期刊文献+
共找到53篇文章
< 1 2 3 >
每页显示 20 50 100
Precision tuning of highly efficient Pt-based ternary alloys on nitrogen-doped multi-wall carbon nanotubes for methanol oxidation reaction
1
作者 Xingqun Zheng Zhengcheng Wang +3 位作者 Qian Zhou Qingmei Wang Wei He Shun Lu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第1期242-251,I0006,共11页
The electrochemical methanol oxidation is a crucial reaction in the conversion of renewable energy.To enable the widespread adoption of direct methanol fuel cells(DMFCs),it is essential to create and engineer catalyst... The electrochemical methanol oxidation is a crucial reaction in the conversion of renewable energy.To enable the widespread adoption of direct methanol fuel cells(DMFCs),it is essential to create and engineer catalysts that are both highly effective and robust for conducting the methanol oxidation reaction(MOR).In this work,trimetallic PtCoRu electrocatalysts on nitrogen-doped carbon and multi-wall carbon nanotubes(PtCoRu@NC/MWCNTs)were prepared through a two-pot synthetic strategy.The acceleration of CO oxidation to CO_(2) and the blocking of CO reduction on adjacent Pt active sites were attributed to the crucial role played by cobalt atoms in the as-prepared electrocatalysts.The precise control of Co atoms loading was achieved through precursor stoichiometry.Various physicochemical techniques were employed to analyze the morphology,element composition,and electronic state of the catalyst.Electrochemical investigations and theoretical calculations confirmed that the Pt_(1)Co_(3)Ru_(1)@NC/MWCNTs exhibit excellent electrocatalytic performance and durability for the process of MOR.The enhanced MOR activity can be attributed to the synergistic effect between the multiple elements resulting from precisely controlled Co loading content on surface of the electrocatalyst,which facilitates efficient charge transfer.This interaction between the multiple components also modifies the electronic structures of active sites,thereby promoting the conversion of intermediates and accelerating the MOR process.Thus,achieving precise control over Co loading in PtCoRu@NC/MWCNTs would enable the development of high-performance catalysts for DMFCs. 展开更多
关键词 Ternary alloys ELECTROCATALYSTS methanol oxidation reaction Electron transfer Theoretical calculations
下载PDF
Hierarchically skeletal multi-layered Pt-Ni nanocrystals for highly efficient oxygen reduction and methanol oxidation reactions 被引量:6
2
作者 Shibo Li Zhi Qun Tian +5 位作者 Yang Liu Zheng Jang Syed Waqar Hasan Xingfa Chen Panagiotis Tsiakaras Pei Kang Shen 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 2021年第4期648-657,共10页
Pt based materials are the most efficient electrocatalysts for the oxygen reduction reaction(ORR)and methanol oxidation reaction(MOR)in fuel cells.Maximizing the utilization of Pt based materials by modulating their m... Pt based materials are the most efficient electrocatalysts for the oxygen reduction reaction(ORR)and methanol oxidation reaction(MOR)in fuel cells.Maximizing the utilization of Pt based materials by modulating their morphologies to expose more active sites is a fundamental objective for the practical application of fuel cells.Herein,we report a new class of hierarchically skeletal Pt-Ni nanocrystals(HSNs)with a multi-layered structure,prepared by an inorganic acid-induced solvothermal method.The addition of H_(2)SO_(4)to the synthetic protocol provides a critical trigger for the successful growth of Pt-Ni nanocrystals with the desired structure.The Pt-Ni HSNs synthesized by this method exhibit enhanced mass activity of 1.25 A mgpt−1 at 0.9 V(versus the reversible hydrogen electrode)towards ORR in 0.1-M HClO_(4),which is superior to that of Pt-Ni multi-branched nanocrystals obtained by the same method in the absence of inorganic acid;it is additionally 8.9-fold higher than that of the commercial Pt/C catalyst.Meanwhile,it displays enhanced stability,with only 21.6%mass activity loss after 10,000 cycles(0.6–1.0 V)for ORR.Furthermore,the Pt-Ni HSNs show enhanced activity and anti-toxic ability in CO for MOR.The superb activity of the Pt-Ni HSNs for ORR and MOR is fully attributed to an extensively exposed electrochemical surface area and high intrinsic activity,induced by strain effects,provided by the unique hierarchically skeletal alloy structure.The novel open and hierarchical structure of Pt-Ni alloy provides a promising approach for significant improvements of the activity of Pt based alloy electrocatalysts. 展开更多
关键词 Hierarchically skeletal Pt-Ni NANOCRYSTALS SELF-ASSEMBLY Solvent thermal method Oxygen reduction reaction methanol oxidation reaction Fuel cells ACTIVITY
下载PDF
