The luminescence properties of CdSio(3):RE3+ phosphors doped with various rare earth ions are reported. The series of rare earth ions doped CdSiO3 phosphors are prepared by the conventional high-temperature solid-stat...The luminescence properties of CdSio(3):RE3+ phosphors doped with various rare earth ions are reported. The series of rare earth ions doped CdSiO3 phosphors are prepared by the conventional high-temperature solid-state method, and characterized by XRD and photoluminescence (PL) spectra. The results of XRD measurement indicate that the products fired under 1050 degreesC for 3 h have a good crystallization without any detectable amount of impure phase. The PL spectra measurement results show that CdSiO3 is a novel self-activated luminescent matrix. When rare earth ions such as Y3+, La3+, Gds(3+), Lus(3+), Ce3+, Nd3+, Ho3+, Era(3+), Tm3+ and Yb3+ are introduced into the CdSi03 host, one broadband centered at about 420 nm resulted from traps can be observed. In the case of other earth ions which show emissions at the visible spectrum region, such as Pr3+, Sm3+, Eu3+, Tb3+ and Dy3+, the mixture of their characteristic line emissions with the similar to 420 nm strong broadband luminescence results in various emitting colors. As a consequence, different emitting colors can be attairied via introducing certain appropriate active ions into the CdSiO3 matrix. In additional, this kind of phosphors shows good long-lasting properties when excited by UV light. All the results show that CdSiO3 is a potential luminance matrix.展开更多
Bioactive glass ceramic with SiO2-Ca2O-Na2O-P2O5 composition was prepared by the sol-gel method using sodium metasilicate (Na2SiO3) as silica source. The monolith obtained was sintered at 1000?C for 2 hours after whic...Bioactive glass ceramic with SiO2-Ca2O-Na2O-P2O5 composition was prepared by the sol-gel method using sodium metasilicate (Na2SiO3) as silica source. The monolith obtained was sintered at 1000?C for 2 hours after which X-ray diffraction (XRD) analysis showed presence of combeite (Na2Ca2Si3O9) as the crystalline phase. In vitro bioactivity test conducted on the material using simulated body fluid (SBF) showed the formation of carbonated hydroxyapatite on its surface. The material during the SBF test was observed to transform from a mechanically strong crystalline phase Na2Ca2Si3O9 to an amorphous phase after incubation for 14 days indicating that the material was biodegradable. Scanning electron microscopy (SEM) was used to investigate the surface morphology, while Fourier transform infrared (FTIR) spectroscopy facilitated the confirmation of hydroxyapatite (HA) formation. The monolith material obtained may be a good candidate for application in tissue engineering scaffolds.展开更多
A novel white light emitting long-lasting phosphor Cd1-xDyxSiO3 is reported in this letter. The Dy3+ doped CdSiO3 phosphor emits white light. The phosphorescence can be seen with the naked eye in the dark clearly ev...A novel white light emitting long-lasting phosphor Cd1-xDyxSiO3 is reported in this letter. The Dy3+ doped CdSiO3 phosphor emits white light. The phosphorescence can be seen with the naked eye in the dark clearly even after the 254 nm UV irradiation have been removed for about 30 min. In the emission spectrum of 5% Dy3+ doped CdSiO3 phosphor, there are two emission peaks of Dy3+, 580 nm (4F9/26H13/2) and 486 nm (4F9/26H15/2), as well as a broad band emission located at about 410 nm. All the three emissions form a white light with CIE chromaticity coordinates x=0.3874, y=0.3760 and the color temperature is 4000 K under 254 nm excitation. It indicated that this phosphor is a promising new luminescent material for practice application.展开更多
