For the use of green hydrogen energy,it is crucial to have efficient photocatalytic activity for hydrogen generation by water reforming of methanol under mild conditions.Much attention has been paid to gC_(3)N_(4)as a...For the use of green hydrogen energy,it is crucial to have efficient photocatalytic activity for hydrogen generation by water reforming of methanol under mild conditions.Much attention has been paid to gC_(3)N_(4)as a promising photocatalyst for the generation of hydrogen.To improve the separation of photogenerated charge,porous nanosheet g-C_(3)N_(4)was modified with Pt nanoclusters(Pt/g-C_(3)N_(4))through impregnation and following photo-induced reduction.This catalyst showed excellent photocatalytic activity of water reforming of methanol fo r hydrogen production with a 17.12 mmol·g^(-1)·h^(-1)rate at room temperature,which was 311 times higher than that of the unmodified g-C_(3)N_(4).The strong interactions of Pt-N in Pt/g-C_(3)N_(4)constructed effective electron transfer channels to promote the separation of photogenerated electrons and holes effectively.In addition,in-situ infrared spectroscopy was used to investigate the intermediates of the hydrogen production reaction,which proved that methanol and water eventually turn into H_(2)and CO_(2)via formaldehyde and formate.This study provides insights for understanding the photocatalytic hydrogen production in the water reforming of methanol.展开更多
The optimizing utilization of ca rbon resources has drawn wide attention all over the world,while exploiting the high-efficiency catalytic routes remains a challenge.Here,a direct methanol synthesis route is realized ...The optimizing utilization of ca rbon resources has drawn wide attention all over the world,while exploiting the high-efficiency catalytic routes remains a challenge.Here,a direct methanol synthesis route is realized from pure CO and H_(2)O over 10%Cu/t-ZrO_(2) catalyst,where the time yield of methanol is144.43 mmol mol_(Cu)^(-1)h^(-1)and the methanol selectivity in hydrocarbons is 100%,The Cu species highly dispersed in the t-ZrO_(2) support lead parts of them in the cationic state.The Cu^(+)sites contribute to the dissociation of H_(2)O,providing the H*source for methanol synthesis,while the formed Cu^(0) sites promote the absorption and transfer of H*during the reaction.Moreover,the H_(2)O is even a better H resource than H_(2) due to its better dissociation effectivity in this catalytic system.The present work offers a new approach for methanol synthesis from CO and new insight into the process of supplying H donor.展开更多
Green hydrogen from water splitting has emerged as a critical energy vector with the potential to spearhead the global transition to a fossil fuel-independent society.The field of catalysis has been revolutionized by ...Green hydrogen from water splitting has emerged as a critical energy vector with the potential to spearhead the global transition to a fossil fuel-independent society.The field of catalysis has been revolutionized by single-atom catalysts(SACs),which exhibit unique and intricate interactions between atomically dispersed metal atoms and their supports.Recently,bimetallic SACs(bimSACs)have garnered significant attention for leveraging the synergistic functions of two metal ions coordinated on appropriately designed supports.BimSACs offer an avenue for rich metal–metal and metal–support cooperativity,potentially addressing current limitations of SACs in effectively furnishing transformations which involve synchronous proton–electron exchanges,substrate activation with reversible redox cycles,simultaneous multi-electron transfer,regulation of spin states,tuning of electronic properties,and cyclic transition states with low activation energies.This review aims to encapsulate the growing advancements in bimSACs,with an emphasis on their pivotal role in hydrogen generation via water splitting.We subsequently delve into advanced experimental methodologies for the elaborate characterization of SACs,elucidate their electronic properties,and discuss their local coordination environment.Overall,we present comprehensive discussion on the deployment of bimSACs in both hydrogen evolution reaction and oxygen evolution reaction,the two half-reactions of the water electrolysis process.展开更多
In this article VLE data for a ternary system (propylene-methanol-water) under 30~60 C,0. 3~0. 9 MPa with a mass ratio of methanol to water of 9:1, 8: 2, 7: 3 were determined with a static equilibrium still, and wer...In this article VLE data for a ternary system (propylene-methanol-water) under 30~60 C,0. 3~0. 9 MPa with a mass ratio of methanol to water of 9:1, 8: 2, 7: 3 were determined with a static equilibrium still, and were correlated by using Peng-Robinson model. The average relative error ofpropylene concentration in liquid phase is 1. 46 %. The results indicate that the models are very suitablefor the ternary system and the data are reliable.展开更多