Rational design ternary platinum based electrocatalysts for effective methanol oxidation reaction 被引量:6
3
作者 Hao Tian Daoxiong Wu +9 位作者 Jing Li Junming Luo Chunman Jia Zhongxin Liu Wei Huang Qi Chen Chong Michael Shim Peilin Deng Yijun Shen Xinlong Tian 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第7期230-235,I0007,共7页
Exploring effective, durable, and affordable electrocatalysts of methanol oxidation reaction(MOR) is of vital significance for the industrial application of direct methanol fuel cells. Herein, an efficient, general,an... Exploring effective, durable, and affordable electrocatalysts of methanol oxidation reaction(MOR) is of vital significance for the industrial application of direct methanol fuel cells. Herein, an efficient, general,and expandable method is developed to synthesis two-dimensional(2D) ternary Pt Bi M nanoplates(NPLs), in which various M(Co, Ni, Cu, Zn, Sn) is severed as the third component to the binary Pt Bi system. The MOR performance of Pt Bi M NPLs is entirely investigated, demonstrating that both the MOR activity and durability is enhanced with the introduction of the additional composition. Pt3Bi3Zn NPLs shows much higher MOR activity and stability than that of the Pt Bi counterparts, not to mention the current advanced Pt Ru/C and Pt/C catalysts. The prominent performances are attributed to the modulated electronic structure of the surface Pt in Pt Bi NPLs by the addition of Zn, resulting in a weakened affination between Pt and the adsorbed poisoning species(mainly CO) compared with Pt Bi NPLs, verified by density functional theory(DFT) calculations. In addition, the absorbed OH can be generated on the surface of Zn atom due to its favorable water activation properties, thus the CO removal on the adjacent Pt atoms is accelerated, further leading to a high activity and anti-poisoning performance of the resulting Pt_(3)Bi_(3)Zn catalyst. This work provides new insights and robust strategy for highly efficient MOR electrocatalyst with extraordinary anti-poisoning performance and stability. 展开更多
关键词 Fuel cells Ternary nanoplates DURABILITY methanol oxidation reaction Anti-poisoning
下载PDF
Surface elemental distribution effect of Pt-Pb hexagonal nanoplates for electrocatalytic methanol oxidation reaction 被引量:2
4
作者 Hee Jin Kim Yong-Deok Ahn +4 位作者 Jeonghyeon Kim Kyoung-Su Kim Yeon Uk Jeong Jong Wook Hong Sang-Il Choi 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2020年第5期813-819,共7页
Bimetallic Pt-based catalysts have been extensively investigated to enhance the performance of direct methanol fuel cells(DMFCs) because CO, a by-product, reduces the activity of the pure Pt catalysts. Herein, we synt... Bimetallic Pt-based catalysts have been extensively investigated to enhance the performance of direct methanol fuel cells(DMFCs) because CO, a by-product, reduces the activity of the pure Pt catalysts. Herein, we synthesized Pt-Pb hexagonal nanoplates as a model catalyst for the methanol oxidation reaction(MOR) and further controlled the Pt and Pb distributions on the surface of the nanoplates through acetic acid(HAc) treatment. As a result, we obtained Pt-Pb nanoplates and HAc-treated Pt-Pb nanoplates with homogeneous and heterogeneous distributions of the Pt-Pb alloy surfaces, respectively. We showed that the MOR activity and stability of the Pt-Pb nanoplates improved compared to those of the HAc-treated Pt-Pb nanoplates, mainly due to the enhanced CO tolerance and the modified electronic structure of Pt under the influence of the oxophilic Pb. 展开更多
关键词 Platinum Lead NANOPLATE Surface atomic distribution methanol oxidation reaction
下载PDF
Robust copper nanocrystal/nitrogen-doped carbon monoliths as carbon monoxide-resistant electrodes for methanol oxidation reaction 被引量:1
5
作者 Fei Chen Na Wu +4 位作者 Meixu Zhai Xue Zhang Ruihong Guo Tuoping Hu Mingming Ma 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第7期247-255,共9页
Noble metal-based electrocatalysts present high activities for methanol oxidation reaction(MOR),but are limited by their high cost,low stability and poor resistance to carbon monoxide(CO) poisoning.The development of ... Noble metal-based electrocatalysts present high activities for methanol oxidation reaction(MOR),but are limited by their high cost,low stability and poor resistance to carbon monoxide(CO) poisoning.The development of active and stable non-noble metal electrocatalysts for MOR is desired,but remains a challenge.Herein,we report a simple strategy to make copper nanocrystal/nitrogen-doped carbon(Cu/N-C)monoliths,which can serve as active and robust electrodes for MOR.Copper nanocrystals were electrochemically deposited onto a conductive