Methanol is regarded as an important liquid fuel for hydrogen storage, transportation, and in-situ generation due to its convenient conveyance, high energy density, and low conversion temperature. In this work, an ove...Methanol is regarded as an important liquid fuel for hydrogen storage, transportation, and in-situ generation due to its convenient conveyance, high energy density, and low conversion temperature. In this work, an overview of state-of-the-art investigations on methanol reforming is critically summarized, including the detailed introduction of methanol conversion pathways from the perspective of fuel cell applications, various advanced materials design for catalytic methanol conversion, as well as the development of steam methanol reformers. For the section of utilization pathways, reactions such as steam reforming of methanol, partial oxidation of methanol, oxidative steam reforming of methanol, and sorption-enhanced steam methanol reforming were elaborated;For the catalyst section, the strategies to enhance the catalytic activity and other comprehensive performances were summarized;For the reactor section, the newly designed steam methanol reformers were thoroughly described. This review will benefit researchers from both fundamental research and fuel cell applications in the field of catalyzing methanol to hydrogen.展开更多
The on-board methanol steam reforming(MSR) has long been considered as an effective approach to insitu produce hydrogen for fuel cell vehicles(FCVs). However, the conventional MSR catalyst pellets suffer from easy bre...The on-board methanol steam reforming(MSR) has long been considered as an effective approach to insitu produce hydrogen for fuel cell vehicles(FCVs). However, the conventional MSR catalyst pellets suffer from easy breakage during the vehicle movement, leading to increased pressure drop and reduced system stability. Herein, we introduce an integrated method to prepare the highly controlled structured catalysts based on coupled processes: direct prototyping the structured substrate using digital light processing(DLP) 3D printing technology, in-situ dynamic crystallization of active components assisted by magnetic resonance imaging(MRI) and calcination. The synthesized catalyst owns a gradient layer of active component, and exhibits better MSR performance, higher mechanical strength, reduced pressure drop, higher Cu dispersion and better adhesion of active compounds when compared with the conventional powder and pellet catalysts. The demonstrated successful application proves the feasibility of developed method,which has great potential to be used for preparing precisely other monolithic catalysts with customized structures.展开更多
Plasmon-induced hot-electron transfer from metal nanostructures is being intensely pursed in current photocatalytic research,however it remains elusive whether molecular-like metal clusters with excitonic behavior can...Plasmon-induced hot-electron transfer from metal nanostructures is being intensely pursed in current photocatalytic research,however it remains elusive whether molecular-like metal clusters with excitonic behavior can be used as light-harvesting materials in solar energy utilization such as photocatalytic methanol steam reforming.In this work,we report an atomically precise Cu_(13)cluster protected by dual ligands of thiolate and phosphine that can be viewed as the assembly of one top Cu atom and three Cu_(4)tetrahedra.The Cu_(13)H_(10)(SR)_(3)(PR’_(3))_(7)(SR=2,4-dichlorobenzenethiol,PR’_(3)=P(4-FC_(6)H_(4))_(3))cluster can give rise to highly efficient light-driven activity for methanol steam reforming toward H_(2)production.展开更多
This study explores the controllable synthesis of CuAlO_(2) using copper hydroxide and pseudo-boehmite powders as raw materials via a simple solid-phase ball milling method,along with its catalytic performance investi...This study explores the controllable synthesis of CuAlO_(2) using copper hydroxide and pseudo-boehmite powders as raw materials via a simple solid-phase ball milling method,along with its catalytic performance investigation in methanol steam reforming(MSR).Various catalysts were prepared under different conditions,such as calcination temperature,calcination atmosphere,and heating rate.Characterization techniques including BET,XRD,XPS,SEM and H2-TPR were employed to analyze the samples.The results revealed significant effects of calcination temperature on the phase compositions,specific surface area,reduction performance,and surface properties of the CA-T catalysts.Based on the findings,a synthesis route of CuAlO_(2) via the solid-phase method was proposed,highlighting the importance of high calcination temperature,nitrogen atmosphere,and low heating rate for CuAlO_(2) formation.Catalytic evaluation data demonstrated that CuAlO_(2) could catalyze MSR without pre-reduction,with the catalytic performance of CA-T catalysts being notably influenced by calcination temperature.Among the prepared catalysts,the CA-1100 catalyst exhibited the highest catalytic activity and stability.The findings of this study might be useful for the further study of the catalytic material for sustained release catalysis,including the synthesis of catalytic materials and the regulation of sustained release catalytic performance.展开更多
Cu-based catalysts have been extensively used in methanol steam reforming(MSR)reactions because of their low cost and high effi ciency.ZnO is often used in commercial Cu-based catalysts as both a structural and an ele...Cu-based catalysts have been extensively used in methanol steam reforming(MSR)reactions because of their low cost and high effi ciency.ZnO is often used in commercial Cu-based catalysts as both a structural and an electronic promoter to stabilize metal Cu nanoparticles and modify metal–support interfaces.Still,the further addition of chemical promoters is essential to further enhance the MSR reaction performance of the Cu/ZnO catalyst.In this work,CeO_(2)-doped Cu/ZnO catalysts were prepared using the coprecipitation method,and the eff ects of CeO_(2)on Cu-based catalysts were systematically investigated.Doping with appropriate CeO_(2)amounts could stabilize small Cu nanoparticles through a strong interaction between CeO_(2)and Cu,leading to the formation of more Cu+–ZnO x interfacial sites.However,higher CeO_(2)contents resulted in the formation of larger Cu nanoparticles and an excess of Cu+–CeO x interfacial sites.Consequently,the Cu/5CeO_(2)/ZnO catalyst with maximal Cu–ZnO interfaces exhibited the highest H 2 production rate of 94.6 mmolH2/(gcat·h),which was 1.5 and 10.2 times higher than those of Cu/ZnO and Cu/CeO_(2),respectively.展开更多