The solubility of ammonium dihydrogen phosphate(MAP)in the water–methanol system is essential for antisolvent crystallization studies.To investigate the effect of methanol on the solubility of MAP in water,the solubi...The solubility of ammonium dihydrogen phosphate(MAP)in the water–methanol system is essential for antisolvent crystallization studies.To investigate the effect of methanol on the solubility of MAP in water,the solubility of MAP in the water–methanol system was determined by dynamic method and static equilibrium method at temperatures ranging from 293.2 to 343.2 K at atmospheric pressure.Results showed that the solubility of MAP increased with the increase of temperature and the increase of water mole fraction in the water–methanol system.The experimental solubility data were correlated with the modified Apelblat equation,the combined nearly ideal binary solvent/Redlich–Kister(CNIBS/R–K)model and the Jouyban–Acree model.The calculated results based on these three models were in very good agreement with the experimental data with the average relative deviations of 0.65%,0.97%,and 5.38%,respectively.Simultaneously,the thermodynamic properties of the MAP dissolution process in the water–methanol system,including Gibbs energy change,enthalpy,and entropy were obtained by the Van’t Hoff equation,which can be used to assess the crystallization process.展开更多
Due to the high energy consumption for separation of salt containing methanol wastewater, in this work, the multi-effect evaporation coupled with mechanical vapor recompression (MVR) heat pump and thermal integration ...Due to the high energy consumption for separation of salt containing methanol wastewater, in this work, the multi-effect evaporation coupled with mechanical vapor recompression (MVR) heat pump and thermal integration technologies were raised for the first time. The ELECNRTL thermodynamic model is used to simulate and optimize the evaporation rectification process. Energy consumption and total annual cost (TAC) are taken as objective functions. The results show that multi-effect evaporation coupled with conventional distillation process can save energy consumption and TAC by 44.12% and 39.14%. The multi-effect evaporation coupled with distillation process based on MVR heat pump technology can save energy consumption and TAC by 55.27% and 47.49%, which is super to three-effect evaporation coupled with conventional distillation process. The three-effect evaporation coupled with MVR heat integration process can save energy consumption and TAC by 81.32% and 58.55%, which is more economical than other processes. It can be clearly seen that three-effect evaporation coupled with MVR heat integration process is more competitive to deal with the salt containing methanol wastewater.展开更多
In order to guide the inoculums selection for the anaerobic treatment of methanol wastewater in the engineering application,two 7 L bench-scale external circulation (EC) anaerobic reactors were operated to investigate...In order to guide the inoculums selection for the anaerobic treatment of methanol wastewater in the engineering application,two 7 L bench-scale external circulation (EC) anaerobic reactors were operated to investigate the inoculums of anaerobic granular sludge and anaerobic digested sludge,focusing on the efficiency and process stability.The effect of impact concentration and temperature on the performance was studied.The results demonstrated that anaerobic granular sludge as the inoculums could complete the start-up more rapidly than the anaerobic digested sludge,and above 90% COD removal were achieved at the organic loading rate of 10 to 15 kgCOD/(m3·d).The effect of impact COD on the methanogenic activity of sludge was weak and the removal efficiencies recovered gradually in the two reactors.The COD removal efficiencies reduced swiftly to 50%-60% due to the impact temperature.The results indicated that the complex bacterial groups in anaerobic digested sludge benefited to enhance the reactor's capacity for withstanding the temperature shock at some extent.展开更多
Temperature and pressure were shown to vary significantly with solvent mixing, showing maxima at differ-ent solvent ratios. Acetonitrile/water mixing resulted in temperature reduction of solutions whereas metha-nol/wa...Temperature and pressure were shown to vary significantly with solvent mixing, showing maxima at differ-ent solvent ratios. Acetonitrile/water mixing resulted in temperature reduction of solutions whereas metha-nol/water mixing caused temperature increases. On the other hand, maximum recorded chromatographic pressure of acetonitrile:water mixtures occurred at a solvent ratio of 1:6 compared with methanol:water, which showed a maximum pressure at a solvent ratio of 1:1. These findings can be of use in stabilizing re-tention time shifts during HPLC-based studies associated with compound identification based on retention time such as analysis of complex mixtures.展开更多
Electrocatalytic water splitting is a viable technique for generating hydrogen but is precluded from the sluggish kinetics of oxygen evolution reactions(OER).Small molecule oxidation reactions with lower working poten...Electrocatalytic water splitting is a viable technique for generating hydrogen but is precluded from the sluggish kinetics of oxygen evolution reactions(OER).Small molecule oxidation reactions with lower working potentials,such as methanol oxidation reactions,are good alternatives to OER with faster kinetics.However,the typically employed Ni-based electrocatalysts have poor activity and stability.Herein,a novel three-dimensional(3D)-networking Modoped Ni(OH)_(2) with ultralow Ni-Ni coordination is synthesized,which exhibits a high MOR activity of 100 mA cm^(−2) at 1.39 V,delivering 28 mV dec^(−1) for the Tafel slope.Meanwhile,hydrogen evolution with value-added formate co-generation is boosted with a current density of more than 500 mA cm^(−2) at a cell voltage of 2.00 V for 50 h,showing excellent stability in an industrial alkaline concentration(6 M KOH).Mechanistic studies based on density functional the-ory and X-ray absorption spectroscopy showed that the improved performance is mainly attributed to the ultralow Ni-Ni coordination,3D-networking structures and Mo dopants,which improve the catalytic activity,increase the active site density and strengthen the Ni(OH)_(2)3D-networking structures,respectively.This study paves a new way for designing electrocatalysts with enhanced activity and durability for industrial energy-saving hydrogen production.展开更多