polyaniline hydrogel and calcined to form Cu/N-C monolith,where the active copper nanocrystals are protected by nitrogen-doped carbon.Owing to their extremely high electrical conductivity(1.25 × 10^(5) S cm^(-1)) and mechanical robustness,these Cu/N-C monoliths can be directly used as electrodes for MOR,without using substrates or additives.The optimal Cu/N-C(FT)@500 monolith shows a high MOR activity of 189 mA cm^(-2) at 0.6 V vs.SCE in alkaline methanol solution,superior to most of reported Cu-based MOR catalysts.Cu/N-C(FT)@500 also presents a better stability than Pt/C catalyst in the long-term MOR test at high current densities.Upon carbon monoxide(CO) poisoning,Cu/N-C(FT)@500 retains 96% of its MOR activity,far exceeding the performance of Pt/C catalyst(61% retention).Owing to its facile synthesis,outstanding activity,high stability and mechanical robustness,Cu/N-C(FT)@500 monolith is promising as a low-cost,efficient and CO-resistant electrocatalyst for MOR. 展开更多
关键词 Copper nanocrystal methanol oxidation reaction Non-noble metal-based electrocatalysts Poison-resistant electrocatalysts Nitrogen-doped carbon
下载PDF
A rational design of bimetallic PdAu nanoflowers as efficient catalysts for methanol oxidation reaction
6
作者 Jinyang Liu Min Wu +3 位作者 Xinyi Yang Juan Ding Weiwei Lei Yongming Sui 《Chinese Physics B》 SCIE EI CAS CSCD 2021年第5期526-530,共5页
Methanol fuel cells have been intensively developed as clean and high-efficiency energy conversion system due to their high efficiency and low emission of pollutants.Here,we developed a simple aqueous synthetic method... Methanol fuel cells have been intensively developed as clean and high-efficiency energy conversion system due to their high efficiency and low emission of pollutants.Here,we developed a simple aqueous synthetic method to prepare bimetallic PdAu nanoflowers catalysts for methanol oxidation reaction(MOR)in alkaline environment.Their composition can be directly tuned by changing the ratio between Pd and Au precursors.Compared with commercial Pd/C catalyst,all of the PdAu nanoflowers catalysts show the enhanced catalytic activity and durability.In particular,the PdAu nanoflowers specific activity reached 0.72 mA/cm^(2),which is 14 times that of commercial Pd/C catalyst.The superior MOR activity could be attributed to the unique porous structure and the shift of the d-band center of Pd. 展开更多
关键词 PdAu alloy methanol oxidation reaction CATALYST
下载PDF
Greatly Enhanced Methanol Oxidation Reaction of CoPt Truncated Octahedral Nanoparticles by External Magnetic Fields
7
作者 Mengyuan Zhu Yi Wang +8 位作者 Yanfei Wu Jialong Liu Jingyan Zhang He Huang Xinqi Zheng Jianxin Shen Ruijie Zhao Wenda Zhou Shouguo Wang 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2023年第5期201-210,共10页
Tunable behavior in electrocatalysis by external multifields,such as magnetic field,thermal field,and electric field,is the most promising strategy to expand the theory,design,and synthesis of state-of-the-art catalys... Tunable behavior in electrocatalysis by external multifields,such as magnetic field,thermal field,and electric field,is the most promising strategy to expand the theory,design,and synthesis of state-of-the-art catalysts and the cell in the near future.Here,a systematic investigation for the effect of external magnetic field and thermal field on methanol oxidation reactions(MOR)in magnetic nanoparticles is reported.For Co_(42)Pt_(58)truncated octahedral nanoparticles(TONPs),the catalytic performance in MOR is greatly increased to the maximum of 14.1%by applying a magnetic field up to 3000 Oe,and it shows a monotonical increase with increasing working temperature.The magnetic enhanced effect is closely related to the Co content of Co_(x)Pt_(100-x)TONPs.Furthermore,the enhancement effect under a magnetic field is more obvious for Co_(42)Pt_(58)TONPs annealed at 650℃.First-principle calculation points out that the magnetic fields can facilitate the dehydrogenation of both methanol and water by suppression of entropy of the electron spin and lowering of the activation barrier,where OH_(ad)intermediates on Co sites play a more important role.The application of magnetic fields together with thermal fields in MOR provides a new prospect to manipulate the performance of direct methanol fuel cells,which will accelerate their potential applications. 展开更多
关键词 external magnetic fields first-principle calculation methanol oxidation reaction Pt-based magnetic nanomaterials
下载PDF
Recent development of Au arched Pt nanomaterials as promising electrocatalysts for methanol oxidation reaction 被引量:4
8
作者 Wenhua Lou Asad Ali Pei Kang Shen 《Nano Research》 SCIE EI CSCD 2022年第1期18-37,共20页
