期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Comparative proteomics analysis of Pichia pastoris cultivating in glucose and methanol 被引量:2
1
作者 Rui Hou Linhui Gao +4 位作者 Jianhui Liu Zhen Liang Yongjin J.Zhou Lihua Zhang Yukui Zhang 《Synthetic and Systems Biotechnology》 SCIE 2022年第3期862-868,共7页
The methylotrophic yeast Pichia pastoris(syn.Komagataella phaffii)has been extensively engineered for protein production,and is attracting attention as a chassis cell for methanol biotransformation toward production o... The methylotrophic yeast Pichia pastoris(syn.Komagataella phaffii)has been extensively engineered for protein production,and is attracting attention as a chassis cell for methanol biotransformation toward production of small molecules.However,the relatively unclear methanol metabolism hampers the metabolic rewiring to improve the biosynthetic efficiency.We here performed a label-free quantitative proteomic analysis of Pichia pastoris when cultivated in minimal media containing methanol and glucose,respectively.There were 243,158 up-regulated proteins and 244,304 down-regulated proteins in log and stationary phase,respectively,when cultivated in methanol medium compared with that of glucose medium.Peroxisome enrichment further improved the characterization of more differentially expressed proteins(481 proteins in log phase and 524 proteins in stationary phase).We demonstrated the transaldolase isoenzyme(Tal2,Protein ID:C4R244)was highly up-regulated in methanol medium cultivation,which plays an important role in methanol utilization.Our work provides important information for understanding methanol metabolism in methyltrophic yeast and will help to engineer methanol biotransformation in P.pastoris. 展开更多
关键词 PROTEOMICS PEROXISOME methanol metabolism Systems biology
原文传递
Advances in engineering methylotrophic yeast for biosynthesis of valuable chemicals from methanol 被引量:8
2
作者 Xingpeng Duan Jiaoqi Gao Yongjin J.Zhou 《Chinese Chemical Letters》 SCIE CAS CSCD 2018年第5期681-686,共6页
Methylotrophic yeasts and bacteria, which can use methanol as carbon and energy source, have beenwildly used as microbial cell factories for biomanufacturing. Due to their robustness in industrial harshconditions, met... Methylotrophic yeasts and bacteria, which can use methanol as carbon and energy source, have beenwildly used as microbial cell factories for biomanufacturing. Due to their robustness in industrial harshconditions, methylotrophic yeasts such as Pichia pastoris have been explored as a cell factory forproduction of proteins and high-value chemicals. Methanol utilization pathway (MUT) is highlyregulated for efficient methanol utilization, and the downstream pathways need extensively constructedand optimized toward target metabolite biosynthesis. Here, we present an overview of methanolmetabolism and regulation in methylotrophic yeasts, among which we focus on the regulation of keygenes involved in methanol metabolism. Besides, the recent progresses in construction and optimizationof downstream biosynthetic pathways for production of high value chemicals, such as polyketides, fattyacids and isoprenoids, are further summarized. Finally, we discuss the current challenges and feasiblestrategies toward constructing efficient methylotrophic cell factories may promote wide applications inthe future. 展开更多
关键词 Microbial cell factory Methylotrophic yeast P. pastoris methanol metabolism Biosynthetic pathways Metabolic engineering
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部