Sluggish kinetics of methanol oxidation reaction(MOR)and alkaline hydrogen evolution reaction(HER)even on precious Pt catalyst impede the large-scale commercialization of direct methanol fuel cell(DMFC)and water elect...Sluggish kinetics of methanol oxidation reaction(MOR)and alkaline hydrogen evolution reaction(HER)even on precious Pt catalyst impede the large-scale commercialization of direct methanol fuel cell(DMFC)and water electrolysis technologies.Since both of MOR and alkaline HER are related to water dissociation reaction(WDR),it is reasonable to invite secondary active sites toward WDR to pair with Pt for boosted MOR and alkaline HER activity on Pt.Mo_(2)C and Ni species are therefore employed to engineer NiPt-Mo_(2)C active site pairs,which can be encapsulated in carbon cages,via an in-situ self-confinement strategy.Mass activity of Pt in NiPt-Mo_(2)C@C toward HER is boosted to11.3 A mg_(pt)^(-1),33 times higher than that of Pt/C.Similarly,MOR catalytic activity of Pt in NiPt-Mo_(2)C@C is also improved by 10.5 times and the DMFC maximum power density is hence improved by 9-fold.By considering the great stability,NiPt-Mo_(2)C@C exhibits great practical application potential in DMFCs and water electrolysers.展开更多
Aspen plus software was employed to simulate process. The system concludes gasification scrubbing system the opposed multi-burner gasifier (OMB) methanol production and purification shift system. The distributions o...Aspen plus software was employed to simulate process. The system concludes gasification scrubbing system the opposed multi-burner gasifier (OMB) methanol production and purification shift system. The distributions of ammonia con- centration in streams were obtained. The study demonstrates that ammonium crystallization problem caused by ammonia ac- cumulation, and if the process has ammonia exports its concentration will greatly reduced and the ammonia salt problem will effectively alleviate. Aspen plus simulation is a useful tool strengthening the ammonia recycling use and reducing pollutant for improving water quality, maintaining stable production, emissions.展开更多
The acid-base properties of 1-(2-thiazolylazo)-2-naphthol (TAN) in mixtures of methanol-water at 25℃ and an ionic strength of 0.1 mol/L are studied by a multi-wavelength spectrophotometfic method. The acidity con...The acid-base properties of 1-(2-thiazolylazo)-2-naphthol (TAN) in mixtures of methanol-water at 25℃ and an ionic strength of 0.1 mol/L are studied by a multi-wavelength spectrophotometfic method. The acidity constants of all related equilibria are estimated using the whole spectral fitting of the collected data to an established factor analysis model. DATAN program was used for determination of acidity constants. The corresponding pKa values in methanol-water mixtures were determined. There is a linear relationship between acidity constants and the mole fraction of methanol in the solvent mixtures.展开更多
The catalytic conversion of methanol to dimethyl ether(DME) over a series of home-made FER-type zeolites having different acidities and commercial γ-Al_2O_3 has been studied with the aim to understand the impact of a...The catalytic conversion of methanol to dimethyl ether(DME) over a series of home-made FER-type zeolites having different acidities and commercial γ-Al_2O_3 has been studied with the aim to understand the impact of adding water in the reactant stream on the catalytic behavior on investigated materials. Cofeeding water with methanol, the alcohol conversion was slightly reduced over the investigated zeolites while the catalytic activity of γ-Al_2O_3, the traditional catalyst of MeOH-to-DME conversion, was strongly inhibited. It was also found that, for the investigated zeolites, both the amount and the initial deposition rate of the coke formed during the reaction were reduced when water was co-fed with methanol while no significant effects on both methanol conversion and DME selectivity were observed under the investigated conditions.展开更多
The mechanisms about the water’s and methanol’s effects on the alcoholysis of N-benzyl-3-oxo-β-sultam together with their differences have been studied by using density func- tional theory at the B3LYP/6-31G* leve...The mechanisms about the water’s and methanol’s effects on the alcoholysis of N-benzyl-3-oxo-β-sultam together with their differences have been studied by using density func- tional theory at the B3LYP/6-31G* level. The results, in comparison with a previous study on the relative reaction without the assistance of water and methanol, show that the added water or methanol can remarkably reduce the energy barrier of alcoholysis reaction of N-benzyl-3-oxo- β-sultam and the most favorite pathway is the breaking of C–N bond instead of S–N. It is also found that the reaction energy barrier of methanol-assisted alcoholysis is a little higher than that of the water-assisted one.展开更多
