期刊文献+
共找到1,435篇文章
< 1 2 72 >
每页显示 20 50 100
Suppression of methane/air explosion by water mist with potassium halide additives driven by CO2 被引量:4
1
作者 Wei Tan Dong Lü +2 位作者 Liyan Liu Guorui Zhu Nan Jiang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2019年第11期2742-2748,共7页
To enhance the explosion suppression effects of water mist, various potassium halide additives were tested in a confined vessel filled with a 10% mixture of methane/air. Air and CO2(0.7 MPa) were used as driver gases.... To enhance the explosion suppression effects of water mist, various potassium halide additives were tested in a confined vessel filled with a 10% mixture of methane/air. Air and CO2(0.7 MPa) were used as driver gases. The results revealed that halide additives exhibit considerable suppression effects on explosion overpressure. A30% KI mist decreased the explosion overpressure by 27.46% compared with the suppression by pure water mist under the same conditions. When CO2 is used as the driver gas, it will dissolve in water under high pressure.The synergistic effect of a CO2 solution with an effective additive afforded significant suppression. Under the same conditions, the overpressures suppressed by a mist of 30% KI + 0.7 MPa CO2 solution decreased by 33.53% compared with those suppressed by pure water mist driven by air. The synergistic suppression effect is much better than that of a 0.7 MPa CO2 solution mist or 30% KI mist alone. The multicomponent additives can be considered when suppressing methane/air explosions with pressure-formed water mist. 展开更多
关键词 methane explosion SUPPRESSION Water MIST HALIDE CO2
下载PDF
Effects of temperature, particle size, and air humidity on sensibility of typical high-energetic explosives
2
作者 WU Sanzhen FANG Mingkun +3 位作者 WU Xingliang GUO Guangfei WANG Junhong XU Sen 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2024年第3期408-416,共9页
The production and utilization of high-energetic explosives often pose a range of safety hazards,with sensitivity being a key factor in evaluating these risks.To investigate how temperature,particle size,and air humid... The production and utilization of high-energetic explosives often pose a range of safety hazards,with sensitivity being a key factor in evaluating these risks.To investigate how temperature,particle size,and air humidity affect the responsiveness of commonly used high-energetic explosives,a series of BAM(Bundesanstalt für Materialforschung und-prüfung)impact and friction sensitivity tests were carried out to determine the critical impact energy and critical load pressure of four representative high-energetic explosives(RDX,HMX,PETN and CL-20)under different temperatures,particle sizes,and air humidity conditions.The experimental findings facilitated an examination of temperature and particle size affecting the sensitivity of high-energetic explosives,along with an assessment of the influence of air humidity on sensitivity testing.The results clearly indicate that high-energetic explosives display a substantial decline in critical reaction energy when subjected to micrometre-sized particles and an air humidity level of 45%at a temperature of 90℃.Furthermore,it was noted that the critical reaction energy of high-energetic explosives diminishes with an increase in temperature within 25℃−90℃.In the same vein,as the particle sizes of high-energetic explosives increase,so does the critical reaction energy for micrometre-sized particles.High air humidity significantly affects the sensitivity testing of high-energetic explosives,emphasizing the importance of refraining from conducting sensitivity tests in such conditions. 展开更多
关键词 high-energetic explosives TEMPERATURE particle size air humidity critical reaction energy
下载PDF
Active explosion barrier performance against methane and coal dust explosions 被引量:8
3
作者 J. J. L. du Plessis 《International Journal of Coal Science & Technology》 EI 2015年第4期261-268,共8页
Preventing the propagation of methane or coal dust explosions through the use of active explosion-suppression systems remains one of the most underutilised explosion controls in underground coal mines. As part of the ... Preventing the propagation of methane or coal dust explosions through the use of active explosion-suppression systems remains one of the most underutilised explosion controls in underground coal mines. As part of the effort to develop better technologies to safeguard mines, the use of active barrier systems was investigated at Kloppersbos in South Africa. The system is designed to meet the requirements of the European Standard (EN 14591-4 2007) as well as the Mine Safety Standardisation in the Ministry of Coal Industry, Coal Industrial 1 Standard of the Peoples Republic of China (MT 694-1997). From the tests conducted, it can be concluded that the ExploSpot System was successful in stopping flame propagation for both methane and methane and coal dust hybrid explosions when ammonium phosphate powder was used as the suppression material. The use of this barrier will provide coal mine management with an additional explosion control close to the point of ignition and may find application within longwall faces further protecting mines against the risk of an explosion propagating throughout a mine. 展开更多
