The methylotrophic yeast Pichia pastoris(syn.Komagataella phaffii)has been extensively engineered for protein production,and is attracting attention as a chassis cell for methanol biotransformation toward production o...The methylotrophic yeast Pichia pastoris(syn.Komagataella phaffii)has been extensively engineered for protein production,and is attracting attention as a chassis cell for methanol biotransformation toward production of small molecules.However,the relatively unclear methanol metabolism hampers the metabolic rewiring to improve the biosynthetic efficiency.We here performed a label-free quantitative proteomic analysis of Pichia pastoris when cultivated in minimal media containing methanol and glucose,respectively.There were 243,158 up-regulated proteins and 244,304 down-regulated proteins in log and stationary phase,respectively,when cultivated in methanol medium compared with that of glucose medium.Peroxisome enrichment further improved the characterization of more differentially expressed proteins(481 proteins in log phase and 524 proteins in stationary phase).We demonstrated the transaldolase isoenzyme(Tal2,Protein ID:C4R244)was highly up-regulated in methanol medium cultivation,which plays an important role in methanol utilization.Our work provides important information for understanding methanol metabolism in methyltrophic yeast and will help to engineer methanol biotransformation in P.pastoris.展开更多
Methylotrophic yeasts and bacteria, which can use methanol as carbon and energy source, have beenwildly used as microbial cell factories for biomanufacturing. Due to their robustness in industrial harshconditions, met...Methylotrophic yeasts and bacteria, which can use methanol as carbon and energy source, have beenwildly used as microbial cell factories for biomanufacturing. Due to their robustness in industrial harshconditions, methylotrophic yeasts such as Pichia pastoris have been explored as a cell factory forproduction of proteins and high-value chemicals. Methanol utilization pathway (MUT) is highlyregulated for efficient methanol utilization, and the downstream pathways need extensively constructedand optimized toward target metabolite biosynthesis. Here, we present an overview of methanolmetabolism and regulation in methylotrophic yeasts, among which we focus on the regulation of keygenes involved in methanol metabolism. Besides, the recent progresses in construction and optimizationof downstream biosynthetic pathways for production of high value chemicals, such as polyketides, fattyacids and isoprenoids, are further summarized. Finally, we discuss the current challenges and feasiblestrategies toward constructing efficient methylotrophic cell factories may promote wide applications inthe future.展开更多
基金supported by National Natural Science Foundation of China(22161142008,M-0246)DMTO research grant(grant no.DICP DMTO_(2)01701)from Dalian institute of Chemical Physics,CAS.
文摘The methylotrophic yeast Pichia pastoris(syn.Komagataella phaffii)has been extensively engineered for protein production,and is attracting attention as a chassis cell for methanol biotransformation toward production of small molecules.However,the relatively unclear methanol metabolism hampers the metabolic rewiring to improve the biosynthetic efficiency.We here performed a label-free quantitative proteomic analysis of Pichia pastoris when cultivated in minimal media containing methanol and glucose,respectively.There were 243,158 up-regulated proteins and 244,304 down-regulated proteins in log and stationary phase,respectively,when cultivated in methanol medium compared with that of glucose medium.Peroxisome enrichment further improved the characterization of more differentially expressed proteins(481 proteins in log phase and 524 proteins in stationary phase).We demonstrated the transaldolase isoenzyme(Tal2,Protein ID:C4R244)was highly up-regulated in methanol medium cultivation,which plays an important role in methanol utilization.Our work provides important information for understanding methanol metabolism in methyltrophic yeast and will help to engineer methanol biotransformation in P.pastoris.
基金funded by the Young Investigator Grant from Dalian Institute of Chemicals Physics,Chinese Academy of Sciences(to Y.J.Zhou)
文摘Methylotrophic yeasts and bacteria, which can use methanol as carbon and energy source, have beenwildly used as microbial cell factories for biomanufacturing. Due to their robustness in industrial harshconditions, methylotrophic yeasts such as Pichia pastoris have been explored as a cell factory forproduction of proteins and high-value chemicals. Methanol utilization pathway (MUT) is highlyregulated for efficient methanol utilization, and the downstream pathways need extensively constructedand optimized toward target metabolite biosynthesis. Here, we present an overview of methanolmetabolism and regulation in methylotrophic yeasts, among which we focus on the regulation of keygenes involved in methanol metabolism. Besides, the recent progresses in construction and optimizationof downstream biosynthetic pathways for production of high value chemicals, such as polyketides, fattyacids and isoprenoids, are further summarized. Finally, we discuss the current challenges and feasiblestrategies toward constructing efficient methylotrophic cell factories may promote wide applications inthe future.