The low-concentration methanol-containing wastewater of a gas field mainly consists of the dehydrated water from natural gas,the water at the bottom of a rectifying tower,and the water used to clear tanks and pipes. T...The low-concentration methanol-containing wastewater of a gas field mainly consists of the dehydrated water from natural gas,the water at the bottom of a rectifying tower,and the water used to clear tanks and pipes. The concentration of methanol as its characteristic component is mostly lower than 3%. Its production and water quality change seasonally. It is mainly produced in late autumn,winter,and early spring when temperature is low. In the low-concentration methanol-containing wastewater,the content of organic matter,suspended solids and salts and COD value are high,and it is acidic. According to the physical and chemical properties of methanol such as easily dissolving in water,dissolving in most organic solvents,and having strong molecular polarity,laboratory experiments were made to study the difficulties of using high-temperature rectification,biodegradation,membrane filtration and organic oxidation technology to treat low-concentration methanol in the wastewater as well as the feasibility of industrial application. Ultraviolet catalytic oxidation technology has the advantages of high treatment efficiency,no secondary pollution,and no addition of treatment agent. After the low-concentration methanol-containing wastewater was treated by ultraviolet catalytic oxidation for 90 min,methanol concentration in the wastewater reduced from about 3% to around 0. 1%,thereby rapidly and efficiently degrading methanol in the wastewater. Based on the experimental parameters,a pilot device of ultraviolet catalytic oxidation was developed and used in the continuous treatment of the wastewater. When the flow rate of inflow was 500 L/h,the intensity of UV light was 2 k W,and hydraulic retention time was 60 min,methanol could be removed completely from the wastewater with the methanol concentration of about 0. 3%. This study provides a method for the treatment of low-concentration methanol-containing wastewater of a gas field,and also provides an experimental basis for the efficient degradation of organic wastewater.展开更多
The Triassic massive sandstone reservoir in the Tahe oilfield has a strong bottom-water drive and is characterized by great burial depth,high temperature and salinity,a thin pay zone,and strong heterogeneity.At presen...The Triassic massive sandstone reservoir in the Tahe oilfield has a strong bottom-water drive and is characterized by great burial depth,high temperature and salinity,a thin pay zone,and strong heterogeneity.At present,the water-cut is high in each block within the reservoir;some wells are at an ultrahigh water-cut stage.A lack of effective measures to control water-cut rise and stabilize oil production have necessitated the application of enhanced oil recovery(EOR)technology.This paper investigates the development and technological advances for oil reservoirs with strong edge/bottom-water drive globally,and compares their application to reservoirs with characteristics similar to the Tahe oilfield.Among the technological advances,gas injection from the top and along the direction of structural dip has been used to optimize the flow field in a typical bottom-water drive reservoir.Bottom-water coning is restrained by gas injection-assisted water control.In addition,increasing the lateral driving pressure differential improves the plane sweep efficiency which enhances oil recovery in turn.Gas injection technology in combination with technological measures like channeling prevention and blocking,and water plugging and profile control,can achieve better results in reservoir development.Gas flooding tests in the Tahe oilfield are of great significance to identifying which EOR technology is the most effective and has the potential of large-scale application for improving development of deep reservoirs with a strong bottomwater drive.展开更多
Conversion of solar energy into H_(2) by photoelectrochemical(PEC)water splitting is recognized as an ideal way to address the growing energy crisis and environmental issues.In a typical PEC cell,the construction of p...Conversion of solar energy into H_(2) by photoelectrochemical(PEC)water splitting is recognized as an ideal way to address the growing energy crisis and environmental issues.In a typical PEC cell,the construction of photoanodes is crucial to guarantee the high efficiency and stability of PEC reactions,which fundamentally rely on rationally designed semiconductors(as the active materials)and substrates(as the current collectors).In this review work,we start with a brief introduction of the roles of substrates in the PEC process.Then,we provide a systematic overview of representative strategies for the controlled fabrication of photoanodes on rationally designed substrates,including conductive glass,metal,sapphire,silicon,silicon carbide,and flexible substrates.Finally,some prospects concerning the challenges and research directions in this area are proposed.展开更多
