The infrared absorption method for methane concentration detection is an ideal way to detect methane at present. However, it is difficult to spread this method due to its high cost. In this paper, by using a wideband ...The infrared absorption method for methane concentration detection is an ideal way to detect methane at present. However, it is difficult to spread this method due to its high cost. In this paper, by using a wideband infrared light emitting di- ode (LED) accompanied with a PIN photo electric diode, a low-cost methane detection system was designed. To overcome the shortcomings caused by the wide working band, a differential light path was designed. By means of a differential ratio algo- rithm, the stability and the accuracy of the system were guaranteed. Finally, the validity of the system with the proposed algo- rithm was verified by the experiment results.展开更多
<span style="font-family:;" "=""><span style="font-family:Verdana;">Methane is released from waste disposal areas as a result from anaerobic decay of food. Methane causes...<span style="font-family:;" "=""><span style="font-family:Verdana;">Methane is released from waste disposal areas as a result from anaerobic decay of food. Methane causes more greenhouse effects than carbon dioxide so a methane monitoring system is required to warn its release from gas emitting environments. The low explosive limit of methane is 5% in ambient air, so gas leakage is dangerous and can produce explosions. An entire head monitoring system was built around a MQ-4 methane gas sensor as it is cheap and reliable. The design proves to be flexible enough as it can measure CH</span><sub><span style="font-family:Verdana;">4</span></sub><span style="font-family:Verdana;"> emissions in ducts, CH</span><sub><span style="font-family:Verdana;">4</span></sub><span style="font-family:Verdana;"> in landfills at different depths and even in cattle barns. The measuring system head consists of a suction pump, solenoids, and a methane sensor. Measurements are taken 13 seconds after methane gas sucking. </span><span style="font-family:Verdana;">A timing of 100 seconds is required for purging the chamber before the</span><span style="font-family:Verdana;"> second solenoid is turned-on. Devices temperature during operation was sampled with a thermal Flir-One camera and solenoid coil temperature was of 24.9</span></span><span style="font-family:;" "=""><span style="font-family:Verdana;"><span style="white-space:nowrap;">˚</span>C </span><span style="font-family:Verdana;">after a continuous operation of 30 seconds. As hoses for emission sampling</span><span style="font-family:Verdana;"> become larger time for sampling increases as well as energy consumption.</span></span>展开更多
High-precision methane gas detection is of great importance in industrial safety, energy production and environmental protection, etc. However, in the existing measurement techniques, the methane gas concentration inf...High-precision methane gas detection is of great importance in industrial safety, energy production and environmental protection, etc. However, in the existing measurement techniques, the methane gas concentration information is susceptible to noise, which leads to its useful signal being drowned by noise. A fusion algorithm of variational modal decomposition(VMD) and improved wavelet threshold filtering is proposed, which is used in combination with tunable diode laser absorption spectroscopy(TDLAS) to implement a non-contact, high-resolution methane gas concentration detection. The fusion algorithm can perform noise reduction and further segmentation of the methane gas detection signal. And the simulation and experiment verify the effectiveness of the fusion algorithm, and the experimental results show that for the detection of air containing 10 ppm, 30 ppm, 60 ppm, 80 ppm, and 99 ppm methane, the errors are 12.75%, 8.18%, 3.37%, 2.46%, and 1.78%, respectively.展开更多
Outbursts of methane and rocks are, similarly to rock bursts, the biggest hazards in deep mines and are equally difficult to predict. The violent process of the outburst itself, along with the scale and range of hazar...Outbursts of methane and rocks are, similarly to rock bursts, the biggest hazards in deep mines and are equally difficult to predict. The violent process of the outburst itself, along with the scale and range of hazards following the rapid discharge of gas and rocks, requires solutions which would enable quick and unambiguous detection of the hazard, immediate power supply cut-off and evacuation of personnel from potentially hazardous areas. For this purpose, an integrated outburst detector was developed. Assumed functions of the sensor which was equipped with three measuring and detection elements: a chamber for constant measurement of methane concentration, pressure sensor and microphone. Tests of the sensor model were carried out to estimate the parameters which characterize the dynamic properties of the sensor. Given the impossibility of carrying out the full scale experimental outburst, the sensor was tested during the methane and coal dust explosions in the testing gallery at KD Barbara. The obtained results proved that the applied solutions have been appropriate.展开更多
We report a 1.65μm square-Fabry–Pérot[FP]coupled cavity semiconductor laser for methane gas detection.The laser output optical power can reach 7.4 m W with the side mode suppression ratio about 40 d B.The wavel...We report a 1.65μm square-Fabry–Pérot[FP]coupled cavity semiconductor laser for methane gas detection.The laser output optical power can reach 7.4 m W with the side mode suppression ratio about 40 d B.The wavelength tuning range is 2 nm by adjusting the FP cavity injection current,covering the methane absorption line at 1653.72 nm.The lasing wavelength can also be tuned by adjusting the square microcavity injection current or temperature,respectively.Methane gas detection is successfully demonstrated utilizing this laser.展开更多
文摘The infrared absorption method for methane concentration detection is an ideal way to detect methane at present. However, it is difficult to spread this method due to its high cost. In this paper, by using a wideband infrared light emitting di- ode (LED) accompanied with a PIN photo electric diode, a low-cost methane detection system was designed. To overcome the shortcomings caused by the wide working band, a differential light path was designed. By means of a differential ratio algo- rithm, the stability and the accuracy of the system were guaranteed. Finally, the validity of the system with the proposed algo- rithm was verified by the experiment results.