The southern red mite, Oligonychus ilicis (McGregor) (Acari: Tetranychidae) can cause a significant reduction in the photosynthesis potential and the growth of new coffee plants (Coffea spp., Rubiaceae). Studies sugge...The southern red mite, Oligonychus ilicis (McGregor) (Acari: Tetranychidae) can cause a significant reduction in the photosynthesis potential and the growth of new coffee plants (Coffea spp., Rubiaceae). Studies suggest that the leaf spraying of silicon (Si) leads to increase plants resistance in order to reduce infestations of insect pests such as herbivores, borers, sucking insects and mites. The objective of this study was to evaluate the effect of leaf spraying of potassium silicate (K2SiO3) to control the southern red mite in coffee plants. Experiments were conducted in coffee plants (Coffea arabica L.), grown in a greenhouse, by means of completely randomized design with six treatments: Dose 0 (control), 2, 4, 6, 8 and 10 liters of silicate potassium ha-1 and five replications. Plants treated with potassium silicate, regardless of the applied dose, had a lower O. ilicis infestation compared to the control, not allowing the population increase, thus a smaller damage in coffee leaves. The silicon content in leaves was higher in plants treated with the highest dose of potassium silicate. It was observed that there was induction of defense molecules such as tannins and lignin in plants sprayed with potassium silicate. It was concluded that the potassium silicate applied in leaf spraying had positive effect on reducing O. ilicis attack in coffee plants, even being a dicot. Therefore, the applications of potassium silicate by leaf spraying can be used in programs of integrated management of the southern red mite in coffee, with a view to sustainable management and environmental protection.展开更多
Porous silica was synthesized via the sol-gel process using clay obtained locally from Ijero-Ekiti in Ekiti State, Nigeria and compared with silica synthesized under similar conditions from sodium metasilicate (Na2SiO...Porous silica was synthesized via the sol-gel process using clay obtained locally from Ijero-Ekiti in Ekiti State, Nigeria and compared with silica synthesized under similar conditions from sodium metasilicate (Na2SiO3) obtained comer- cially. The clay was initially refluxed with sodium hydroxide (NaOH) for 2 hours to extract SiO2 to form Na2SiO3, which was subsequently hydrolyzed to form a gel. The gel obtained was washed with deionized water to get rid of im-purities, dried and calcined at 800°C for 3 hours. The obtained silica powders were characterized using atomic absorp-tion spectrophotometer, Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD) and scanning electron microscopy (SEM). Results showed that the vibrational modes and diffraction patterns of the silica derived from com-mercial Na2SiO3 and that prepared from clay were similar containing pure amorphous SiO2. The morphology of the commercially obtained silica showed better arrangement of particles and exhibited slightly lesser porosity (62.4%) compared to that derived from clay which had a porosity of 65.5%. The result indicates that clay has a potential for use as an environmentally safe and economic starting material for preparing porous silica instead of high quality precursors.展开更多
Linde Type-A (LTA) zeolite was prepared from sodium aluminate and sodium metasilicate by hydrothermal process precursors. Sodium metasilicate prepared from molten NaOH and SiO2. The zeolite was characterized by FTIR, ...Linde Type-A (LTA) zeolite was prepared from sodium aluminate and sodium metasilicate by hydrothermal process precursors. Sodium metasilicate prepared from molten NaOH and SiO2. The zeolite was characterized by FTIR, XRD, XRF and SEM. The adsorption of Fe(III) from aqueous solution by zeolite A was studied. Different parameters like contact time, pH and concentration of iron were investigated. The results show that at contact time of 60 min and pH of 6 maximum adsorption of iron onto zeolite was observed. The kinetic data was analyzed using pseudo-first-order and pseudo-second-order kinetic models. The adsorption kinetics of Fe(III) were fitted well with the pseudo-second-order kinetic model.展开更多