关键词 COAL methane explosions Active barriers
下载PDF
Comparative study of the explosion pressure characteristics of micro- and nano-sized coal dust and methane–coal dust mixtures in a pipe 被引量:5
4
作者 Bo Tan Huilin Liu +1 位作者 Bin Xu Tian Wang 《International Journal of Coal Science & Technology》 EI 2020年第1期68-78,共11页
Coal dust explosion accidents often cause substantial property damage and casualties and frequently involve nano-sized coal dust.In order to study the impact of nano-sized coal on coal dust and methane–coal dust expl... Coal dust explosion accidents often cause substantial property damage and casualties and frequently involve nano-sized coal dust.In order to study the impact of nano-sized coal on coal dust and methane–coal dust explosions,a pipe test apparatus was used to analyze the explosion pressure characteristics of five types of micro-nano particle dusts(800 nm,1200 nm,45μm,60μm,and 75μm)at five concentrations(100 g/m3,250 g/m3,500 g/m3,750 g/m3,and 1000 g/m3).The explosion pressure characteristics were closely related to the coal dust particle size and concentration.The maximum explosion pressure,maximum rate of pressure rise,and deflagration index for nano-sized coal dust were larger than for its micro-sized counterpart,indicating that a nano-sized coal dust explosion is more dangerous.The highest deflagration index Kst for coal dust was 13.97 MPa/(m·s),indicating weak explosibility.When 7%methane was added to the air,the maximum deflagration index Kst for methane–coal dust was 42.62 MPa/(m·s),indicating very strong explosibility.This indicates that adding methane to the coal dust mixture substantially increased the hazard grade. 展开更多
关键词 A pipe test apparatus NANO-SIZED Coal dust explosion methane/coal dust explosion Pressure characteristics
下载PDF
Experimental Study on Methane Explosion Ignited by Sparks of Cable Bolt Breakage 被引量:3
5
作者 马文顶 许家林 张少华 《Journal of China University of Mining and Technology》 2004年第2期184-188,共5页
An experimental device was designed for studying methane explosion ignited by sparks of cable bolt breakage. With the methane concentration being in explosion range, a series of experiments were conducted to study the... An experimental device was designed for studying methane explosion ignited by sparks of cable bolt breakage. With the methane concentration being in explosion range, a series of experiments were conducted to study the law of spark generation during cable bolt breakage and the probability of methane explosion caused by the spark. The results show that the probability of generating sparks during cable bolt breakage is 50%. The spark generated by the breakage of steel cable bolt strand can't ignite a methane explosion. A detection was carried out using infrared-ray imaging apparatus (IRIA) to measure temperature of the spark generated by cable bolt breakage. It is indicated that the maximum temperature of the spark generated by cable bolt breakage is far less than the required ignition temperature for a methane explosion. 展开更多
关键词 CABLE BOLT friction SPARK methane explosion infrared thermo-imaging instrument
下载PDF
Research on numerical emulator of mine methane and coal dust explosion 被引量:4
6
作者 CAI Zhou-quan Niu Steve 《Journal of Coal Science & Engineering(China)》 2008年第3期447-452,共6页
The mathematical physics model of mine methane and coal dust explosion propagation was established in the research,by using continuous phase,combustion,par- ticulate equations of mathematical physics.Based upon the da... The mathematical physics model of mine methane and coal dust explosion propagation was established in the research,by using continuous phase,combustion,par- ticulate equations of mathematical physics.Based upon the data from mine methane drainage roadway explosion,and mine methane and coal dust explosion propagation ex- perimental studies,the numerical emulator system of mine methane and coal dust explo- sion software was developed by using prevalent flow simulation platform,which can be used to simulate the explosion accidents process effectively.In addition,the system can also be used to determine whether coal dust involved in the explosion,and to simulate accurately the transition from deflagration to detonation in methane explosion,propagation velocity of explosion shock,attenuation pattern,and affected area of explosion. 展开更多