For the use of green hydrogen energy,it is crucial to have efficient photocatalytic activity for hydrogen generation by water reforming of methanol under mild conditions.Much attention has been paid to gC_(3)N_(4)as a...For the use of green hydrogen energy,it is crucial to have efficient photocatalytic activity for hydrogen generation by water reforming of methanol under mild conditions.Much attention has been paid to gC_(3)N_(4)as a promising photocatalyst for the generation of hydrogen.To improve the separation of photogenerated charge,porous nanosheet g-C_(3)N_(4)was modified with Pt nanoclusters(Pt/g-C_(3)N_(4))through impregnation and following photo-induced reduction.This catalyst showed excellent photocatalytic activity of water reforming of methanol fo r hydrogen production with a 17.12 mmol·g^(-1)·h^(-1)rate at room temperature,which was 311 times higher than that of the unmodified g-C_(3)N_(4).The strong interactions of Pt-N in Pt/g-C_(3)N_(4)constructed effective electron transfer channels to promote the separation of photogenerated electrons and holes effectively.In addition,in-situ infrared spectroscopy was used to investigate the intermediates of the hydrogen production reaction,which proved that methanol and water eventually turn into H_(2)and CO_(2)via formaldehyde and formate.This study provides insights for understanding the photocatalytic hydrogen production in the water reforming of methanol.展开更多
Electromagnetic induction heating technology,characterized by its non-contact thermal heat transfer,diminished thermal inertia,and facile temperature management,is applied in this study to enhance catalytic methanol s...Electromagnetic induction heating technology,characterized by its non-contact thermal heat transfer,diminished thermal inertia,and facile temperature management,is applied in this study to enhance catalytic methanol steam reforming(MSR)reaction process.A two-dimensional reactor model was developed integrating electromagnetic field coupling with MSR reactions,fluid dynamics and heat transfer.In the reactor,heat is induced instantaneously on the magnetic material through an electromagnetic induction process,which generated by renewable electricity.Results showed that the Internal-Double Row Cylinder(IN-DRC,cylinder means that the shape of induction heating element is cylindrical.)highest heating efficiency is 38.3%,which is limited by the kinetics of MSR reaction.Here,thermal efficiency reaches its maximum with the reaction channel outlet temperature reaching about 580 K.Internal-Double Row Cylinder(IN-DRC)and Internal-Double Row Ball(IN-DRB,ball means that the shape of induction heating element is spherical)methanol conversions are virtually identical,with a maximum value close to 100%.Furthermore,the findings that the adoption of internal induced heating,in contrast to external heating,across the four reactor designs can effectively mitigate temperature gradient within the reactors.This reduction in thermal disparity significantly amplifies methanol conversion within the reactor,thereby markedly enhancing its overall performance in hydrogen production.Therefore,non-contact internal induction heating method has the potential for substantially hydrogen production processes.展开更多
A homogeneous catalyst [Cp*Rh(NH3)(H2O)2]-(3+) has been found for the clean conversion of methanol and water to hydrogen and carbon dioxide. The simple and easily available reaction steps can circumvent the fo...A homogeneous catalyst [Cp*Rh(NH3)(H2O)2]-(3+) has been found for the clean conversion of methanol and water to hydrogen and carbon dioxide. The simple and easily available reaction steps can circumvent the formation of CO, therefore, making it possible to avoid inactivating catalysts and contaminating the hydrogen fuel. Different from conventional reforming method for hydrogen production, no additional alkaline or organic substances are required in this method. Valuable hydrogen can be obtained under ambient pressure at 70 C, corresponding TOF is 83.2 h 1. This is an unprecedented success in reforming methanol to hydrogen. Effects of reaction conditions, such as reaction temperature, initial methanol concentration and the initial p H value of buffer solution on the hydrogen evolution are all systematically investigated. In a certain range, higher reaction temperature will accelerate reaction rate. The slightly acidic condition is conducive to rapid hydrogen production. These findings are of great significance to the present establishment of the carbon-neutral methanol economy.展开更多
Synergy between the intrinsic photon and thermal effects from full-spectrum sunlight for H_(2) production is considered to be central to further improve solar-driven H_(2) production.To that end,the photo-thermocataly...Synergy between the intrinsic photon and thermal effects from full-spectrum sunlight for H_(2) production is considered to be central to further improve solar-driven H_(2) production.To that end,the photo-thermocatalyst that demonstrates both photoelectronic and photothermal conversion capabilities have drawn much attention recently.Here,we propose a novel synergistic full-spectrum photo-thermo-catalysis technique for high-efficient H_(2) production by solar-driven methanol steam reforming(MSR),along with the Pt-Cu Oxphoto-thermo-catalyst featuring Pt-Cu/Cu_(2)O/CuO heterojunctions by Pt-mediated in-situ photoreduction of Cu O.The results show that the H_(2) production performance rises superlinearly with increasing light intensity.The optimal H_(2) production rate of 1.6 mol g^(-1) h^(-1) with the corresponding solar-to-hydrogen conversion efficiency of 7%and the CO selectivity of 5%is achieved under 15×sun full-spectrum irradiance(1×sun=1 k W m^(-2))at 180°C,which is much more efficient than the previously-reported Cu-based thermo-catalysts for MSR normally operating at 250~350°C.These attractive performances result from the optimized reaction kinetics in terms of intensified intermediate adsorption and accelerated carrier transfer by long-wave photothermal effect,and reduced activation barrier by short-wave photoelectronic effect,due to the broadened full-spectrum absorbability of catalyst.This work has brought us into the innovative technology of full-spectrum synergistic photothermo-catalysis,which is envisioned to expand the application fields of high-efficient solar fuel production.展开更多