文摘<span style="font-family:;" "=""><span style="font-family:Verdana;">Methane is released from waste disposal areas as a result from anaerobic decay of food. Methane causes more greenhouse effects than carbon dioxide so a methane monitoring system is required to warn its release from gas emitting environments. The low explosive limit of methane is 5% in ambient air, so gas leakage is dangerous and can produce explosions. An entire head monitoring system was built around a MQ-4 methane gas sensor as it is cheap and reliable. The design proves to be flexible enough as it can measure CH</span><sub><span style="font-family:Verdana;">4</span></sub><span style="font-family:Verdana;"> emissions in ducts, CH</span><sub><span style="font-family:Verdana;">4</span></sub><span style="font-family:Verdana;"> in landfills at different depths and even in cattle barns. The measuring system head consists of a suction pump, solenoids, and a methane sensor. Measurements are taken 13 seconds after methane gas sucking. </span><span style="font-family:Verdana;">A timing of 100 seconds is required for purging the chamber before the</span><span style="font-family:Verdana;"> second solenoid is turned-on. Devices temperature during operation was sampled with a thermal Flir-One camera and solenoid coil temperature was of 24.9</span></span><span style="font-family:;" "=""><span style="font-family:Verdana;"><span style="white-space:nowrap;">˚</span>C </span><span style="font-family:Verdana;">after a continuous operation of 30 seconds. As hoses for emission sampling</span><span style="font-family:Verdana;"> become larger time for sampling increases as well as energy consumption.</span></span>
基金supported by the Project Grant from Heilongjiang Bayi Agricultural Reclamation University,Heilongjiang,China (No.XDB201813)。
文摘High-precision methane gas detection is of great importance in industrial safety, energy production and environmental protection, etc. However, in the existing measurement techniques, the methane gas concentration information is susceptible to noise, which leads to its useful signal being drowned by noise. A fusion algorithm of variational modal decomposition(VMD) and improved wavelet threshold filtering is proposed, which is used in combination with tunable diode laser absorption spectroscopy(TDLAS) to implement a non-contact, high-resolution methane gas concentration detection. The fusion algorithm can perform noise reduction and further segmentation of the methane gas detection signal. And the simulation and experiment verify the effectiveness of the fusion algorithm, and the experimental results show that for the detection of air containing 10 ppm, 30 ppm, 60 ppm, 80 ppm, and 99 ppm methane, the errors are 12.75%, 8.18%, 3.37%, 2.46%, and 1.78%, respectively.
文摘Outbursts of methane and rocks are, similarly to rock bursts, the biggest hazards in deep mines and are equally difficult to predict. The violent process of the outburst itself, along with the scale and range of hazards following the rapid discharge of gas and rocks, requires solutions which would enable quick and unambiguous detection of the hazard, immediate power supply cut-off and evacuation of personnel from potentially hazardous areas. For this purpose, an integrated outburst detector was developed. Assumed functions of the sensor which was equipped with three measuring and detection elements: a chamber for constant measurement of methane concentration, pressure sensor and microphone. Tests of the sensor model were carried out to estimate the parameters which characterize the dynamic properties of the sensor. Given the impossibility of carrying out the full scale experimental outburst, the sensor was tested during the methane and coal dust explosions in the testing gallery at KD Barbara. The obtained results proved that the applied solutions have been appropriate.
基金supported by the National Key R&D Program of China(No.2017YFB0405301)。
文摘We report a 1.65μm square-Fabry–Pérot[FP]coupled cavity semiconductor laser for methane gas detection.The laser output optical power can reach 7.4 m W with the side mode suppression ratio about 40 d B.The wavelength tuning range is 2 nm by adjusting the FP cavity injection current,covering the methane absorption line at 1653.72 nm.The lasing wavelength can also be tuned by adjusting the square microcavity injection current or temperature,respectively.Methane gas detection is successfully demonstrated utilizing this laser.