关键词 mine methane and coal dust explosion continuous phase mathematica physics equations particulate phase numerical emulator system
下载PDF
Study on explosion process of methane-coal dust mixture
7
作者 Guang-Dong GONG Chun-Hua BAI Qing-Ming LIU 《Journal of Coal Science & Engineering(China)》 2013年第3期332-336,共5页
The experimental system of 10 m3 large-scale multiphase combustion explosion tank was used for research into the explosion development process under the ignition conditions of methane-coal dust-air mixture, and the ov... The experimental system of 10 m3 large-scale multiphase combustion explosion tank was used for research into the explosion development process under the ignition conditions of methane-coal dust-air mixture, and the overpressure development processes of the mixture at different distances were obtained. For the methane-coal dust-air mixture with an equivalence ratio of 1, the explosion pressure and pressure rise rate reached their maximum under a methane concentration of 8% and a coal dust concentration of 25 g/m3, while the maximum explosion pressure and pressure rise rate both occurred 0.5 m away from the ignition point under a methane concentration of between 4.5% and 8%, and a coal dust concentration of between 25 g/m3 and 1 O0 g/m3. Moreover, the greater the explosion intensity of mixture, the closer the occurrence location of maximum overpres- sure was to the ignition source. 展开更多
关键词 methane coal dust explosion
下载PDF
The principle analysis of methane explosion suppressed by water column curtain in coal mining
8
作者 周同龄 何学秋 杨艺 《Journal of Coal Science & Engineering(China)》 2004年第1期45-48,共4页
The principles of fine water mist explosion-extinguishing system was introduced. The defects of current systems were analyzed. The concept of a new water column cur-tain and the explosion-extinguishing mechanism were ... The principles of fine water mist explosion-extinguishing system was introduced. The defects of current systems were analyzed. The concept of a new water column cur-tain and the explosion-extinguishing mechanism were given. Using water column curtain to suppress methane explosion in experiment pipes was conducted. The photos were written with schlieren photograph system. The results of experiment show that the effect is perfect. 展开更多
关键词 fine water mist water column curtain methane explosion extinguish
下载PDF
Modeling of the whole process of shock wave overpressure of freefield air explosion 被引量:7
9
作者 Zai-qing Xue Shunping Li +2 位作者 Chun-liang Xin Li-ping Shi Hong-bin Wu 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2019年第5期815-820,共6页
The waveform of the explosion shock wave under free-field air explosion is an extremely complex problem.It is generally considered that the waveform consists of overpressure peak,positive pressure zone and negative pr... The waveform of the explosion shock wave under free-field air explosion is an extremely complex problem.It is generally considered that the waveform consists of overpressure peak,positive pressure zone and negative pressure zone.Most of current practice usually considers only the positive pressure.Many empirical relations are available to predict overpressure peak,the positive pressure action time and pressure decay law.However,there are few models that can predict the whole waveform.The whole process of explosion shock wave overpressure,which was expressed as the product of the three factor functions of peak,attenuation and oscillation,was proposed in the present work.According to the principle of explosion similarity,the scaled parameters were introduced and the empirical formula was absorbed to form a mathematical model of shock wave overpressure.Parametric numerical simulations of free-field air explosions were conducted.By experimental verification of the AUTODYN numerical method and comparing the analytical and simulated curves,the model is proved to be accurate to calculate the shock wave overpressure under free-field air explosion.In addition,through the model the shock wave overpressure at different time and distance can be displayed in three dimensions.The model makes the time needed for theoretical calculation much less than that for numerical simulation. 展开更多
关键词 air explosion Shock WAVE OVERPRESSURE Free field Experimental VERIFICATION NUMERICAL simulation