Green hydrogen produced by water electrolysis combined with renewable energy is a promising alternative to fossil fuels due to its high energy density with zero-carbon emissions.Among water electrolysis technologies,t...Green hydrogen produced by water electrolysis combined with renewable energy is a promising alternative to fossil fuels due to its high energy density with zero-carbon emissions.Among water electrolysis technologies,the anion exchange membrane(AEM) water electrolysis has gained intensive attention and is considered as the next-generation emerging technology due to its potential advantages,such as the use of low-cost non-noble metal catalysts,the relatively mature stack assembly process,etc.However,the AEM water electrolyzer is still in the early development stage of the kW-level stack,which is mainly attributed to severe performance decay caused by the core component,i.e.,AEM.Here,the review comprehensively presents the recent progress of advanced AEM from the view of the performance of water electrolysis cells.Herein,fundamental principles and critical components of AEM water electrolyzers are introduced,and work conditions of AEM water electrolyzers and AEM performance improvement strategies are discussed.The challenges and perspectives are also analyzed.展开更多
基金supported by the National Natural Science Foundation of China(51672081)the Program of Tri-three Talents Project of Hebei Province(China,A202110002)+1 种基金the Young Top Talents Fund Program of Higher Education Institutions of Heibei Province(BJ2020009)the Project of Science and Technology Innovation Team,Tangshan(20130203D)。
文摘For the use of green hydrogen energy,it is crucial to have efficient photocatalytic activity for hydrogen generation by water reforming of methanol under mild conditions.Much attention has been paid to gC_(3)N_(4)as a promising photocatalyst for the generation of hydrogen.To improve the separation of photogenerated charge,porous nanosheet g-C_(3)N_(4)was modified with Pt nanoclusters(Pt/g-C_(3)N_(4))through impregnation and following photo-induced reduction.This catalyst showed excellent photocatalytic activity of water reforming of methanol fo r hydrogen production with a 17.12 mmol·g^(-1)·h^(-1)rate at room temperature,which was 311 times higher than that of the unmodified g-C_(3)N_(4).The strong interactions of Pt-N in Pt/g-C_(3)N_(4)constructed effective electron transfer channels to promote the separation of photogenerated electrons and holes effectively.In addition,in-situ infrared spectroscopy was used to investigate the intermediates of the hydrogen production reaction,which proved that methanol and water eventually turn into H_(2)and CO_(2)via formaldehyde and formate.This study provides insights for understanding the photocatalytic hydrogen production in the water reforming of methanol.
基金supported by the National Natural Science Foundation of China under grant numbers 22172032,U22A20431 and U19B2003。
文摘The optimizing utilization of ca rbon resources has drawn wide attention all over the world,while exploiting the high-efficiency catalytic routes remains a challenge.Here,a direct methanol synthesis route is realized from pure CO and H_(2)O over 10%Cu/t-ZrO_(2) catalyst,where the time yield of methanol is144.43 mmol mol_(Cu)^(-1)h^(-1)and the methanol selectivity in hydrocarbons is 100%,The Cu species highly dispersed in the t-ZrO_(2) support lead parts of them in the cationic state.The Cu^(+)sites contribute to the dissociation of H_(2)O,providing the H*source for methanol synthesis,while the formed Cu^(0) sites promote the absorption and transfer of H*during the reaction.Moreover,the H_(2)O is even a better H resource than H_(2) due to its better dissociation effectivity in this catalytic system.The present work offers a new approach for methanol synthesis from CO and new insight into the process of supplying H donor.
基金support from the Czech Science Foundation,project EXPRO,No 19-27454Xsupport by the European Union under the REFRESH—Research Excellence For Region Sustainability and High-tech Industries project number CZ.10.03.01/00/22_003/0000048 via the Operational Programme Just Transition from the Ministry of the Environment of the Czech Republic+1 种基金Horizon Europe project EIC Pathfinder Open 2023,“GlaS-A-Fuels”(No.101130717)supported from ERDF/ESF,project TECHSCALE No.CZ.02.01.01/00/22_008/0004587).
文摘Green hydrogen from water splitting has emerged as a critical energy vector with the potential to spearhead the global transition to a fossil fuel-independent society.The field of catalysis has been revolutionized by single-atom catalysts(SACs),which exhibit unique and intricate interactions between atomically dispersed metal atoms and their supports.Recently,bimetallic SACs(bimSACs)have garnered significant attention for leveraging the synergistic functions of two metal ions coordinated on appropriately designed supports.BimSACs offer an avenue for rich metal–metal and metal–support cooperativity,potentially addressing current limitations of SACs in effectively furnishing transformations which involve synchronous proton–electron exchanges,substrate activation with reversible redox cycles,simultaneous multi-electron transfer,regulation of spin states,tuning of electronic properties,and cyclic transition states with low activation energies.This review aims to encapsulate the growing advancements in bimSACs,with an emphasis on their pivotal role in hydrogen generation via water splitting.We subsequently delve into advanced experimental methodologies for the elaborate characterization of SACs,elucidate their electronic properties,and discuss their local coordination environment.Overall,we present comprehensive discussion on the deployment of bimSACs in both hydrogen evolution reaction and oxygen evolution reaction,the two half-reactions of the water electrolysis process.