The recent development of Aurum(Au)introduced Platinum(Pt)based nanomaterials is of great significance to direct methanol fuel cell as electrocatalysts for anode reactions,due to its stability and anti-poisoning featu... The recent development of Aurum(Au)introduced Platinum(Pt)based nanomaterials is of great significance to direct methanol fuel cell as electrocatalysts for anode reactions,due to its stability and anti-poisoning features.Therefore,the performance of PtAu based catalysts with different elements,atomic ratio,and morphology was studied in methanol solution to further improve its electrocatalytic activity.Furthermore,the effects of Au have aroused the researchers'attention in Pt-based nanocatalysts.In this review,we summarize the controllable synthesis,mechanism,and catalytic performance of Au introduced Pt-based electrocatalysts such as PtAu core-shell nanostructures,PtAu dendrite,PtAu nanowires,self-supporting Au@Pt NPs,and Au@Pt star-like nanocrystals for the methanol oxidation reaction.Finally,the challenges and research directions for the future development of PtAu based catalysts are provided. 展开更多
关键词 methanol oxidation reaction(MOR) direct methanol fuel cell(DMFC) PtAu based catalysts anode catalysts ELECTROCATALYSIS
原文传递
Interfacial Electronic Modulation of Dual-Monodispersed Pt–Ni_(3)S_(2) as Efficacious Bi-Functional Electrocatalysts for Concurrent H_(2) Evolution and Methanol Selective Oxidation
9
作者 Qianqian Zhao Bin Zhao +7 位作者 Xin Long Renfei Feng Mohsen Shakouri Alisa Paterson Qunfeng Xiao Yu Zhang Xian‑Zhu Fu Jing‑Li Luo 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第4期415-431,共17页
Constructing the efficacious and applicable bifunctional electrocatalysts and establishing out the mechanisms of organic electro-oxidation by replacing anodic oxygen evolution reaction(OER) are critical to the develop... Constructing the efficacious and applicable bifunctional electrocatalysts and establishing out the mechanisms of organic electro-oxidation by replacing anodic oxygen evolution reaction(OER) are critical to the development of electrochemicallydriven technologies for efficient hydrogen production and avoid CO_(2) emission. Herein, the hetero-nanocrystals between monodispersed Pt(~ 2 nm) and Ni_(3)S_(2)(~ 9.6 nm) are constructed as active electrocatalysts through interfacial electronic modulation, which exhibit superior bi-functional activities for methanol selective oxidation and H_(2) generation. The experimental and theoretical studies reveal that the asymmetrical charge distribution at Pt–Ni_(3)S_(2) could be modulated by the electronic interaction at the interface of dual-monodispersed heterojunctions, which thus promote the adsorption/desorption of the chemical intermediates at the interface. As a result, the selective conversion from CH_(3)OH to formate is accomplished at very low potentials(1.45 V) to attain 100 m A cm^(-2) with high electronic utilization rate(~ 98%) and without CO_(2) emission. Meanwhile, the Pt–Ni_(3)S_(2) can simultaneously exhibit a broad potential window with outstanding stability and large current densities for hydrogen evolution reaction(HER) at the cathode. Further, the excellent bi-functional performance is also indicated in the coupled methanol oxidation reaction(MOR)//HER reactor by only requiring a cell voltage of 1.60 V to achieve a current density of 50 m A cm^(-2) with good reusability. 展开更多
关键词 Dual-monodispersed heterostructure Electronic interactive modulation reaction mechanism methanol oxidation reaction Hydrogen generation
下载PDF
Phosphorus-doping-tuned PtNi concave nanocubes with high-index facets for enhanced methanol oxidation reaction 被引量:3
10
作者 Aixin Fan Congli Qin +7 位作者 Ruxia Zhao Haixiao Sun Hui Sun Xiaoping Dai Jin-Yu Ye Shi-Gang Sun Yanhong Lu Xin Zhang 《Nano Research》 SCIE EI CSCD 2022年第8期6961-6968,共8页
Surface engineering has been found to be an efficient strategy to boost the catalytic performance of noble-metal-based nanocatalysts.In this work,a small amount of P was doped to the surface of PtNi concave cube(P-PtN... Surface engineering has been found to be an efficient strategy to boost the catalytic performance of noble-metal-based nanocatalysts.In this work,a small amount of P was doped to the surface of PtNi concave cube(P-PtNi CNC).Interestingly,the P-PtNi CNC nanocatalyst shows an enhanced methanol oxidation reaction(MOR)performance with achieving 8.19 times of specific activity than that of comercial Pt/C.The electrochemical in situ Fourier transform infrared spectroscopy(FTIR)results reveal that the surface P doping promotes the adsorption energy of OH,enhancing the resistance against CO poisoning.Therefore,the intermediate adsorbed CO(COads)reacted with adsorbed OH(OHads)through the Langmuir–Hinshelwood(LH)mechanism to generate CO_(2)and release surface active sites for further adsorption.This work provides a promising strategy via the incorporation of non-metallic elements into the PtNi alloys bounded with high-index facets(HIFs)as efficient fuel cell catalysts. 展开更多