下载PDF
Effect of metal powders on explosion of fuel-air explosives with delayed secondary igniters 被引量:5
10
作者 Yong-xu Wang Yi Liu +2 位作者 Qi-ming Xu Bin Li Li-feng Xie 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2021年第3期785-791,共7页
In order to improve the energy level of fuel air explosive(FAE) with delayed secondary igniters, high energetic metal powders were added to liquid fuels mainly composed of ether and isopropyl nitrate.Metal powders’ e... In order to improve the energy level of fuel air explosive(FAE) with delayed secondary igniters, high energetic metal powders were added to liquid fuels mainly composed of ether and isopropyl nitrate.Metal powders’ explosive properties and reaction mechanisms in FAE were studied by high-speed video,pressure test system, and infrared thermal imager. The results show that compared with pure liquid fuels, the shock wave overpressure, maximum surface fireball temperature and high temperature duration of the mixture were significantly increased after adding high energetic metal powder. The overpressure values of the liquid-solid mixture at all measuring points were higher than that of the pure liquid fuels. And the maximum temperature of the fireball was up to 1700C, which was higher than that of the pure liquid fuels. After replacing 30% of aluminum powder with boron or magnesium hydride, the shock wave pressure of the mixture was further increased. The high heat of combustion of boron and the hydrogen released by magnesium hydride could effectively increase the blast effect of the mixture. The improvement of the explosion performance of boron was better than magnesium hydride. It shows that adding high energetic metal powder to liquid fuels can effectively improve the explosion performance of FAE. 展开更多
关键词 Fuel air explosive Aluminum powder BORON Magnesium hydride explosion performance
下载PDF
Research on the Explosion Temperature Response of Fuel Air Explosive Measured by Colorimetric Pyrometer 被引量:1
11
作者 刘庆明 白春华 《Defence Technology(防务技术)》 SCIE EI CAS 2010年第1期59-64,共6页
An infrared colorimetric radiation thermometrical system was established based on the theory of optical radiation. The dynamic temperature history of fuel air explosive (FAE) was measured to obtain the temperature res... An infrared colorimetric radiation thermometrical system was established based on the theory of optical radiation. The dynamic temperature history of fuel air explosive (FAE) was measured to obtain the temperature responses of primary initiation FAE and secondary initiation FAE in real time. And the characteristics of their temperature history curves were compared and analyzed. The results show that the primary initiation FAE has higher explosion temperature and longer duration compared to the secondary initiation FAE. 展开更多
关键词 mechanics of explosion explosion temperature fuel air explosive radiation pyrometry colorimetric pyrometer infrared temperature measurement
下载PDF
Simulation of the Effect of an Increase in Methane on Air Temperature 被引量:1
12
作者 毕云 陈月娟 +2 位作者 周任君 易明建 邓淑梅 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2011年第1期129-138,共10页
The infrared radiative effect of methane was analyzed using the 2D, interactive chemical dynamical radiative SOCRATES model of the National Center for Atmospheric Research. Then, a sensitivity experi ment, with the me... The infrared radiative effect of methane was analyzed using the 2D, interactive chemical dynamical radiative SOCRATES model of the National Center for Atmospheric Research. Then, a sensitivity experi ment, with the methane volume mixing ratio increased by 10%, was carried out to study the influence of an increase of methane on air temperature. The results showed that methane has a heating effect through the infrared radiative process in the troposphere and a cooling effect in the stratosphere. However, the cooling effect of the methane is much smaller than that of water vapor in the stratosphere and is negligible in the mesosphere. The simulation results also showed that when methane concentration is increased by 10%, the air temperature lowers in the stratosphere and mesosphere and increases in the troposphere. The cooling can reach 0.2 K at the stratopause and can vary from 0.2-0.4 K in the mesosphere, and the temperature rise varies by around 0.001-0.002 K in the troposphere. The cooling results from the increase of the infrared radiative cooling rate caused by increased water vapor and O3 concentration, which are stimulated by the increase in methane in most of the stratosphere. The infrared radiation cooling of methane itself is minor. The depletion of O3 stimulated by the methane increase results indirectly in a decrease in the rate of so- lar radiation heating, producing cooling in the stratopause and mesosphere. The tropospheric warming is mainly caused by the increase of methane, which produces infrared radiative heating. The increase in H2O and O3 caused by the methane increase also contributes to a rise in temperature in the troposphere. 展开更多