文摘In this article VLE data for a ternary system (propylene-methanol-water) under 30~60 C,0. 3~0. 9 MPa with a mass ratio of methanol to water of 9:1, 8: 2, 7: 3 were determined with a static equilibrium still, and were correlated by using Peng-Robinson model. The average relative error ofpropylene concentration in liquid phase is 1. 46 %. The results indicate that the models are very suitablefor the ternary system and the data are reliable.
基金Supported by the National Key Research and Development Program of China(2016YFD0200404)the Sichuan Science and Technology Program(2018RZ0145).
文摘The solubility of ammonium dihydrogen phosphate(MAP)in the water–methanol system is essential for antisolvent crystallization studies.To investigate the effect of methanol on the solubility of MAP in water,the solubility of MAP in the water–methanol system was determined by dynamic method and static equilibrium method at temperatures ranging from 293.2 to 343.2 K at atmospheric pressure.Results showed that the solubility of MAP increased with the increase of temperature and the increase of water mole fraction in the water–methanol system.The experimental solubility data were correlated with the modified Apelblat equation,the combined nearly ideal binary solvent/Redlich–Kister(CNIBS/R–K)model and the Jouyban–Acree model.The calculated results based on these three models were in very good agreement with the experimental data with the average relative deviations of 0.65%,0.97%,and 5.38%,respectively.Simultaneously,the thermodynamic properties of the MAP dissolution process in the water–methanol system,including Gibbs energy change,enthalpy,and entropy were obtained by the Van’t Hoff equation,which can be used to assess the crystallization process.
文摘Due to the high energy consumption for separation of salt containing methanol wastewater, in this work, the multi-effect evaporation coupled with mechanical vapor recompression (MVR) heat pump and thermal integration technologies were raised for the first time. The ELECNRTL thermodynamic model is used to simulate and optimize the evaporation rectification process. Energy consumption and total annual cost (TAC) are taken as objective functions. The results show that multi-effect evaporation coupled with conventional distillation process can save energy consumption and TAC by 44.12% and 39.14%. The multi-effect evaporation coupled with distillation process based on MVR heat pump technology can save energy consumption and TAC by 55.27% and 47.49%, which is super to three-effect evaporation coupled with conventional distillation process. The three-effect evaporation coupled with MVR heat integration process can save energy consumption and TAC by 81.32% and 58.55%, which is more economical than other processes. It can be clearly seen that three-effect evaporation coupled with MVR heat integration process is more competitive to deal with the salt containing methanol wastewater.
基金Sponsored by the National High Technology Research Development Plan of China (Grant No.2007AA06A411)
文摘In order to guide the inoculums selection for the anaerobic treatment of methanol wastewater in the engineering application,two 7 L bench-scale external circulation (EC) anaerobic reactors were operated to investigate the inoculums of anaerobic granular sludge and anaerobic digested sludge,focusing on the efficiency and process stability.The effect of impact concentration and temperature on the performance was studied.The results demonstrated that anaerobic granular sludge as the inoculums could complete the start-up more rapidly than the anaerobic digested sludge,and above 90% COD removal were achieved at the organic loading rate of 10 to 15 kgCOD/(m3·d).The effect of impact COD on the methanogenic activity of sludge was weak and the removal efficiencies recovered gradually in the two reactors.The COD removal efficiencies reduced swiftly to 50%-60% due to the impact temperature.The results indicated that the complex bacterial groups in anaerobic digested sludge benefited to enhance the reactor's capacity for withstanding the temperature shock at some extent.
文摘Temperature and pressure were shown to vary significantly with solvent mixing, showing maxima at differ-ent solvent ratios. Acetonitrile/water mixing resulted in temperature reduction of solutions whereas metha-nol/water mixing caused temperature increases. On the other hand, maximum recorded chromatographic pressure of acetonitrile:water mixtures occurred at a solvent ratio of 1:6 compared with methanol:water, which showed a maximum pressure at a solvent ratio of 1:1. These findings can be of use in stabilizing re-tention time shifts during HPLC-based studies associated with compound identification based on retention time such as analysis of complex mixtures.
基金We gratefully thank the financial support from the National Natural Science Foundation of China(22272108,21975163 and 22003041)Shenzhen Science and Technology Program(No.KQTD20190929173914967,JCYJ20200109110416441)the Senior Talent Research Start-up Fund of Shenzhen University(000263 and 000265).