A series of CuO/ZnO/Al_2O_3, CuO/ZnO/ZrO_2/Al_2O_3 and CuO/ZnO/CeO_2/Al_2O_3 catalysts were prepared by coprecipitation and characterized by N_2 adsorption, XRD, TPR, N_2O titration and HRTEM. The catalytic performanc...A series of CuO/ZnO/Al_2O_3, CuO/ZnO/ZrO_2/Al_2O_3 and CuO/ZnO/CeO_2/Al_2O_3 catalysts were prepared by coprecipitation and characterized by N_2 adsorption, XRD, TPR, N_2O titration and HRTEM. The catalytic performances of these catalysts for the steam reforming of methanol were evaluated in a laboratory-scale fixed-bed reactor at 0.1 MPa and temperatures between 473 and 543 K. The results showed that the catalytic activity depended greatly on the catalyst reducibility and the specific surface area of Cu. An approximate linear correlation between the catalytic activity and the Cu surface area was found for all catalysts investigated in this study.Compared to CuO/ZnO/Al_2O_3, the ZrO_2-doped CuO/ZnO/Al_2O_3 exhibited higher activity and selectivity to CO,while the CeO_2-doped catalyst displayed lower activity and selectivity. Finally, an intrinsic kinetic study was carried out over a screened CuO/ZnO/CeO_2/Al_2O_3 catalyst in the absence of internal and external mass transfer effects. A good agreement was observed between the model-derived effluent concentrations of CO(CO_2) and the experimental data. The activation energies for the reactions of methanol-steam reforming, water-gas shift and methanol decomposition over CuO/ZnO/CeO_2/Al_2O_3 were 93.1, 85.1 and 116.5 k J·mol^(-1), respectively.展开更多
Methanol steam reforming(MSR) is an attractive approach to produce hydrogen for fuel cells.Due to the limited catalyst loading volume and frequent start-ups and shut-downs on board,it is highly desired to develop an e...Methanol steam reforming(MSR) is an attractive approach to produce hydrogen for fuel cells.Due to the limited catalyst loading volume and frequent start-ups and shut-downs on board,it is highly desired to develop an extremely active and robust catalyst.Herein,on the basis of industrial Cu/ZnO/Al_(2) O_(3) catalysts,a series of CuZnAl-xMg catalysts with enhanced Cu-ZnO synergy were synthesized via magnesium assisted strategy.The incorporation of magnesium was found to be beneficial to the enhancement of catalytic activity and stability of catalyst.A combination of complementa ry characterizations(e.g.XRD,H_(2)-TPR,N_(2) O chemisorption,TEM,XPS analysis etc.) proves that isomorphous substitution of Cu^(2+)in malachite phase gives rise to more dispersive Cu and ZnO NPs,and the increased Cu^(+)/Cu~0 ratio indicates the strengthened Cu-ZnO synergy effect,which leads to the boosted stability during the thermal treatment.展开更多
Hydrogen production by partial oxidation steam reforming of methanol over a Cu/ZnO/Al2 O3 catalyst has been paid more and more attention. The chemical equilibria involved in the methanol partial oxidation steam reform...Hydrogen production by partial oxidation steam reforming of methanol over a Cu/ZnO/Al2 O3 catalyst has been paid more and more attention. The chemical equilibria involved in the methanol partial oxidation steam reforming reaction network such as methanol partial oxidation, methanol steam reforming, decomposition of methanol and water-gas shift reaction have been examined over the ranges of temperature 473-1073 K under normal pressure. Based on the detailed kinetics of these reactions over a Cu/ZnO/Al2O3 catalyst, and from the basic concept of the effectiveness factor, the intraparticle diffusion limitations were taken into account. The effectiveness factors for each reaction along the bed length were calculated. Then important results were offered for the simulation of this reaction process.展开更多
In this work,we investigated the methanol steam reforming(MSR)reaction(CH_(3)OH+H_(2)O→CO_(2)+3H_(2))catalyzed byα-MoC by means of density functional theory calculations.The adsorption behavior of the relevant inter...In this work,we investigated the methanol steam reforming(MSR)reaction(CH_(3)OH+H_(2)O→CO_(2)+3H_(2))catalyzed byα-MoC by means of density functional theory calculations.The adsorption behavior of the relevant intermediates and the kinetics of the elementary steps in the MSR reaction are systematically investigated.The results show that,on theα-MoC(100)surface,the O−H bond cleavage of CH3OH leads to CH3O,which subsequently dehydrogenates to CH_(2)O.Then,the formation of CH_(2)OOH between CH_(2)O and OH is favored over the decomposition to CHO and H.The sequential dehydrogenation of CH_(2)OOH results in a high selectivity for CO_(2).In contrast,the over-strong adsorption of the CH_(2)O intermediate on theα-MoC(111)surface leads to its dehydrogenation to CO product.In addition,we found that OH species,which is produced from the facile water activation,help the O−H bond breaking of intermediates by lowering the reaction energy barrier.This work not only reveals the catalytic role played byα-MoC(100)in the MSR reaction,but also provides theoretical guidance for the design ofα-MoC-based catalysts.展开更多
In this study, the laminated porous metal fiber sintered felt(PMFSF) functioning as catalyst support was used in a cylindrical methanol steam reforming(MSR) microreactor for hydrogen production. The PMFSF was fabricat...In this study, the laminated porous metal fiber sintered felt(PMFSF) functioning as catalyst support was used in a cylindrical methanol steam reforming(MSR) microreactor for hydrogen production. The PMFSF was fabricated by the low temperature solid-phase sintering method using metal fibers such as copper fibers and aluminum fibers which are obtained by the multi-tooth cutting method. The two-layer impregnation method was employed to coat Cu/Zn/Al/Zr catalyst on the PMFSF. The effect of fiber material, uniform porosity and gradient porosity on the performance of methano steam reforming microreactor was studied by varying the gas hourly space velocity(GHSV) and reaction temperature. Our results showed that the loading strength of porous copper fiber sintered felt(PCFSF) was better than porous aluminum fiber sintered felt(PAFSF). Under the same reaction conditions, the PCFSF showed higher methanol conversion and more H_2 output than PAFSF. Moreover, the gradient porosity(Type 5: 90%×80%×70%) of PMFSF used as the catalyst support in microreactor demonstrated a best reaction performance for hydrogen production.展开更多
In this study, the catalyst composition in binary ZnO-Al<sub>2</sub>O<sub>3</sub> catalyst was initially evaluated and optimized for methanol steam reforming. Then different Na contents were lo...In this study, the catalyst composition in binary ZnO-Al<sub>2</sub>O<sub>3</sub> catalyst was initially evaluated and optimized for methanol steam reforming. Then different Na contents were loaded by an incipient wetness impregnation method onto the optimized ZnAl catalyst. It was found that the activity was greatly enhanced by the modification of Na, which depended on the Na content in the catalyst. The methanol conversion was 96% on a 0.1 Na/0.4 ZnAl catalyst (GHSV = 14,040 h<sup>-</sup><sup>1</sup>, S/C = 1.4, 350°C), which was much higher with respect to a Na-free 0.4 ZnAl catalyst (74%). The remarkable improvement of activity was attributed to a weakening of the C-H bonds and clear of hydroxyl group by the Na dopant leading to an accelerated dehydrogenation of the reaction intermediates formed on ZnAl<sub>2</sub>O<sub>4</sub> spinel surface and thus the overall reaction.展开更多