关键词 methane air temperature SOCRATES model numerical simulation
下载PDF
The experimental of methane-air flame propagation in the tube with quadrate cross section 被引量:4
13
作者 郭子如 沈兆武 +1 位作者 陆守香 周宁 《Journal of Coal Science & Engineering(China)》 2005年第2期60-63,共4页
The flame propagation of methane-air mixture with various methane concen-trations was experimentally investigated at venting flame acceleration tube with quad-rate cross section under different obstacles presented. Th... The flame propagation of methane-air mixture with various methane concen-trations was experimentally investigated at venting flame acceleration tube with quad-rate cross section under different obstacles presented. The flame shape and propaga-tion speed was observed by high-speed color video camera. The explosion pressure was determined by piezoelectricity pressure transducers. The results are: The flame propagates in the shape of a hemisphere before the flame reaches the first baffle and flame propagation speed is not more than 15 m/s. When the flame propagates across the baffle, the flame begins to accelerate due to turbulence induced by obstacle. Blockage ratio has relatively greater effect on the flame propagation speed than re-peated baffle number does. The flame propagation speed and the pressure at different location along the tube are maximum when methane-air mixture is near the chemical stoichoimetric ratio. The pressure increases with the distance from ignition end at first and the maximum pressure was obtained at the middle of tube, but the pressure de-creases and again increases at venting end. 展开更多
关键词 flame propagation methane obstacle pressure gas explosion
下载PDF
A numerical simulation study on active species production in dense methane-air plasma discharge 被引量:1
14
作者 李桂 钱沐杨 +3 位作者 刘三秋 陈华英 任春生 王德真 《Plasma Science and Technology》 SCIE EI CAS CSCD 2018年第1期23-31,共9页
Recently, low-temperature atmospheric pressure plasmas have been proposed as a potential type of 'reaction cartier' for the conversion of methane into value-added chemicals. In this paper, the multi-physics field co... Recently, low-temperature atmospheric pressure plasmas have been proposed as a potential type of 'reaction cartier' for the conversion of methane into value-added chemicals. In this paper, the multi-physics field coupling software of COMSOL is used to simulate the detailed discharge characteristics of atmospheric pressure methane-air plasma. A two-dimensional axisymmetric fluid model is constructed, in which 77 plasma chemical reactions and 32 different species are taken into account. The spatial density distributions of dominant charged ions and reactive radical species, such as + + + + CH4, CH3,N2,02, H, O, CH3, and CH2, are presented, which is due to plasma chemical reactions of methane/air dissociation (or ionization) and reforming of small fragment radical species. The physicochemical mechanisms of methane dissociation and radical species recombination are also discussed and analyzed. 展开更多
关键词 atmospheric pressure methane-air plasma numerical simulation methanedissociation radical species recombination
下载PDF
Comparison on Determination Results of Methane and Total Hydrocarbons by Glass Syringe Method and Air Bag Method
15
作者 Chen Miao Huang Yiyao +1 位作者 Guo Yan Chen Shuchi 《Meteorological and Environmental Research》 CAS 2019年第4期106-109,共4页
Samples at different setting time were determined by glass syringe method and air bag method, and their results were analyzed. The results showed that concentrations of methane and total hydrocarbons obviously decline... Samples at different setting time were determined by glass syringe method and air bag method, and their results were analyzed. The results showed that concentrations of methane and total hydrocarbons obviously declined with the prolonging of setting time by glass syringe method, and recovery rate of sample declined to 60% after 8 h. In air bag method, analysis results of methane and total hydrocarbons were stabler, and recovery rate of sample was 93% after 8 h. 展开更多
关键词 SYRINGE air BAG methane TOTAL hydrocarbons
下载PDF
Experimental investigation on microstructure behavior of premixed methane-air flame-flow interaction in a semi-vented chamber
