The method of dangerous meteorological phenomenon detection using the data of coordinate measurement by receivers of global navigation satellite system (GLONASS) and global positioning system (GPS) is proposed. Th...The method of dangerous meteorological phenomenon detection using the data of coordinate measurement by receivers of global navigation satellite system (GLONASS) and global positioning system (GPS) is proposed. The possibility of thunderstorm courses and strong clouds detection on data of pseudo-distances and altitudes is shown theoretically and confirmed experimentally.展开更多
On the basis of an understanding of the ocean current produced under the combined forces of wind stress over the sea surface and horizontal pressure gradient force caused by the uneven distribution of seawater density...On the basis of an understanding of the ocean current produced under the combined forces of wind stress over the sea surface and horizontal pressure gradient force caused by the uneven distribution of seawater density and the elevation of sea surface , we obtained the unsteady analytic solution of the variation with time of ocean surface current velocity corresponding to the time variation of the above two forces , and the unsteady analytic solution for variation of seawater density with time by considering only the vertical turbulence . To meet different needs, the above solutions may be written in two forms for short and long time predictions . After some simplification the analytic solution was used to predict surface ocean current velocity for meteorological -navigation in the North Pacific . The monthly average current field was first obtained to get the necessary parameters for selecting the initial shipping route in the North Pacific and Bohai and Yellow Seas . The wind current field was then展开更多
In this study, the Global Navigation Satellite System (GNSS) network of China is discussed, which can be used to monitor atmospheric precipitable water vapor (PWV). By the end of 2013, the network had 952 GNSS sit...In this study, the Global Navigation Satellite System (GNSS) network of China is discussed, which can be used to monitor atmospheric precipitable water vapor (PWV). By the end of 2013, the network had 952 GNSS sites, including 260 belonging to the Crustal Movement Observation Network of China (CMONOC) and 692 belonging to the China Meteorological Administration GNSS network (CMAGN). Additionally, GNSS observation collecting and data processing procedures are presented and PWV data quality control methods are investigated. PWV levels as determined by GNSS and radiosonde are compared. The results show that GNSS estimates are generally in good agreement with measurements of radio- sondes and water vapor radiometers (WVR). The PWV retrieved by the national GNSS network is used in weather forecasting, assimilation of data into numerical weather prediction models, the validation of PWV estimates by radiosonde, and plum rain monitoring. The network is also used to monitor the total ionospheric electron content.展开更多
FY-4 is the second generation of Chinese geostationary satellite for quantitative remote sensing meteorological application. The detection efficiency, spectral bands, spatial and time resolution have been greatly impr...FY-4 is the second generation of Chinese geostationary satellite for quantitative remote sensing meteorological application. The detection efficiency, spectral bands, spatial and time resolution have been greatly improved with respect to those of first generation, as well as the radiometric calibration and sensitivity. The combination of multichannel detection and vertical sounding was first realized on FY-4, because both the Advanced Geostationary Radiation Imager(AGRI) and Geostationary Interferometric Infrared Sounder(GIIRS) are on the same spacecraft. The main performance of the payloads including AGRI, GIIRS and Lightning Mapping Imager, and the spacecraft bus are presented, the performance being equivalent to the level of the third generation meteorological satellites in Europe and USA. The acquiring methods of remote sensing data including multichannel and high precision quantitative observing, imaging collection of the ground and cloud, vertical observation of atmospheric temperature and moisture, lightning imaging observation and space environment detection are shown. Several innovative technologies including high accuracy rotation angle detection and scanning control, high precision calibration, micro vibration suppression, unified reference of platform and payload and on-orbit measurement, real-time image navigation and registration on-orbit were applied in FY-4.展开更多
基金Task Complex Program National Academy of Sciences of Ukraine on Space Research for 2012-2016
文摘The method of dangerous meteorological phenomenon detection using the data of coordinate measurement by receivers of global navigation satellite system (GLONASS) and global positioning system (GPS) is proposed. The possibility of thunderstorm courses and strong clouds detection on data of pseudo-distances and altitudes is shown theoretically and confirmed experimentally.
文摘On the basis of an understanding of the ocean current produced under the combined forces of wind stress over the sea surface and horizontal pressure gradient force caused by the uneven distribution of seawater density and the elevation of sea surface , we obtained the unsteady analytic solution of the variation with time of ocean surface current velocity corresponding to the time variation of the above two forces , and the unsteady analytic solution for variation of seawater density with time by considering only the vertical turbulence . To meet different needs, the above solutions may be written in two forms for short and long time predictions . After some simplification the analytic solution was used to predict surface ocean current velocity for meteorological -navigation in the North Pacific . The monthly average current field was first obtained to get the necessary parameters for selecting the initial shipping route in the North Pacific and Bohai and Yellow Seas . The wind current field was then
基金financially supported by the Special Fund for Meteorological Scientific Research in the Public Interest(GYHY201406012)the National Natural Science Foundation of China(41275114)a construction fund for CMONOC
文摘In this study, the Global Navigation Satellite System (GNSS) network of China is discussed, which can be used to monitor atmospheric precipitable water vapor (PWV). By the end of 2013, the network had 952 GNSS sites, including 260 belonging to the Crustal Movement Observation Network of China (CMONOC) and 692 belonging to the China Meteorological Administration GNSS network (CMAGN). Additionally, GNSS observation collecting and data processing procedures are presented and PWV data quality control methods are investigated. PWV levels as determined by GNSS and radiosonde are compared. The results show that GNSS estimates are generally in good agreement with measurements of radio- sondes and water vapor radiometers (WVR). The PWV retrieved by the national GNSS network is used in weather forecasting, assimilation of data into numerical weather prediction models, the validation of PWV estimates by radiosonde, and plum rain monitoring. The network is also used to monitor the total ionospheric electron content.
文摘FY-4 is the second generation of Chinese geostationary satellite for quantitative remote sensing meteorological application. The detection efficiency, spectral bands, spatial and time resolution have been greatly improved with respect to those of first generation, as well as the radiometric calibration and sensitivity. The combination of multichannel detection and vertical sounding was first realized on FY-4, because both the Advanced Geostationary Radiation Imager(AGRI) and Geostationary Interferometric Infrared Sounder(GIIRS) are on the same spacecraft. The main performance of the payloads including AGRI, GIIRS and Lightning Mapping Imager, and the spacecraft bus are presented, the performance being equivalent to the level of the third generation meteorological satellites in Europe and USA. The acquiring methods of remote sensing data including multichannel and high precision quantitative observing, imaging collection of the ground and cloud, vertical observation of atmospheric temperature and moisture, lightning imaging observation and space environment detection are shown. Several innovative technologies including high accuracy rotation angle detection and scanning control, high precision calibration, micro vibration suppression, unified reference of platform and payload and on-orbit measurement, real-time image navigation and registration on-orbit were applied in FY-4.