关键词 P doping high-index facets methanol oxidation reaction in situ Fourier transform infrared spectroscopy
原文传递
Au nanowires with high aspect ratio and atomic shell of Pt-Ru alloy for enhanced methanol oxidation reaction 被引量:4
11
作者 Xiran Zhu Zheng Hu +3 位作者 Ming Huang Yuxin Zhao Jianqiang Qu Shi Hu 《Chinese Chemical Letters》 CSCD 2021年第6期2033-2037,共5页
The methanol oxidation reaction(MOR)is the limiting half-reaction in direct methanol fuel cell(DMFC).Although Pt is the most active single-metal electrocatalyst for MOR,it is hampered by high cost and CO poisoning.Con... The methanol oxidation reaction(MOR)is the limiting half-reaction in direct methanol fuel cell(DMFC).Although Pt is the most active single-metal electrocatalyst for MOR,it is hampered by high cost and CO poisoning.Constructing a Pt or Ru monolayer on a second metal substrate by means of galvanic replacement of underpotentially deposited(UPD)Cu monolayer has been shown as an efficient catalyst design strategy for the electrocatalysis of MOR because of the presumed 100%utilization of atoms and resistance to CO poisoning.Herein,we prepared one-dimensional surface-alloyed electrocatalyst from predominantly(111)faceted Au nanowires with high aspect ratio as the substrate of under-potential deposition.The electrocatalyst comprises a core of the Au nanowire and a shell of catalytically active Pt coated by Ru.Coverage-dependent electro-catalytic activity and stability is demonstrated on the Pt/Ru submonolayers on Au wires for MOR.Among all these catalysts,Au@Pt_(ML)@Ru_(ML)exhibits the best electrocatalytic activity and poisoning tolerance to CO.This presents a viable method for the rational catalyst design for achieving high noble-metal utilization efficiency and high catalytic performance. 展开更多
关键词 Au nanowires Pt/Ru submonolayers Underpotentially deposited Core-shell nanostructure methanol oxidation reaction
原文传递
Autocatalytic reduction-assisted synthesis of segmented porous PtTe nanochains for enhancing methanol oxidation reaction 被引量:2
12
作者 Qiqi Zhang Tianyu Xia +10 位作者 He Huang Jialong Liu Mengyuan Zhu Hao Yu Weifeng Xu Yuping Huo Congli He Shipeng Shen Cong Lu Rongming Wang Shouguo Wang 《Nano Research Energy》 2023年第1期140-147,共8页
Morphology engineering has been developed as one of the most widely used strategies for improving the performance of electrocatalysts.However,the harsh reaction conditions and cumbersome reaction steps during the nano... Morphology engineering has been developed as one of the most widely used strategies for improving the performance of electrocatalysts.However,the harsh reaction conditions and cumbersome reaction steps during the nanomaterials synthesis still limit their industrial applications.Herein,one-dimensional(1D)novel-segmented PtTe porous nanochains(PNCs)were successfully synthesized by the template methods assisted by Pt autocatalytic reduction.The PtTe PNCs consist of consecutive mesoporous architectures that provide a large electrochemical surface area(ECSA)and abundant active sites to enhance methanol oxidation reaction(MOR).Furthermore,1D nanostructure as a robust sustaining frame can maintain a high mass/charge transfer rate in a long-term durability test.After 2,000 cyclic voltammetry(CV)cycles,the ECSA value of PtTe PNCs remained as high as 44.47 m^(2)·gPt^(-1),which was much larger than that of commercial Pt/C(3.95 m^(2)·gPt^(-1)).The high catalytic activity and durability of PtTe PNCs are also supported by CO stripping test and density functional theory calculation.This autocatalytic reduction-assisted synthesis provides new insights for designing efficient low-dimensional nanocatalysts. 展开更多
关键词 autocatalytic process PtTe catalysts methanol oxidation reactions porous nanochain
原文传递
Ultrafine Pt nanoparticles supported on double-shelled C/TiO2 hollow spheres material as highly efficient methanol oxidation catalysts 被引量:5
13
作者 Xiaoyu Yue Yuguang Pu +2 位作者 Wen Zhang Ting Zhang Wei Gao 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2020年第10期275-282,共8页