A series of lithium metasilicate (Li2SiO3) powder materials has been successfully synthesized by the microwave-assisted hydrothermal route using lithium hydroxide and tetraethyl-orthosilicate-derived sol precursors....A series of lithium metasilicate (Li2SiO3) powder materials has been successfully synthesized by the microwave-assisted hydrothermal route using lithium hydroxide and tetraethyl-orthosilicate-derived sol precursors. Ceramic powders were obtained under hydrothermal conditions of autogenous pressure in the presence of a nonionic surfactant. The production of pure and well-crystallized Li2 SiO3 using very short reaction times at low temperatures was shown by X-ray diffraction, scanning electron microscopy, and N2 adsorption-desorption analyses. Synthesized Li2SiO3 particles were nanocrystalline and exhibited different morphologies and specific surface areas depending on the synthesis conditions. Additionally, the capability of selected Li2SiO3 samples to absorb H20 and CO2 was evaluated via thermogravimet- ric analyses by varying the temperature, carrier gas, and water vapor concentration. Li2SiO3 particles exhibited interesting textural and morphological characteristics that make them suitable for use as a CO2 absorbent and which suggest that they also have the potential to be used in other applications.展开更多
文摘The luminescence properties of CdSio(3):RE3+ phosphors doped with various rare earth ions are reported. The series of rare earth ions doped CdSiO3 phosphors are prepared by the conventional high-temperature solid-state method, and characterized by XRD and photoluminescence (PL) spectra. The results of XRD measurement indicate that the products fired under 1050 degreesC for 3 h have a good crystallization without any detectable amount of impure phase. The PL spectra measurement results show that CdSiO3 is a novel self-activated luminescent matrix. When rare earth ions such as Y3+, La3+, Gds(3+), Lus(3+), Ce3+, Nd3+, Ho3+, Era(3+), Tm3+ and Yb3+ are introduced into the CdSi03 host, one broadband centered at about 420 nm resulted from traps can be observed. In the case of other earth ions which show emissions at the visible spectrum region, such as Pr3+, Sm3+, Eu3+, Tb3+ and Dy3+, the mixture of their characteristic line emissions with the similar to 420 nm strong broadband luminescence results in various emitting colors. As a consequence, different emitting colors can be attairied via introducing certain appropriate active ions into the CdSiO3 matrix. In additional, this kind of phosphors shows good long-lasting properties when excited by UV light. All the results show that CdSiO3 is a potential luminance matrix.
文摘Bioactive glass ceramic with SiO2-Ca2O-Na2O-P2O5 composition was prepared by the sol-gel method using sodium metasilicate (Na2SiO3) as silica source. The monolith obtained was sintered at 1000?C for 2 hours after which X-ray diffraction (XRD) analysis showed presence of combeite (Na2Ca2Si3O9) as the crystalline phase. In vitro bioactivity test conducted on the material using simulated body fluid (SBF) showed the formation of carbonated hydroxyapatite on its surface. The material during the SBF test was observed to transform from a mechanically strong crystalline phase Na2Ca2Si3O9 to an amorphous phase after incubation for 14 days indicating that the material was biodegradable. Scanning electron microscopy (SEM) was used to investigate the surface morphology, while Fourier transform infrared (FTIR) spectroscopy facilitated the confirmation of hydroxyapatite (HA) formation. The monolith material obtained may be a good candidate for application in tissue engineering scaffolds.
文摘A novel white light emitting long-lasting phosphor Cd1-xDyxSiO3 is reported in this letter. The Dy3+ doped CdSiO3 phosphor emits white light. The phosphorescence can be seen with the naked eye in the dark clearly even after the 254 nm UV irradiation have been removed for about 30 min. In the emission spectrum of 5% Dy3+ doped CdSiO3 phosphor, there are two emission peaks of Dy3+, 580 nm (4F9/26H13/2) and 486 nm (4F9/26H15/2), as well as a broad band emission located at about 410 nm. All the three emissions form a white light with CIE chromaticity coordinates x=0.3874, y=0.3760 and the color temperature is 4000 K under 254 nm excitation. It indicated that this phosphor is a promising new luminescent material for practice application.