A novel design of plate-type microchannel reactor has been developed for fuel cell-grade hydrogen production.Commercial Cu/Zn/Al2O3 was used as catalyst for the reforming reaction,and its effectiveness was evaluated o...A novel design of plate-type microchannel reactor has been developed for fuel cell-grade hydrogen production.Commercial Cu/Zn/Al2O3 was used as catalyst for the reforming reaction,and its effectiveness was evaluated on the mole fraction of products,methanol conversion,hydrogen yield and the amount of carbon monoxide under various operating conditions.Subsequently,0.5 wt% Ru/Al2O3 as methanation catalyst was prepared by impregnation method and coupled with MSR step to evaluate the capability of methanol processor for CO reduction.Based on the experimental results,the optimum conditions were obtained as feed flow rate of 5mL/h and temperature of 250℃,leading to a low CO selectivity and high H2 yield.The designed reformer with catalyst coated layer was compared with the conventional packed bed reformer at the same operating conditions.The constructed fuel processor had a good performance and excellent capability for on-board hydrogen production.展开更多
The Cu/ZnO catalyst formed upon the calcination of aurichalcite has a uniform distribution of ZnO,which can delay the sintering of Cu species at high temperatures.In this study,aurichalcite possessing a nearly pure ph...The Cu/ZnO catalyst formed upon the calcination of aurichalcite has a uniform distribution of ZnO,which can delay the sintering of Cu species at high temperatures.In this study,aurichalcite possessing a nearly pure phase was prepared using the ammonium complex dissociation precipitation method,and the effect of calcination temperature on the structure and surface properties of the derived Cu/ZnO catalyst was studied.The results show that the calcination temperature determines the particle size and crystallization degree of the Cu/ZnO catalyst and the surface properties of the corresponding copper oxide and reduced copper.Low-temperature calcination is more conducive to reducing the particle size of the Cu/ZnO catalyst,increasing the specific surface area,and generating abundant defect characteristics on the surface,which is key to obtaining highly dispersed copper and copper-specific surface area catalysts by subsequent reduction.Additionally,the Cu/ZnO catalyst derived using a 300℃or 400℃calcination proved to have a higher specific activity per gram of copper than a commercial Cu/Zn/Al catalyst.The discovery in this study opens up a new method for the convenient preparation of a high-temperature resistant Cu/Zn methanol reforming catalyst.展开更多
The production of?-valerolactone(GVL)from lignocellulosic biomass has become a focus of research owing to its potential applications in fuels and chemicals.In this study,(n)CuOx-CaCO3(where n is the molar ratio of Cu ...The production of?-valerolactone(GVL)from lignocellulosic biomass has become a focus of research owing to its potential applications in fuels and chemicals.In this study,(n)CuOx-CaCO3(where n is the molar ratio of Cu to Ca)compounds were prepared for the first time and shown to function as efficient bifunctional catalysts for the conversion of biomass-derived methyl levulinate(ML)into GVL,using methanol as the in-situ hydrogen source.Among the catalysts with varied Cu/Ca molar ratios,(3/2)CuOx-CaCO3 provided the highest GVL yield of 95.6% from ML.The incorporation of CaCO3 with CuO resulted in the formation of Cu+species in a CuOx-CaCO3 catalyst,which greatly facilitated the hydrogenation of ML.Notably,CuOx-CaCO3 also displayed excellent catalytic performance in the methanolysis products of cellulose,even in the presence of humins.Therefore,a facile two-step strategy for the production of GVL from cellulose could be developed over this robust and inexpensive catalyst,through the integration of cellulose methanolysis catalyzed by sulfuric acid,methanol reforming,and ML hydrogenation in methanol medium.展开更多
A hydrogen storage system was developed via heterogeneous catalysis,employing the dehydrogenative coupling of methanol and N,N′-dimethylethylenediamine to efficiently produce high-purity H_(2).In this process,the Cu/...A hydrogen storage system was developed via heterogeneous catalysis,employing the dehydrogenative coupling of methanol and N,N′-dimethylethylenediamine to efficiently produce high-purity H_(2).In this process,the Cu/ZnO/Al_(2)O_(3) catalyst displayed superior activity in hydrogen production,with Cu+identified as the major active site through comprehensive characterization.展开更多
Hydrogen is one of the best energy carriers.Fluidized bed reactor provides a promising approach for hydrogen production. To describe the hydrogen generating rate with methanol steam reforming in fluidized bed reactor ...Hydrogen is one of the best energy carriers.Fluidized bed reactor provides a promising approach for hydrogen production. To describe the hydrogen generating rate with methanol steam reforming in fluidized bed reactor quantitatively, dual-rate kinetic models of the reactions with exponent form were developed, including that of steam reforming reaction(SR) and decomposition reaction(DE).The reaction rate per unit mass of catalyst was related to partial pressures of components. The exponentials in kinetic equations were obtained by linear least-squares method based on the experimental data. The variance homogeneity test(F test) shows that the dynamic models are feasible with high accuracy, which can be used to predict the generating rate of hydrogen under different reaction temperatures and feed flow rates in fluidized bed reactor. The SR and DE activation energy obtained indicates that ESR\ EDE, which can explain the previous observation that the CO_2 selectivity decreased with the temperature increase.展开更多
基金Project(51876224)supported by the National Natural Science Foundation of ChinaProject(2020CX008)supported by the Innovation-Driven Project of Central South University,China。
文摘Methanol is regarded as an important liquid fuel for hydrogen storage, transportation, and in-situ generation due to its convenient conveyance, high energy density, and low conversion temperature. In this work, an overview of state-of-the-art investigations on methanol reforming is critically summarized, including the detailed introduction of methanol conversion pathways from the perspective of fuel cell applications, various advanced materials design for catalytic methanol conversion, as well as the development of steam methanol reformers. For the section of utilization pathways, reactions such as steam reforming of methanol, partial oxidation of methanol, oxidative steam reforming of methanol, and sorption-enhanced steam methanol reforming were elaborated;For the catalyst section, the strategies to enhance the catalytic activity and other comprehensive performances were summarized;For the reactor section, the newly designed steam methanol reformers were thoroughly described. This review will benefit researchers from both fundamental research and fuel cell applications in the field of catalyzing methanol to hydrogen.