Catalyst support is extremely important for future fuel cell devices.In this work,we developed doubleshelled C/TiO2(DSCT)hollow spheres as an excellent catalyst support via a template-directed method.The combination o... Catalyst support is extremely important for future fuel cell devices.In this work,we developed doubleshelled C/TiO2(DSCT)hollow spheres as an excellent catalyst support via a template-directed method.The combination of hollow structure,TiO2 shell and carbon layer results in excellent electron conductivity,electrocatalytic activity,and chemical stability.These uniformed DSCT hollow spheres are used as catalyst support to synthesize Pt/DSCT hollow spheres electrocatalyst.The resulting Pt/DSCT hollow spheres exhibited high catalytic performance with a current density of 462 mA mg^-1 for methanol oxidation reaction,which is 2.52 times higher than that of the commercial Pt/C.Furthermore,the increased tolerance to carbonaceous poisoning with a higher If/Ibratio and a better long-term stability in acid media suggests that the DSCT hollow sphere is a promising C/TiO2-based catalyst support for direct methanol fuel cells applications. 展开更多
关键词 Catalyst support C/TiO2 hollow sphere Metal-support interactions methanol oxidation reaction
下载PDF
Preparation of Surfactant-Free Pt and PtRu Nanoparticles with High Activity for Methanol Oxidation 被引量:1
14
作者 Yao Yao Jun Cai +1 位作者 Yong-li Zheng Yan-xia Chen 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2014年第3期332-336,共5页
A simple and green approach to synthesize highly active electro-catalysts for methanol oxi- dation reaction (MOR) without using any organic agents is described. Pt nanoparticles are directly deposited on the pre-cle... A simple and green approach to synthesize highly active electro-catalysts for methanol oxi- dation reaction (MOR) without using any organic agents is described. Pt nanoparticles are directly deposited on the pre-cleaned and pre-oxidized multiwall carbon nanotubes (MWC- NTs) from Pt salt by using CO as the reductant. MOR activity has been characterized by both cyclic voltammetry and chronoamperometry, the current density and mass specific current at the peak potential (ca. 0.9 V vs. RHE) reaches 11.6 mA/cm^2 and 860 mA/mgpt, respectively. After electro-deposition of Ru onto the Pt/MWCNTs surface, the catalysts show steady state mass specific current of 20 and 80 mA/mgpt at 0.5 and 0.6 V, respectively. 展开更多
关键词 Pt nano-electrocatalyst PtRu nano-electrocatalyst Green synthesis methanol oxidation reaction Carbon monoxide
下载PDF
Advanced heterostructure of Pd nanosheets@Pt nanoparticles boosts methanol electrooxidation
15
作者 Jie Li Cheng Wang +5 位作者 Yuefan Zhang Shinichi Hata Kewang Zhang Changqing Ye Yukihide Shiraishi Yukou Du 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第10期430-438,I0012,共10页
Heterostructures have emerged as elaborate structures to improve catalytic activity owing to their combined surface and distinct inverse interface.However,fabricating advanced nanocatalysts with facetdependent interfa... Heterostructures have emerged as elaborate structures to improve catalytic activity owing to their combined surface and distinct inverse interface.However,fabricating advanced nanocatalysts with facetdependent interface remains an unexploited and promising area.Herein,we render the controlled growth of Pt nanoparticles(NPs)on Pd nanosheets(NSs)by regulating the reduction kinetics of Pt^(2+)with solvents.Specifically,the fast reduction kinetic makes the Pt NPs uniformly deposited on the Pd NSs(U-Pd@Pt HS),while the slow reduction kinetic leads to the preferential growth of Pt NPs on the edge of the Pd NSs(E-Pd@Pt HS).Density functional theory calculations demonstrate that Pd(111)-Pt interface in U-Pd@Pt HS induces the electron-deficient status of Pd substrates,triggering the d-band center downshift and amplifying the Pd-Pt intermetallic interaction.The synergy between the electronic effect and interfacial effect facilitates the removal of poisonous intermediates on U-Pd@Pt HS.By virtue of the Pd NSs@Pt NPs interface,the heterostructure achieves exceptional methanol oxidation reaction activity as well as improved durability.This study innovatively proposes heterostructure engineering with facetdependent interfacial modulation,offering instructive guidelines for the rational design of versatile heterocatalysts. 展开更多
关键词 Heterostructure engineering Facet-dependent interfacial modulation methanol oxidation reaction
下载PDF
Stable NiPt-Mo_(2)C active site pairs enable boosted water splitting and direct methanol fuel cell 被引量:1
16
作者 Jing Li Zhu Guo +3 位作者 Wenjie Zhang Jing Guo Konggang Qu Weiwei Cai 《Green Energy & Environment》 SCIE EI CSCD 2023年第2期559-566,共8页
