期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Determination of Methanol Increment in Mobile Phase Consisting of Methanol and Water by On-line UV Spectrometry in Reversed Phase Liquid Chromatography 被引量:2
1
作者 耿信笃 弗莱德依瑞格涅尔 《Chinese Journal of Chemistry》 SCIE CAS CSCD 2002年第1期68-75,共8页
An on-line UV spectrometric method for the quantitative determination ofmethanol increment of methanol-water in the mobile phase (i.e., of greater concentration than thatof the mobile phase) by frontal analysis (FA) o... An on-line UV spectrometric method for the quantitative determination ofmethanol increment of methanol-water in the mobile phase (i.e., of greater concentration than thatof the mobile phase) by frontal analysis (FA) of insulin in reversed phase liquid chromatography(RPLC) was presented. When the methanol increment concentration ranged from 0.05% to 0.50%,V(CH_3OH)/V(H_2O), a set of elution curves could be obtained at 198 nm by a diode-array detector inthe presence of 47% methanol, V(CH_3OH)/V(H_2O) containing 0.03% hydrochloric acid,V(CH_3OH-H_2O)/V(HCl) in the mobile phase. The plateau height of the elution curves of the methanolincrement was found to be proportional to the methanol increment in the mobile phase. The methanolincrement could be determined on a quantitative basis. When the method was used to investigate theelution curve of insulin by FA in RPLC, a small plateau, being the methanol increment, was detectedbefore the usual insulin plateau of each elution curve. In this case the methanol increment wasfound to vary with insulin concentration in the mobile phase. When that concentration was between0.025 mg/mL and 0.30 mg/mL, the methanol increment could be determined in the range from 0.03% to0.19% with a deviation of ±10%. A nuclear magnetic resonance spectrometer (NMR) was also employedto confirm the obtained result. A methodology with a very rigorous experimental procedure forobtaining results of such accuracy is also included. The presented result may be used to prove thata displacement process definitely occurs as insulin is adsorbed by the RPLC stationary phase inFA. 展开更多
关键词 reversed-phase liquid chromatography retention mechanism methanolincrement INSULIN
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部