文摘Electrocatalytic water splitting is a viable technique for generating hydrogen but is precluded from the sluggish kinetics of oxygen evolution reactions(OER).Small molecule oxidation reactions with lower working potentials,such as methanol oxidation reactions,are good alternatives to OER with faster kinetics.However,the typically employed Ni-based electrocatalysts have poor activity and stability.Herein,a novel three-dimensional(3D)-networking Modoped Ni(OH)_(2) with ultralow Ni-Ni coordination is synthesized,which exhibits a high MOR activity of 100 mA cm^(−2) at 1.39 V,delivering 28 mV dec^(−1) for the Tafel slope.Meanwhile,hydrogen evolution with value-added formate co-generation is boosted with a current density of more than 500 mA cm^(−2) at a cell voltage of 2.00 V for 50 h,showing excellent stability in an industrial alkaline concentration(6 M KOH).Mechanistic studies based on density functional the-ory and X-ray absorption spectroscopy showed that the improved performance is mainly attributed to the ultralow Ni-Ni coordination,3D-networking structures and Mo dopants,which improve the catalytic activity,increase the active site density and strengthen the Ni(OH)_(2)3D-networking structures,respectively.This study paves a new way for designing electrocatalysts with enhanced activity and durability for industrial energy-saving hydrogen production.
基金financial support from the National Natural Science Foundation of China(Nos.21875224,22179121)the Fundamental Research Founds for National University,China University of Geosciences(Wuhan)。
文摘Sluggish kinetics of methanol oxidation reaction(MOR)and alkaline hydrogen evolution reaction(HER)even on precious Pt catalyst impede the large-scale commercialization of direct methanol fuel cell(DMFC)and water electrolysis technologies.Since both of MOR and alkaline HER are related to water dissociation reaction(WDR),it is reasonable to invite secondary active sites toward WDR to pair with Pt for boosted MOR and alkaline HER activity on Pt.Mo_(2)C and Ni species are therefore employed to engineer NiPt-Mo_(2)C active site pairs,which can be encapsulated in carbon cages,via an in-situ self-confinement strategy.Mass activity of Pt in NiPt-Mo_(2)C@C toward HER is boosted to11.3 A mg_(pt)^(-1),33 times higher than that of Pt/C.Similarly,MOR catalytic activity of Pt in NiPt-Mo_(2)C@C is also improved by 10.5 times and the DMFC maximum power density is hence improved by 9-fold.By considering the great stability,NiPt-Mo_(2)C@C exhibits great practical application potential in DMFCs and water electrolysers.
文摘Aspen plus software was employed to simulate process. The system concludes gasification scrubbing system the opposed multi-burner gasifier (OMB) methanol production and purification shift system. The distributions of ammonia con- centration in streams were obtained. The study demonstrates that ammonium crystallization problem caused by ammonia ac- cumulation, and if the process has ammonia exports its concentration will greatly reduced and the ammonia salt problem will effectively alleviate. Aspen plus simulation is a useful tool strengthening the ammonia recycling use and reducing pollutant for improving water quality, maintaining stable production, emissions.
文摘The acid-base properties of 1-(2-thiazolylazo)-2-naphthol (TAN) in mixtures of methanol-water at 25℃ and an ionic strength of 0.1 mol/L are studied by a multi-wavelength spectrophotometfic method. The acidity constants of all related equilibria are estimated using the whole spectral fitting of the collected data to an established factor analysis model. DATAN program was used for determination of acidity constants. The corresponding pKa values in methanol-water mixtures were determined. There is a linear relationship between acidity constants and the mole fraction of methanol in the solvent mixtures.
文摘The catalytic conversion of methanol to dimethyl ether(DME) over a series of home-made FER-type zeolites having different acidities and commercial γ-Al_2O_3 has been studied with the aim to understand the impact of adding water in the reactant stream on the catalytic behavior on investigated materials. Cofeeding water with methanol, the alcohol conversion was slightly reduced over the investigated zeolites while the catalytic activity of γ-Al_2O_3, the traditional catalyst of MeOH-to-DME conversion, was strongly inhibited. It was also found that, for the investigated zeolites, both the amount and the initial deposition rate of the coke formed during the reaction were reduced when water was co-fed with methanol while no significant effects on both methanol conversion and DME selectivity were observed under the investigated conditions.
基金This work was supported by the National Natural Science Foundation of China (No. 20373034 and 20603030)Post-doctor Research Foundation of Shandong Province (No. 200601007)
文摘The mechanisms about the water’s and methanol’s effects on the alcoholysis of N-benzyl-3-oxo-β-sultam together with their differences have been studied by using density func- tional theory at the B3LYP/6-31G* level. The results, in comparison with a previous study on the relative reaction without the assistance of water and methanol, show that the added water or methanol can remarkably reduce the energy barrier of alcoholysis reaction of N-benzyl-3-oxo- β-sultam and the most favorite pathway is the breaking of C–N bond instead of S–N. It is also found that the reaction energy barrier of methanol-assisted alcoholysis is a little higher than that of the water-assisted one.