基金supported by the Youth Innovation Promotion Association of Chinese Academy of Sciencesthe Key Technical Personnel of Chinese Academy of Sciences+1 种基金the STS Program of Chinese Academy of Sciences (No. KFJJ-STS-SCYD-302)the National Natural Science Foundation of China (22108288)。
文摘The on-board methanol steam reforming(MSR) has long been considered as an effective approach to insitu produce hydrogen for fuel cell vehicles(FCVs). However, the conventional MSR catalyst pellets suffer from easy breakage during the vehicle movement, leading to increased pressure drop and reduced system stability. Herein, we introduce an integrated method to prepare the highly controlled structured catalysts based on coupled processes: direct prototyping the structured substrate using digital light processing(DLP) 3D printing technology, in-situ dynamic crystallization of active components assisted by magnetic resonance imaging(MRI) and calcination. The synthesized catalyst owns a gradient layer of active component, and exhibits better MSR performance, higher mechanical strength, reduced pressure drop, higher Cu dispersion and better adhesion of active compounds when compared with the conventional powder and pellet catalysts. The demonstrated successful application proves the feasibility of developed method,which has great potential to be used for preparing precisely other monolithic catalysts with customized structures.
基金financial support from National Natural Science Foundation of China(22125202,21932004,22101128)Natural Science Foundation of Jiangsu Province(BK20220033)。
文摘Plasmon-induced hot-electron transfer from metal nanostructures is being intensely pursed in current photocatalytic research,however it remains elusive whether molecular-like metal clusters with excitonic behavior can be used as light-harvesting materials in solar energy utilization such as photocatalytic methanol steam reforming.In this work,we report an atomically precise Cu_(13)cluster protected by dual ligands of thiolate and phosphine that can be viewed as the assembly of one top Cu atom and three Cu_(4)tetrahedra.The Cu_(13)H_(10)(SR)_(3)(PR’_(3))_(7)(SR=2,4-dichlorobenzenethiol,PR’_(3)=P(4-FC_(6)H_(4))_(3))cluster can give rise to highly efficient light-driven activity for methanol steam reforming toward H_(2)production.
基金supported by the Scientific Research Foundation for High-level Talents of Anhui University of Science and Technology(2023yjrc51)the National Natural Science Foundation of China(22172184)+2 种基金the Foundation of State Key Laboratory of Coal Conversion(J24-25-603)the Fundamental Research Project of ICC-CAS(SCJC-DT-2023-01)Weiqiao-UCAS Special Projects on Low-Carbon Technology Development(GYY-DTFZ-2022-015)。
文摘This study explores the controllable synthesis of CuAlO_(2) using copper hydroxide and pseudo-boehmite powders as raw materials via a simple solid-phase ball milling method,along with its catalytic performance investigation in methanol steam reforming(MSR).Various catalysts were prepared under different conditions,such as calcination temperature,calcination atmosphere,and heating rate.Characterization techniques including BET,XRD,XPS,SEM and H2-TPR were employed to analyze the samples.The results revealed significant effects of calcination temperature on the phase compositions,specific surface area,reduction performance,and surface properties of the CA-T catalysts.Based on the findings,a synthesis route of CuAlO_(2) via the solid-phase method was proposed,highlighting the importance of high calcination temperature,nitrogen atmosphere,and low heating rate for CuAlO_(2) formation.Catalytic evaluation data demonstrated that CuAlO_(2) could catalyze MSR without pre-reduction,with the catalytic performance of CA-T catalysts being notably influenced by calcination temperature.Among the prepared catalysts,the CA-1100 catalyst exhibited the highest catalytic activity and stability.The findings of this study might be useful for the further study of the catalytic material for sustained release catalysis,including the synthesis of catalytic materials and the regulation of sustained release catalytic performance.
基金This work was supported by the National Key R&D Program of China(2022YFB3805504),National Natural Science Foundation of China(22078089)China Postdoctoral Science Foundation(2023M731081)+3 种基金Shanghai Pilot Program for Basic Research(22TQ1400100-7)the Basic Research Program of Science and Technology Commission of Shanghai Municipality(22JC1400600)Open Foundation of Shanghai Jiao Tong University Shaoxing Research Institute of Renewable Energy and Molecular Engineering(Grant No.JDSX2022046)Shanghai Super Postdoctoral Fellow.
文摘Cu-based catalysts have been extensively used in methanol steam reforming(MSR)reactions because of their low cost and high effi ciency.ZnO is often used in commercial Cu-based catalysts as both a structural and an electronic promoter to stabilize metal Cu nanoparticles and modify metal–support interfaces.Still,the further addition of chemical promoters is essential to further enhance the MSR reaction performance of the Cu/ZnO catalyst.In this work,CeO_(2)-doped Cu/ZnO catalysts were prepared using the coprecipitation method,and the eff ects of CeO_(2)on Cu-based catalysts were systematically investigated.Doping with appropriate CeO_(2)amounts could stabilize small Cu nanoparticles through a strong interaction between CeO_(2)and Cu,leading to the formation of more Cu+–ZnO x interfacial sites.However,higher CeO_(2)contents resulted in the formation of larger Cu nanoparticles and an excess of Cu+–CeO x interfacial sites.Consequently,the Cu/5CeO_(2)/ZnO catalyst with maximal Cu–ZnO interfaces exhibited the highest H 2 production rate of 94.6 mmolH2/(gcat·h),which was 1.5 and 10.2 times higher than those of Cu/ZnO and Cu/CeO_(2),respectively.
