.According to the calculation example,when steel production is fixed (284 358 t/month)and the steel scrap unit price is 263.2 yuan/t more than the steel scrap threshold price,an increase of 0.01 in the iron/steel ratio causes a monthly production cost reduction of approximately 750 000 yuan (2.63 yuan/t).When the amount of molten iron is fixed (270 425 t/month)and the steel scrap unit price is 140.7 yuan/t more than the threshold price,an increase of 0.01 in the iron/steel ratio causes a monthly production cost reduction of approximately 430 000 yuan (1.5 yuan/t).The results indicate that iron and steel enterprise should adjust the production strategy in time when the scrap price fluctuates, and then the production cost will be reduced.
基金financially supported by the National Key Technologies Research and Development Program of China (No. 2007BAE51B05)
文摘The fatigue strength of a high V alloyed powder metallurgy tool steel with two different inclusion size levels, tempered at different temperatures, was investigated by a series of high cycle fatigue tests. It was shown that brittle inclusions with large sizes above 30μm prompted the occurrence of subsurface crack initiation and the reduction in fatigue strength. The fracture toughness and the stress amplitude both exerted a significant influence on the fish-eye size. A larger fish-eye area would form in the sample with a higher fracture toughness subjected to a lower stress amplitude. The stress intensity factor of the inclusion was found to lie above a typical value of the threshold stress intensity factor of 4 MPa.m^1/2. The fracture toughness of the sample with a hardness above HRC 56 could be estimated by the mean value of the stress intensity factor of the fish-eye. According to fractographic evaluation, the critical inclusion size can be calculated by linear fracture mechanics.
基金financially supported by the Major International Joint Research Project of the National Natural Science Foundation of China (No.71520107004)the Major Program of National Natural Science Foundation of China (No.71790614)the 111 Project (No.B16009)。
文摘Steel production involves the transfer and transformation of material and energy at different levels, structures, and scales, and this process incurs substantial information in the material and energy dimensions. Given the black-box feature of iron and steel production processes, process visualization plays an important role and inevitably benefits parameter correction, technical support decision-making, personnel training, and other aspects of the steel metallurgy industry. The technological characteristics of the entire process in the steel industry were analyzed in this study, a visualization technology route based on virtual reality(VR) was built, and the important components of visual simulation system for steel industry and the important technical points needed to realize the system were proposed. On the foundation, a visual simulation model for the process scheduling of the iron and steel enterprise raw materials' field, slab, and hot rolling processes was built, and a visualization simulation platform of the iron and steel metallurgy plant-wide process, including ironmaking, steelmaking, hot rolling, and cold rolling, was developed. Lastly, the effectiveness of platform was illustrated by practical application.
文摘Recently procured outstanding achievements in iron and steel industry in China are presented by data or facts in steel output, energy consumption, technical and economical indicators and advanced technologies that are being adopted. The latest achievements in refractonries for this biggest user industry are reviewed, covering new refractories for CDQ coke oven, BF hearth, AOD Lining, long life tundish, SEN for clean steel making and regenerative reheating furnace . The reciprocal relationship is obvious that the rapid development of iron and steel industry has given an impetus to the advance of refractories industry, which in return has contributed greatly to the former.
文摘In the past 25 years in China, to meet with the rapid increase in steel production accompanied by adoption of advanced metallurgical technologies, there has been fast development of China' s refractories industry in production capacity, in quality improvement and in development of new products. Sophisticated high performance refractory materials mainly based on our rich reserves of magncsite, bauxite and flake graphite have been developed, such as carbon-bonded products, high purity oxide products, bauxite-based low creep and high strength high alumina bricks and LC, ULC and ZC castables. They have been used in blast furnaces, BOFs, EAFs, secondary refining and continuous casting with considerable improvement in service pecformance.
文摘Electrolytic hardening process was developed in USSR in the 1950s. The process was developed but was not commercially exploited. There is no evidence of work done on this process in India. The author has done this original work applied to different materials like steel, cast iron and aluminum-bronze. This paper gives details of microstructural transformations along with hardness value achieved. There is vital scope for this process to become viable for surface hardening and selective hardening of small components.
文摘China has the biggest rare earths resource in the world,no wonder she pays much at-tention to the application of rare earth metals (REM).The application of REM in iron andsteel in China began at the end of 1950’s.The production of REM-treated iron and steelhad been made steady progress in the period of 1980’s.The production of REM-treatediron and steel in 1989 was 1.4 million tons and 250,000 tons respectively.The interest oftreating steel with REM in China keeps growing even in these years,It comes from the nat-
文摘The effects of sphere size on the microstructural and mechanical properties of ductile iron–steel hollow sphere(DI–SHS) syntactic foams were investigated in this study. The SHSs were manufactured by fluidized-bed coating via the Fe-based commercial powder–binder suspension onto expanded polystyrene spheres(EPSs). Afterwards, the DI–SHS syntactic foams were produced via a sand-mold casting process. The microstructures of specimens were investigated by optical microscopy, scanning electron microscopy(SEM), and energy-dispersive X-ray spectroscopy(EDS). The microscopic evaluations of specimens reveal distinct regions composed of the DI matrix, SHS shells, and compatible interface. As a result, the microstructures and graphite morphologies of the DI matrix depend on sphere size. When the sphere size decreases, the area fractions of cementite and graphite phases are observed to increase and decrease, respectively. Compression tests were subsequently conducted at ambient temperature on the DI–SHS syntactic foams. The results reveal that the compression behavior of the syntactic foams is enhanced with increasing sphere size. Furthermore, the compressed specimens demonstrate that microcracks start and grow from the interface region.