文摘The low-concentration methanol-containing wastewater of a gas field mainly consists of the dehydrated water from natural gas,the water at the bottom of a rectifying tower,and the water used to clear tanks and pipes. The concentration of methanol as its characteristic component is mostly lower than 3%. Its production and water quality change seasonally. It is mainly produced in late autumn,winter,and early spring when temperature is low. In the low-concentration methanol-containing wastewater,the content of organic matter,suspended solids and salts and COD value are high,and it is acidic. According to the physical and chemical properties of methanol such as easily dissolving in water,dissolving in most organic solvents,and having strong molecular polarity,laboratory experiments were made to study the difficulties of using high-temperature rectification,biodegradation,membrane filtration and organic oxidation technology to treat low-concentration methanol in the wastewater as well as the feasibility of industrial application. Ultraviolet catalytic oxidation technology has the advantages of high treatment efficiency,no secondary pollution,and no addition of treatment agent. After the low-concentration methanol-containing wastewater was treated by ultraviolet catalytic oxidation for 90 min,methanol concentration in the wastewater reduced from about 3% to around 0. 1%,thereby rapidly and efficiently degrading methanol in the wastewater. Based on the experimental parameters,a pilot device of ultraviolet catalytic oxidation was developed and used in the continuous treatment of the wastewater. When the flow rate of inflow was 500 L/h,the intensity of UV light was 2 k W,and hydraulic retention time was 60 min,methanol could be removed completely from the wastewater with the methanol concentration of about 0. 3%. This study provides a method for the treatment of low-concentration methanol-containing wastewater of a gas field,and also provides an experimental basis for the efficient degradation of organic wastewater.
文摘The Triassic massive sandstone reservoir in the Tahe oilfield has a strong bottom-water drive and is characterized by great burial depth,high temperature and salinity,a thin pay zone,and strong heterogeneity.At present,the water-cut is high in each block within the reservoir;some wells are at an ultrahigh water-cut stage.A lack of effective measures to control water-cut rise and stabilize oil production have necessitated the application of enhanced oil recovery(EOR)technology.This paper investigates the development and technological advances for oil reservoirs with strong edge/bottom-water drive globally,and compares their application to reservoirs with characteristics similar to the Tahe oilfield.Among the technological advances,gas injection from the top and along the direction of structural dip has been used to optimize the flow field in a typical bottom-water drive reservoir.Bottom-water coning is restrained by gas injection-assisted water control.In addition,increasing the lateral driving pressure differential improves the plane sweep efficiency which enhances oil recovery in turn.Gas injection technology in combination with technological measures like channeling prevention and blocking,and water plugging and profile control,can achieve better results in reservoir development.Gas flooding tests in the Tahe oilfield are of great significance to identifying which EOR technology is the most effective and has the potential of large-scale application for improving development of deep reservoirs with a strong bottomwater drive.
基金Natural Science Foundation of Zhejiang Province,Grant/Award Number:LY23E020002National Natural Science Foundation of China,Grant/Award Number:52272085 and 51972178+1 种基金Natural Science Foundation of Ningbo,Grant/Award Number:2021J145China Postdoctoral Science Foundation,Grant/Award Number:2020M681966。
文摘Conversion of solar energy into H_(2) by photoelectrochemical(PEC)water splitting is recognized as an ideal way to address the growing energy crisis and environmental issues.In a typical PEC cell,the construction of photoanodes is crucial to guarantee the high efficiency and stability of PEC reactions,which fundamentally rely on rationally designed semiconductors(as the active materials)and substrates(as the current collectors).In this review work,we start with a brief introduction of the roles of substrates in the PEC process.Then,we provide a systematic overview of representative strategies for the controlled fabrication of photoanodes on rationally designed substrates,including conductive glass,metal,sapphire,silicon,silicon carbide,and flexible substrates.Finally,some prospects concerning the challenges and research directions in this area are proposed.
基金supported by the National Key Research and Development Program(2022YFB4202200)the Fundamental Research Funds for the Central Universities and sponsored by Shanghai Pujiang Program(22PJ1413100)。
文摘Green hydrogen produced by water electrolysis combined with renewable energy is a promising alternative to fossil fuels due to its high energy density with zero-carbon emissions.Among water electrolysis technologies,the anion exchange membrane(AEM) water electrolysis has gained intensive attention and is considered as the next-generation emerging technology due to its potential advantages,such as the use of low-cost non-noble metal catalysts,the relatively mature stack assembly process,etc.However,the AEM water electrolyzer is still in the early development stage of the kW-level stack,which is mainly attributed to severe performance decay caused by the core component,i.e.,AEM.Here,the review comprehensively presents the recent progress of advanced AEM from the view of the performance of water electrolysis cells.Herein,fundamental principles and critical components of AEM water electrolyzers are introduced,and work conditions of AEM water electrolyzers and AEM performance improvement strategies are discussed.The challenges and perspectives are also analyzed.