文摘The southern red mite, Oligonychus ilicis (McGregor) (Acari: Tetranychidae) can cause a significant reduction in the photosynthesis potential and the growth of new coffee plants (Coffea spp., Rubiaceae). Studies suggest that the leaf spraying of silicon (Si) leads to increase plants resistance in order to reduce infestations of insect pests such as herbivores, borers, sucking insects and mites. The objective of this study was to evaluate the effect of leaf spraying of potassium silicate (K2SiO3) to control the southern red mite in coffee plants. Experiments were conducted in coffee plants (Coffea arabica L.), grown in a greenhouse, by means of completely randomized design with six treatments: Dose 0 (control), 2, 4, 6, 8 and 10 liters of silicate potassium ha-1 and five replications. Plants treated with potassium silicate, regardless of the applied dose, had a lower O. ilicis infestation compared to the control, not allowing the population increase, thus a smaller damage in coffee leaves. The silicon content in leaves was higher in plants treated with the highest dose of potassium silicate. It was observed that there was induction of defense molecules such as tannins and lignin in plants sprayed with potassium silicate. It was concluded that the potassium silicate applied in leaf spraying had positive effect on reducing O. ilicis attack in coffee plants, even being a dicot. Therefore, the applications of potassium silicate by leaf spraying can be used in programs of integrated management of the southern red mite in coffee, with a view to sustainable management and environmental protection.
文摘Porous silica was synthesized via the sol-gel process using clay obtained locally from Ijero-Ekiti in Ekiti State, Nigeria and compared with silica synthesized under similar conditions from sodium metasilicate (Na2SiO3) obtained comer- cially. The clay was initially refluxed with sodium hydroxide (NaOH) for 2 hours to extract SiO2 to form Na2SiO3, which was subsequently hydrolyzed to form a gel. The gel obtained was washed with deionized water to get rid of im-purities, dried and calcined at 800°C for 3 hours. The obtained silica powders were characterized using atomic absorp-tion spectrophotometer, Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD) and scanning electron microscopy (SEM). Results showed that the vibrational modes and diffraction patterns of the silica derived from com-mercial Na2SiO3 and that prepared from clay were similar containing pure amorphous SiO2. The morphology of the commercially obtained silica showed better arrangement of particles and exhibited slightly lesser porosity (62.4%) compared to that derived from clay which had a porosity of 65.5%. The result indicates that clay has a potential for use as an environmentally safe and economic starting material for preparing porous silica instead of high quality precursors.
文摘Linde Type-A (LTA) zeolite was prepared from sodium aluminate and sodium metasilicate by hydrothermal process precursors. Sodium metasilicate prepared from molten NaOH and SiO2. The zeolite was characterized by FTIR, XRD, XRF and SEM. The adsorption of Fe(III) from aqueous solution by zeolite A was studied. Different parameters like contact time, pH and concentration of iron were investigated. The results show that at contact time of 60 min and pH of 6 maximum adsorption of iron onto zeolite was observed. The kinetic data was analyzed using pseudo-first-order and pseudo-second-order kinetic models. The adsorption kinetics of Fe(III) were fitted well with the pseudo-second-order kinetic model.
文摘A series of lithium metasilicate (Li2SiO3) powder materials has been successfully synthesized by the microwave-assisted hydrothermal route using lithium hydroxide and tetraethyl-orthosilicate-derived sol precursors. Ceramic powders were obtained under hydrothermal conditions of autogenous pressure in the presence of a nonionic surfactant. The production of pure and well-crystallized Li2 SiO3 using very short reaction times at low temperatures was shown by X-ray diffraction, scanning electron microscopy, and N2 adsorption-desorption analyses. Synthesized Li2SiO3 particles were nanocrystalline and exhibited different morphologies and specific surface areas depending on the synthesis conditions. Additionally, the capability of selected Li2SiO3 samples to absorb H20 and CO2 was evaluated via thermogravimet- ric analyses by varying the temperature, carrier gas, and water vapor concentration. Li2SiO3 particles exhibited interesting textural and morphological characteristics that make them suitable for use as a CO2 absorbent and which suggest that they also have the potential to be used in other applications.