16
作者 任少峰 王玉杰 +1 位作者 陈先锋 陈明 《Journal of Beijing Institute of Technology》 EI CAS 2011年第3期301-305,共5页
To explore the premixed methane-air flame microstructure behavior and the flame-flow interaction, the premixed methane/air flame was studied in a semi-vented chamber. A high speed camera and schlieren images methods w... To explore the premixed methane-air flame microstructure behavior and the flame-flow interaction, the premixed methane/air flame was studied in a semi-vented chamber. A high speed camera and schlieren images methods were used to record the processes of interaction between rare- faction wave and flame. Meanwhile, a pressure sensor was utilized to catch the pressure variation in the process of flame propagation. The experiment results showed that the interference of rarefaction wave on flame caused the flame front structure change, which led to the flame transition from lami- nar to turbulent quickly. The rarefaction wave intervened in the flame by turning the flame front sur- face into dentiform structure. The violent turbulent combustion began to appear in part of the flame front and spreaded to the whole flame front surface. The rarefaction also decreased the flame propa- gation speed. 展开更多
关键词 methane-air flame micro-structure flame propagation laminax-turbulent combustion
下载PDF
Application of Dual Throttling Air-Conditioning System to Explosion-Proof Frequency Converter
17
作者 张于峰 高岩 盛颖 《Transactions of Tianjin University》 EI CAS 2015年第2期95-103,共9页
An explosion-proof dual throttling air-conditioning system was put forward to solve the heat dissipation and internal dewing problems of explosion-proof frequency converter in the underground coal mine. This study inv... An explosion-proof dual throttling air-conditioning system was put forward to solve the heat dissipation and internal dewing problems of explosion-proof frequency converter in the underground coal mine. This study investigated the feasibility and benefits of explosion-proof dual throttling cooling and dehumidification air-conditioning system applied to the explosion-proof frequency converter. The physical model of dual throttling air-conditioning system was established and its performance parameter was described by mathematical method. The design calculation of the system has also been done. The experimental result showed that the system reached the steady state at the refrigeration mode after running 45 min, and the maximum internal temperature of the flame-proof cavity was 31.0 ℃. The system reached the steady state at the dehumidification mode after running 37 min. The maximum internal relative humidity and temperature of the flame-proof cavity were 33.4% and 36.3 ℃, respectively. Therefore, the proposed system had excellent ability of heat dissipation and avoided internal dewing. Compared with water cooling system, it was more energy-saving and economical. The airflow field of dual throttling air-conditioning system was also studied by CFD simulation. It was found that the result of CFD numerical simulation was highly consistent with the experimental data. 展开更多
关键词 explosion-PROOF CONVERTER DUAL throttling air-CONDITIONING CFD energy SAVING heat DISSIPATION dewing
下载PDF
Laminar Diffusion Flames of Methane in a Co-annular Jet of Oxygen-Enriched Air
18
作者 Pascale Gillon May Chahine Brahim Sarh 《Journal of Energy and Power Engineering》 2013年第1期32-40,共9页
Oxygen rich combustion is a mean to increase the energy efficiency and to contribute to CO2 capture. Influence of oxygen enriched air on the stability of methane flames from non premixed laminar jets has been investig... Oxygen rich combustion is a mean to increase the energy efficiency and to contribute to CO2 capture. Influence of oxygen enriched air on the stability of methane flames from non premixed laminar jets has been investigated experimentally. The burner consists of two coaxial jets: methane flowing out of the inner, oxidizer from the outer. The flame behavior is studied according to the proportion of oxygen in the oxidizer jet, the oxidizer and the methane jets velocities. The flame is either anchored to the burner, lifted, stationary or not or blown-out. The addition of oxygen produces a decrease of the lift height, a reduction of the length of the reaction zone and an increase in the soot emission. These results have been reported into diagrams of stability where the flame configurations are connected to the competition between the dynamic effect of the injection velocity and the chemical effect of oxygen addition. 展开更多
关键词 Oxygen-enriched air methane diffusion flame lifted flame flame propagation speed.