Sluggish kinetics of methanol oxidation reaction(MOR)and alkaline hydrogen evolution reaction(HER)even on precious Pt catalyst impede the large-scale commercialization of direct methanol fuel cell(DMFC)and water elect... Sluggish kinetics of methanol oxidation reaction(MOR)and alkaline hydrogen evolution reaction(HER)even on precious Pt catalyst impede the large-scale commercialization of direct methanol fuel cell(DMFC)and water electrolysis technologies.Since both of MOR and alkaline HER are related to water dissociation reaction(WDR),it is reasonable to invite secondary active sites toward WDR to pair with Pt for boosted MOR and alkaline HER activity on Pt.Mo_(2)C and Ni species are therefore employed to engineer NiPt-Mo_(2)C active site pairs,which can be encapsulated in carbon cages,via an in-situ self-confinement strategy.Mass activity of Pt in NiPt-Mo_(2)C@C toward HER is boosted to11.3 A mg_(pt)^(-1),33 times higher than that of Pt/C.Similarly,MOR catalytic activity of Pt in NiPt-Mo_(2)C@C is also improved by 10.5 times and the DMFC maximum power density is hence improved by 9-fold.By considering the great stability,NiPt-Mo_(2)C@C exhibits great practical application potential in DMFCs and water electrolysers. 展开更多
关键词 Hydrogen evolution reaction methanol oxidation reaction Direct methanol fuel cell Active site pair Self-confinement
下载PDF
Small-sized tungsten nitride anchoring into a 3D CNT- rGO framework as a superior bifunctional catalyst for the methanol oxidation and oxygen reduction reactions 被引量:10
17
作者 Haijing Yan Meichen Meng +4 位作者 Lei Wang Aiping Wu Chungui Tian Lu Zhao Honggang Fu 《Nano Research》 SCIE EI CAS CSCD 2016年第2期329-343,共15页
The application of direct methanol fuel cells (DMFC) is hampered by high cost, low activity, and poor CO tolerance by the Pt catalyst. Herein, we designed a fancy 3D hybrid by anchoring tungsten nitride (WN) nanop... The application of direct methanol fuel cells (DMFC) is hampered by high cost, low activity, and poor CO tolerance by the Pt catalyst. Herein, we designed a fancy 3D hybrid by anchoring tungsten nitride (WN) nanoparticles (NPs), of about 3 nm in size, into a 3D carbon nanotube-reduced graphene oxide framework (CNT-rGO) using an assembly route. After depositing Pt, the contacted and strongly coupled Pt-WN NPs were formed, resulting in electron transfer from Pt to WN. The 3D Pt-WN/CNT-rGO hybrid can be used as a bifunctional electrocatalyst for both methanol oxidation reaction (MOR) and oxygen reduction reaction (ORR). In MOR, the catalysts showed excellent CO tolerance and a high mass activity of 702.4 mA.mgpt-1, 2.44 and 3.81 times higher than those of Pt/CNT-rGO and Pt/C(JM) catalysts, respectively. The catalyst also exhibited a more positive onset potential (1.03 V), higher mass activity (151.3 mA.mgpt-1), and better cyclic stability and tolerance in MOR than ORR. The catalyst mainly exhibited a 4e-transfer mechanism with a low peroxide yield. The high activity was closely related to hybrid structure. That is, the 3D framework provided a favorable path for mass-transfer, the CNT-rGO support was favorable for charge transfer, and strongly coupled Pt-WN can enhance the catalytic activity and CO-tolerance of Pt. Pt-WN/CNT-rGO represents a new 3D catalytic platform that is promising as an electrocatalyst for DMFC because it can catalyze both ORR and MOR in an acidic medium with good stability and highly efficient Pt utilization. 展开更多
关键词 small-sized tungste nnitride 3D CNT-rGO bifunctional catalyst methanol oxidation reaction oxygen reduction reaction
原文传递
Unraveling the role of NiSnPH@OOH/CC perovskite hydroxide for efficient electrocatalytic oxidation of methanol to formate
18
作者 Jing Shao Yusheng Fang +2 位作者 Xiaobing Wu Muhammad Imran Abdullah Youkun Tao 《Nano Research》 SCIE EI CSCD 2024年第4期2388-2399,共12页
The sluggish kinetics of oxygen evolution reaction(OER)is the key tailback for hydrogen production from the water electrolysis.Masking OER with thermodynamically auspicious methanol oxidation reaction(MOR)can signific... The sluggish kinetics of oxygen evolution reaction(OER)is the key tailback for hydrogen production from the water electrolysis.Masking OER with thermodynamically auspicious methanol oxidation reaction(MOR)can significantly boost the H_(2) and value-added products production.However,it is currently challenging to achieve a synergistic manipulation of product selectivity and performance for MOR electrocatalyst.Herein,we report NiSnPH@OOH/CC(CC=carbon cloth)perovskite hydroxide nanosphere as an efficient MOR electrocatalyst with high activity,stability,and selectivity towards methanol oxidation to formate.A surface amorphous layer of defect rich NiOOH was generated in operando by selective Sn leaching with stable perovskite hydroxide bulk structure,which mitigates the oxidative power and optimizes the local coordination environment of the active NiOOH sites.In situ Raman combined with electrochemical studies further confirm the key active species,NiOOH,generated in operando enhance the MOR and blocking the over oxidation of methanol to CO_(2).As a result,NiSnPH@OOH/CC effectively masks the OER and attains>99%selectivity with 100%Faradic efficiency for methanol-to-formate.The results of this study show the advances of NiSnPH@OOH/CC as an efficient electrocatalyst for MOR and also suggest its potential applications for various small organic molecules oxidation. 展开更多