基金supported by the National Natural Science Foundation of China(51672081)the Program of Tri-three Talents Project of Hebei Province(China,A202110002)+1 种基金the Young Top Talents Fund Program of Higher Education Institutions of Heibei Province(BJ2020009)the Project of Science and Technology Innovation Team,Tangshan(20130203D)。
文摘For the use of green hydrogen energy,it is crucial to have efficient photocatalytic activity for hydrogen generation by water reforming of methanol under mild conditions.Much attention has been paid to gC_(3)N_(4)as a promising photocatalyst for the generation of hydrogen.To improve the separation of photogenerated charge,porous nanosheet g-C_(3)N_(4)was modified with Pt nanoclusters(Pt/g-C_(3)N_(4))through impregnation and following photo-induced reduction.This catalyst showed excellent photocatalytic activity of water reforming of methanol fo r hydrogen production with a 17.12 mmol·g^(-1)·h^(-1)rate at room temperature,which was 311 times higher than that of the unmodified g-C_(3)N_(4).The strong interactions of Pt-N in Pt/g-C_(3)N_(4)constructed effective electron transfer channels to promote the separation of photogenerated electrons and holes effectively.In addition,in-situ infrared spectroscopy was used to investigate the intermediates of the hydrogen production reaction,which proved that methanol and water eventually turn into H_(2)and CO_(2)via formaldehyde and formate.This study provides insights for understanding the photocatalytic hydrogen production in the water reforming of methanol.
基金supported by Chongqing technology innovation and application demonstration project(CSTB2022TIAD-DEX0015)National Natural Science Foundation of China(50906104)Performance Incentive Guidance Project of Chongqing Scientific Research Institutions(cstc2022jxjl20016).
文摘Electromagnetic induction heating technology,characterized by its non-contact thermal heat transfer,diminished thermal inertia,and facile temperature management,is applied in this study to enhance catalytic methanol steam reforming(MSR)reaction process.A two-dimensional reactor model was developed integrating electromagnetic field coupling with MSR reactions,fluid dynamics and heat transfer.In the reactor,heat is induced instantaneously on the magnetic material through an electromagnetic induction process,which generated by renewable electricity.Results showed that the Internal-Double Row Cylinder(IN-DRC,cylinder means that the shape of induction heating element is cylindrical.)highest heating efficiency is 38.3%,which is limited by the kinetics of MSR reaction.Here,thermal efficiency reaches its maximum with the reaction channel outlet temperature reaching about 580 K.Internal-Double Row Cylinder(IN-DRC)and Internal-Double Row Ball(IN-DRB,ball means that the shape of induction heating element is spherical)methanol conversions are virtually identical,with a maximum value close to 100%.Furthermore,the findings that the adoption of internal induced heating,in contrast to external heating,across the four reactor designs can effectively mitigate temperature gradient within the reactors.This reduction in thermal disparity significantly amplifies methanol conversion within the reactor,thereby markedly enhancing its overall performance in hydrogen production.Therefore,non-contact internal induction heating method has the potential for substantially hydrogen production processes.
基金financial support granted by Ministry of Science and Technology of the People's Republic of China(Nos.2016YFA0200700 and 2016YFE0105700)the National Natural Science Foundation of China(Nos.21373264 and 21573275)+2 种基金the Natural Science Foundation of Jiangsu Province(No.BK20150362)Suzhou Institute of Nano-tech and Nanobionics(No.Y3AAA11004)Thousand Youth Talents Plan(No.Y3BQA11001)
文摘A homogeneous catalyst [Cp*Rh(NH3)(H2O)2]-(3+) has been found for the clean conversion of methanol and water to hydrogen and carbon dioxide. The simple and easily available reaction steps can circumvent the formation of CO, therefore, making it possible to avoid inactivating catalysts and contaminating the hydrogen fuel. Different from conventional reforming method for hydrogen production, no additional alkaline or organic substances are required in this method. Valuable hydrogen can be obtained under ambient pressure at 70 C, corresponding TOF is 83.2 h 1. This is an unprecedented success in reforming methanol to hydrogen. Effects of reaction conditions, such as reaction temperature, initial methanol concentration and the initial p H value of buffer solution on the hydrogen evolution are all systematically investigated. In a certain range, higher reaction temperature will accelerate reaction rate. The slightly acidic condition is conducive to rapid hydrogen production. These findings are of great significance to the present establishment of the carbon-neutral methanol economy.
基金financially supported by the National Natural Science Foundation of China(52176202)the Foshan Xianhu-Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory(41200101)。
文摘Synergy between the intrinsic photon and thermal effects from full-spectrum sunlight for H_(2) production is considered to be central to further improve solar-driven H_(2) production.To that end,the photo-thermocatalyst that demonstrates both photoelectronic and photothermal conversion capabilities have drawn much attention recently.Here,we propose a novel synergistic full-spectrum photo-thermo-catalysis technique for high-efficient H_(2) production by solar-driven methanol steam reforming(MSR),along with the Pt-Cu Oxphoto-thermo-catalyst featuring Pt-Cu/Cu_(2)O/CuO heterojunctions by Pt-mediated in-situ photoreduction of Cu O.The results show that the H_(2) production performance rises superlinearly with increasing light intensity.The optimal H_(2) production rate of 1.6 mol g^(-1) h^(-1) with the corresponding solar-to-hydrogen conversion efficiency of 7%and the CO selectivity of 5%is achieved under 15×sun full-spectrum irradiance(1×sun=1 k W m^(-2))at 180°C,which is much more efficient than the previously-reported Cu-based thermo-catalysts for MSR normally operating at 250~350°C.These attractive performances result from the optimized reaction kinetics in terms of intensified intermediate adsorption and accelerated carrier transfer by long-wave photothermal effect,and reduced activation barrier by short-wave photoelectronic effect,due to the broadened full-spectrum absorbability of catalyst.This work has brought us into the innovative technology of full-spectrum synergistic photothermo-catalysis,which is envisioned to expand the application fields of high-efficient solar fuel production.