文摘BAIRD SPECTROVAC 2000(DV 5) consisting of new type of HR-400 high repeat rate spark spectrosource, air cooled sample stand and an annular purged tungsten counter electrode has been used continuously in the lab for many years and resulted in good economic benefits. The paper describes the application of the spectrometer in quantitative analysis of cast iron and steel products, and the experience and technique may be helpful to those who are using the same kind of instrument.
基金Sponsored by the National Natural Science Foundation of China (Grant No. 51174057 and 51274062)National High Technology Research and Development Program (Grant No. 2012AA03A503)
文摘The effect of ball scribing on iron loss of conventional grain-oriented ( CGO) and high-permeability grain-oriented ( HGO) electrical steel was investigated. In this paper,ball scribing was achieved by self- designed ball scribing instrument and a computer-controlled system capable of providing high accuracy and automatic measurements was developed for the magnetisation and measurement at high and low flux densities. The results showed that after ball scribing,iron loss of two types of steel ( C711 and H668 ) apparently decreases ( 5. 5% and 8. 2% respectively after 16mm scribing at 1. 2T) ,and at high and low flux densities, CGO and HGO electrical steel performs differently. Through the formation and development of free magnetic poles and secondary magnetic domains due to compressive stress,primary magnetic domain spacing of grain- oriented electrical steel becomes smaller,which reflects as a reduction of iron loss in the macroscopic magnetic properties. Through iron loss formula derivation,the effect of domain refinement on grain-oriented electrical steel was also interpreted.
基金financially supported by the National Natural Science Foundation of China (No. 51575132)
文摘In the present study, pure iron/copper composite metal cladding was deposited onto carbon steel by tungsten inert gas welding. The study focused on interfacial morphological, microstructural, and mechanical analyses of the composite cladding layers. Iron liquid–solid-phase zones were formed at copper/steel and iron interfaces because of the melting of the steel substrate and iron. Iron concentrated in the copper cladding layer was observed to exhibit belt, globule, and dendrite morphologies. The appearance of iron-rich globules indicated the occurrence of liquid phase separation(LPS) prior to solidification, and iron-rich dendrites crystallized without the occurrence of LPS. The maximum microhardness of the iron/steel interface was lower than that of the copper/steel interface because of the diffusion of elemental carbon. All samples fractured in the cladding layers. Because of a relatively lower strength of the copper layer, a short plateau region appeared when shear movement was from copper to iron.
文摘In this study, high chromium white iron (HC-Wi) alloy and the Hadfield steel were studied. The microstructure of this high-chromium iron was studied using Metallurgical optical microscopy (OM) and compared to the Hadfield steel. The hardness and unnotched charpy impact strength of the HC-Wi alloy and Hadfield steel were examined at ambient temperature in the as-cast and heat-treated conditions. A pin-on-disc test at linear speed of 1.18 m/s and a 10 N normal load was employed to evaluate the wear behavior of both steel samples. Microstructural results showed that varying the carbon level in HC-Wi alloys can affect the chromium carbide morphology and its distribution in the austenite matrix which leads to considerable changes of the mechanical properties. Abrasion test showed that HC-Wi alloys have superior wear resistance, about three times of the Hadfield steel.
文摘The hardening characteristics of medium carbon steel and ductile cast iron using neem oil as quenching medium has been investigated. The samples were quenched to room temperature in Neem oil. To compare the effectiveness of the neem oil samples were also quenched in water and SAE engine oil the commercial quenchants. The microstructures and mechanical properties of the quenched samples were used to determine the quench severity of the neem oil. The result shows that hardness value of the medium carbon steel increased from 18.30HVN in the as-cast condition to 21.60, 20.30and 20.70HVN while that of ductile cast iron samples increased from 18.90HVN in the as-cast condition to 22.65, 20.30 and 21.30HVN for water, neem oil and SAE40 engine oil respectively. The as-received steel sample gave the highest impact strength value and water quenched sample gave the least impact strength. The impact strength of the medium carbon steel samples is 50.84, 41.35, 30.50 and 45.15 Joule and that of ductile iron is 2.71, 1.02, 0.68 and 1.70 Joule for as-cast condition, neem oil, water and SAE 40 engine oil quenched respectively. The microstructure of the samples quenched in the Neem oil revealed the formation of martensite. Hence, neem oil can be used where cooling severity less than that of water but greater than SAE 40 engine oil is required for hardening of plain carbon steels and ductile cast iron.