关键词 perovskite hydroxide small organic molecules nickel oxy(hydroxide) value-added products methanol oxidation reaction
原文传递
Crystal-phase-controlled PtSn intermetallic nanowires for efficient methanol oxidation
19
作者 Siyu Cao Mengfan Li +7 位作者 Zihan Guo Li Gong Yangfan Lu Wenhua Zhang Yu Ni Lei Gao Chao Ma Hongwen Huang 《Science China Chemistry》 SCIE EI CAS CSCD 2024年第12期4142-4148,共7页
Developing highly efficient Pt-based methanol oxidation reaction(MOR)catalysts is pivotal for direct methanol fuel cells.Phase engineering of nanomaterials offers a promising strategy to improve their catalytic perfor... Developing highly efficient Pt-based methanol oxidation reaction(MOR)catalysts is pivotal for direct methanol fuel cells.Phase engineering of nanomaterials offers a promising strategy to improve their catalytic performance,yet achieving phase modulation in one-dimensional nanowires(NWs)remains a great challenge.Herein,we report a facile and one-pot synthesis approach for the crystal-phase-controlled Pt-Sn intermetallic nanowires(NWs),realizing the crystal-phases regulation of face-centered cubic Pt_(3)Sn intermetallic NWs(FCC-Pt_(3)Sn INTNWs)and hexagonal close-packed Pt Sn intermetallic NWs(HCP-PtSn INTNWs)by adjusting the amounts of Sn precursors.Notably,the FCC-Pt_(3)Sn INTNWs exhibit high mass and specific activities of 6.4 A mg_(Pt)^(-1)and 11.8 mA cm^(-2),respectively,surpassing its counterparts,the HCP-PtSn INTNWs and commercial Pt/C catalysts.After a 10,000 s durability test,the FCC-Pt_(3)Sn INTNWs still maintain a mass activity of 5.6 A mg_(Pt)^(-1),which is 24.3 times higher than that of commercial Pt/C catalyst.This dramatic enhancement of MOR performance is primarily attributed to the phasecontrolled structure and accelerated removal of CO intermediates(CO*).Theoretical calculations and CO stripping experiments demonstrate that the FCC-Pt_(3)Sn INTNWs lower the energy barrier for converting CO*into COOH*by reducing CO*binding and enhancing OH adsorption,thus significantly improving the MOR activity,CO tolerance,and stability. 展开更多
关键词 Pt-Sn intermetallic nanowires crystal phase methanol oxidation reaction anti-CO poisoning
原文传递
Sonochemical Synthesis of Two Dimensional C3N4 Nanosheets Supported Palladium Composites and Their Electrocatalytic Activity for Oxygen Reduction and Methanol Oxidation Reaction 被引量:1
20
作者 Lingxia Zuo Liping Jiang Jun-Jie Zhu 《Chinese Journal of Chemistry》 SCIE CAS CSCD 2017年第6期969-976,共8页
The preparation of highly active electrocatalysts with good durability and low cost for fuel cells is highly desir- able but still remains a significant challenge. Here we synthesized two dimensional (2D) C3N4 nanos... The preparation of highly active electrocatalysts with good durability and low cost for fuel cells is highly desir- able but still remains a significant challenge. Here we synthesized two dimensional (2D) C3N4 nanosheets supported palladium composites (C3N4/Pd) via a simple and convenient sonochemical approach. We have systematically stud- ied the electrocatalytic performance of as-prepared catalysts. We found that the prepared C3N4/Pd composites pos- sessed excellent catalytic activity and stability for oxygen reduction reaction (ORR) in alkaline media. Encourag- ingly, the C3N4/Pd catalysts exhibit the excellent electrocatalytic activity for methanol oxidation reaction (MOR) in alkaline media, even better than that of the commercial Pt/C catalyst, The excellent electrocatalytic performance of the 2D C3N4 nanosheets supported palladium composites catalysts results from their synergy effect between the ul- trathin substrate material with large surface area and excellent dispersion of palladium nanoparticles. This study demonstrates that sonochemical method opens up a new avenue for the preparation of electrocatalysts for fuel cells. We expect these materials are likely to find uses in a broad range of applications, for example, fuel cells, solar cells, batteries and other electrochemical analysis. 展开更多
关键词 sonochemical method C3N4/Pd oxygen reduction reaction methanol oxidation reaction
原文传递
上一页 1 2 3 下一页 到第
使用帮助 返回顶部