基金Supported by the National Natural Science Foundation of China(21276076)the Program for New Century Excellent Talents in University(NCET-13-0801)the"111"Project(B08021)
文摘A series of CuO/ZnO/Al_2O_3, CuO/ZnO/ZrO_2/Al_2O_3 and CuO/ZnO/CeO_2/Al_2O_3 catalysts were prepared by coprecipitation and characterized by N_2 adsorption, XRD, TPR, N_2O titration and HRTEM. The catalytic performances of these catalysts for the steam reforming of methanol were evaluated in a laboratory-scale fixed-bed reactor at 0.1 MPa and temperatures between 473 and 543 K. The results showed that the catalytic activity depended greatly on the catalyst reducibility and the specific surface area of Cu. An approximate linear correlation between the catalytic activity and the Cu surface area was found for all catalysts investigated in this study.Compared to CuO/ZnO/Al_2O_3, the ZrO_2-doped CuO/ZnO/Al_2O_3 exhibited higher activity and selectivity to CO,while the CeO_2-doped catalyst displayed lower activity and selectivity. Finally, an intrinsic kinetic study was carried out over a screened CuO/ZnO/CeO_2/Al_2O_3 catalyst in the absence of internal and external mass transfer effects. A good agreement was observed between the model-derived effluent concentrations of CO(CO_2) and the experimental data. The activation energies for the reactions of methanol-steam reforming, water-gas shift and methanol decomposition over CuO/ZnO/CeO_2/Al_2O_3 were 93.1, 85.1 and 116.5 k J·mol^(-1), respectively.
基金Natural Science Foundation of Zhejiang Province (LQ21B060007)。
文摘Methanol steam reforming(MSR) is an attractive approach to produce hydrogen for fuel cells.Due to the limited catalyst loading volume and frequent start-ups and shut-downs on board,it is highly desired to develop an extremely active and robust catalyst.Herein,on the basis of industrial Cu/ZnO/Al_(2) O_(3) catalysts,a series of CuZnAl-xMg catalysts with enhanced Cu-ZnO synergy were synthesized via magnesium assisted strategy.The incorporation of magnesium was found to be beneficial to the enhancement of catalytic activity and stability of catalyst.A combination of complementa ry characterizations(e.g.XRD,H_(2)-TPR,N_(2) O chemisorption,TEM,XPS analysis etc.) proves that isomorphous substitution of Cu^(2+)in malachite phase gives rise to more dispersive Cu and ZnO NPs,and the increased Cu^(+)/Cu~0 ratio indicates the strengthened Cu-ZnO synergy effect,which leads to the boosted stability during the thermal treatment.
基金the grant of Post-Doc. Program, Kyungpook National University (1999).
文摘Hydrogen production by partial oxidation steam reforming of methanol over a Cu/ZnO/Al2 O3 catalyst has been paid more and more attention. The chemical equilibria involved in the methanol partial oxidation steam reforming reaction network such as methanol partial oxidation, methanol steam reforming, decomposition of methanol and water-gas shift reaction have been examined over the ranges of temperature 473-1073 K under normal pressure. Based on the detailed kinetics of these reactions over a Cu/ZnO/Al2O3 catalyst, and from the basic concept of the effectiveness factor, the intraparticle diffusion limitations were taken into account. The effectiveness factors for each reaction along the bed length were calculated. Then important results were offered for the simulation of this reaction process.
基金This work is supported by the National Natural Science Foundation of China(No.21973013)the National Natural Science Foundation of Fujian Province,China(No.2020J02025)the“Chuying Program”for the Top Young Talents of Fujian Province.Numerical computations were performed on Hefei Advanced Computing Center.
文摘In this work,we investigated the methanol steam reforming(MSR)reaction(CH_(3)OH+H_(2)O→CO_(2)+3H_(2))catalyzed byα-MoC by means of density functional theory calculations.The adsorption behavior of the relevant intermediates and the kinetics of the elementary steps in the MSR reaction are systematically investigated.The results show that,on theα-MoC(100)surface,the O−H bond cleavage of CH3OH leads to CH3O,which subsequently dehydrogenates to CH_(2)O.Then,the formation of CH_(2)OOH between CH_(2)O and OH is favored over the decomposition to CHO and H.The sequential dehydrogenation of CH_(2)OOH results in a high selectivity for CO_(2).In contrast,the over-strong adsorption of the CH_(2)O intermediate on theα-MoC(111)surface leads to its dehydrogenation to CO product.In addition,we found that OH species,which is produced from the facile water activation,help the O−H bond breaking of intermediates by lowering the reaction energy barrier.This work not only reveals the catalytic role played byα-MoC(100)in the MSR reaction,but also provides theoretical guidance for the design ofα-MoC-based catalysts.
基金supported by the Natural Science Fundation of Fujian Province of China (No. 2017J06015)the Foundation of Public Welfare Research and Capacity Building in Guangdong Province (No. 2014A010106002)+2 种基金the State Key Laboratory of Catalytic Materials and Reaction Engineering (RIPP, SINOPEC) under Project No. 33600000-15-ZC06070004the supports from the Fundamental Research Funds for Central Universities, the Xiamen University (No. 20720160079)the Collaborative Innovation Center of HighEnd Equipment Manufacturing in Fujian are also acknowledged
文摘In this study, the laminated porous metal fiber sintered felt(PMFSF) functioning as catalyst support was used in a cylindrical methanol steam reforming(MSR) microreactor for hydrogen production. The PMFSF was fabricated by the low temperature solid-phase sintering method using metal fibers such as copper fibers and aluminum fibers which are obtained by the multi-tooth cutting method. The two-layer impregnation method was employed to coat Cu/Zn/Al/Zr catalyst on the PMFSF. The effect of fiber material, uniform porosity and gradient porosity on the performance of methano steam reforming microreactor was studied by varying the gas hourly space velocity(GHSV) and reaction temperature. Our results showed that the loading strength of porous copper fiber sintered felt(PCFSF) was better than porous aluminum fiber sintered felt(PAFSF). Under the same reaction conditions, the PCFSF showed higher methanol conversion and more H_2 output than PAFSF. Moreover, the gradient porosity(Type 5: 90%×80%×70%) of PMFSF used as the catalyst support in microreactor demonstrated a best reaction performance for hydrogen production.