下载PDF
Study on Near Field Dispersal of Fuel Air Explosive 被引量:8
19
作者 张奇 白春华 +3 位作者 刘庆明 王仲琦 梁慧敏 肖绍清 《Journal of Beijing Institute of Technology》 EI CAS 1999年第2期2-7,共6页
Aim To study fuel dispersion in fuel air explosive(FAE) and computational ways of fuel dispersion velocity in the near area. Methods\ The dispersion process of fuel in FAE was analyzed by the use of results measured ... Aim To study fuel dispersion in fuel air explosive(FAE) and computational ways of fuel dispersion velocity in the near area. Methods\ The dispersion process of fuel in FAE was analyzed by the use of results measured with KODAK EKTAPRO EM Motion Analyzer and setting up mechanical models. Results\ Computational methods for fuel dispersion velocity in the acceleration stage is given and taken as a base for the study of fuel dispersion in the intermediate and the far area. Conclusion\ When the fuel flow velocity is higher than that of the explosion gas in the center cavity, the fuel divides with the explosion gas and its velocity of flow reaches a maximum. The acceleration stage ends at that time. The fuel dispersion velocity at this time is the initial conditions for numeral analyses of dispersion process in the intermediate and far areas. 展开更多
关键词 fuel air explosive explosion action dispersal process
下载PDF
Experimental investigation of methane explosion fracturing in bedding shales:Load characteristics and three-dimensional fracture propagation OA
20
作者 Yu Wang Cheng Zhai +5 位作者 Ting Liu Jizhao Xu Wei Tang Yangfeng Zheng Xinyu Zhu Ning Luo 《International Journal of Mining Science and Technology》 SCIE EI CAS 2024年第10期1365-1383,共19页
Methane in-situ explosion fracturing(MISEF)enhances permeability in shale reservoirs by detonating desorbed methane to generate detonation waves in perforations.Fracture propagation in bedding shale under varying expl... Methane in-situ explosion fracturing(MISEF)enhances permeability in shale reservoirs by detonating desorbed methane to generate detonation waves in perforations.Fracture propagation in bedding shale under varying explosion loads remains unclear.In this study,prefabricated perforated shale samples with parallel and vertical bedding are fractured under five distinct explosion loads using a MISEF experimental setup.High-frequency explosion pressure-time curves were monitored within an equivalent perforation,and computed tomography scanning along with three-dimensional reconstruction techniques were used to investigate fracture propagation patterns.Additionally,the formation mechanism and influencing factors of explosion crack-generated fines(CGF)were clarified by analyzing the morphology and statistics of explosion debris particles.The results indicate that methane explosion generated oscillating-pulse loads within perforations.Explosion characteristic parameters increase with increasing initial pressure.Explosion load and bedding orientation significantly influence fracture propagation patterns.As initial pressure increases,the fracture mode transitions from bi-wing to 4–5 radial fractures.In parallel bedding shale,radial fractures noticeably deflect along the bedding surface.Vertical bedding facilitates the development of transverse fractures oriented parallel to the cross-section.Bifurcation-merging of explosioninduced fractures generated CGF.CGF mass and fractal dimension increase,while average particle size decreases with increasing explosion load.This study provides valuable insights into MISEF technology. 展开更多
关键词 methane in-situ explosion fracturing Bedding shale Fracture propagation Three-dimensional reconstruction Crack-generated fines Fractal dimension
下载PDF
上一页 1 2 72 下一页 到第
使用帮助 返回顶部