文摘In this study, the catalyst composition in binary ZnO-Al<sub>2</sub>O<sub>3</sub> catalyst was initially evaluated and optimized for methanol steam reforming. Then different Na contents were loaded by an incipient wetness impregnation method onto the optimized ZnAl catalyst. It was found that the activity was greatly enhanced by the modification of Na, which depended on the Na content in the catalyst. The methanol conversion was 96% on a 0.1 Na/0.4 ZnAl catalyst (GHSV = 14,040 h<sup>-</sup><sup>1</sup>, S/C = 1.4, 350°C), which was much higher with respect to a Na-free 0.4 ZnAl catalyst (74%). The remarkable improvement of activity was attributed to a weakening of the C-H bonds and clear of hydroxyl group by the Na dopant leading to an accelerated dehydrogenation of the reaction intermediates formed on ZnAl<sub>2</sub>O<sub>4</sub> spinel surface and thus the overall reaction.
基金supported by the Iran National Science Foundation (INSF)
文摘A novel design of plate-type microchannel reactor has been developed for fuel cell-grade hydrogen production.Commercial Cu/Zn/Al2O3 was used as catalyst for the reforming reaction,and its effectiveness was evaluated on the mole fraction of products,methanol conversion,hydrogen yield and the amount of carbon monoxide under various operating conditions.Subsequently,0.5 wt% Ru/Al2O3 as methanation catalyst was prepared by impregnation method and coupled with MSR step to evaluate the capability of methanol processor for CO reduction.Based on the experimental results,the optimum conditions were obtained as feed flow rate of 5mL/h and temperature of 250℃,leading to a low CO selectivity and high H2 yield.The designed reformer with catalyst coated layer was compared with the conventional packed bed reformer at the same operating conditions.The constructed fuel processor had a good performance and excellent capability for on-board hydrogen production.
基金the Chongzuo City Science and Technology Plan Project(Chongke20220608)the Guangxi Key Research and Development Plan Project(GuikeAB21220027).
文摘The Cu/ZnO catalyst formed upon the calcination of aurichalcite has a uniform distribution of ZnO,which can delay the sintering of Cu species at high temperatures.In this study,aurichalcite possessing a nearly pure phase was prepared using the ammonium complex dissociation precipitation method,and the effect of calcination temperature on the structure and surface properties of the derived Cu/ZnO catalyst was studied.The results show that the calcination temperature determines the particle size and crystallization degree of the Cu/ZnO catalyst and the surface properties of the corresponding copper oxide and reduced copper.Low-temperature calcination is more conducive to reducing the particle size of the Cu/ZnO catalyst,increasing the specific surface area,and generating abundant defect characteristics on the surface,which is key to obtaining highly dispersed copper and copper-specific surface area catalysts by subsequent reduction.Additionally,the Cu/ZnO catalyst derived using a 300℃or 400℃calcination proved to have a higher specific activity per gram of copper than a commercial Cu/Zn/Al catalyst.The discovery in this study opens up a new method for the convenient preparation of a high-temperature resistant Cu/Zn methanol reforming catalyst.
基金supported by the National Natural Science Foundation of China(21676223,21706223,21776234,21606188)the Fundamental Research Funds for the Central Universities(20720180084),the Energy development Foundation of Energy College,Xiamen University(2017NYFZ02)+1 种基金the Natural Science Foundation of Fujian Province of China(2018J01017)the Education Department of Fujian Province(JZ160398)~~
文摘The production of?-valerolactone(GVL)from lignocellulosic biomass has become a focus of research owing to its potential applications in fuels and chemicals.In this study,(n)CuOx-CaCO3(where n is the molar ratio of Cu to Ca)compounds were prepared for the first time and shown to function as efficient bifunctional catalysts for the conversion of biomass-derived methyl levulinate(ML)into GVL,using methanol as the in-situ hydrogen source.Among the catalysts with varied Cu/Ca molar ratios,(3/2)CuOx-CaCO3 provided the highest GVL yield of 95.6% from ML.The incorporation of CaCO3 with CuO resulted in the formation of Cu+species in a CuOx-CaCO3 catalyst,which greatly facilitated the hydrogenation of ML.Notably,CuOx-CaCO3 also displayed excellent catalytic performance in the methanolysis products of cellulose,even in the presence of humins.Therefore,a facile two-step strategy for the production of GVL from cellulose could be developed over this robust and inexpensive catalyst,through the integration of cellulose methanolysis catalyzed by sulfuric acid,methanol reforming,and ML hydrogenation in methanol medium.
基金supported by the National Key R&D Program of China(2021YFA1501100)the National Natural Science Foundation of China(22005007)+1 种基金the New Cornerstone Science Foundation,and Liaoning Binhai Laboratory Project(LBLF-202306)the Tencent Foundation through the XPLORER PRIZE.
文摘A hydrogen storage system was developed via heterogeneous catalysis,employing the dehydrogenative coupling of methanol and N,N′-dimethylethylenediamine to efficiently produce high-purity H_(2).In this process,the Cu/ZnO/Al_(2)O_(3) catalyst displayed superior activity in hydrogen production,with Cu+identified as the major active site through comprehensive characterization.
基金supported by the National Natural Science Foundation of China(U1361108)
文摘Hydrogen is one of the best energy carriers.Fluidized bed reactor provides a promising approach for hydrogen production. To describe the hydrogen generating rate with methanol steam reforming in fluidized bed reactor quantitatively, dual-rate kinetic models of the reactions with exponent form were developed, including that of steam reforming reaction(SR) and decomposition reaction(DE).The reaction rate per unit mass of catalyst was related to partial pressures of components. The exponentials in kinetic equations were obtained by linear least-squares method based on the experimental data. The variance homogeneity test(F test) shows that the dynamic models are feasible with high accuracy, which can be used to predict the generating rate of hydrogen under different reaction temperatures and feed flow rates in fluidized bed reactor. The SR and DE activation energy obtained indicates that ESR\ EDE, which can explain the previous observation that the CO_2 selectivity decreased with the temperature increase.