A multi-level evaluation model for the superstructure of a damaged prestressed concrete girder or beam bridge is established, and the evaluation indices of the model as well as the rating standards are defined. A norm...A multi-level evaluation model for the superstructure of a damaged prestressed concrete girder or beam bridge is established, and the evaluation indices of the model as well as the rating standards are defined. A normal relative function about the evaluation indices of each element is developed to calculate the relative degree, and for each element there are no sub-level elements. When evaluating the elements in the sub-item level or the index level of the model, the weights of elements pertain to one adopted element, taking into account their degrees of deterioration. Since the relative degrees and structure evaluation scales on the damage conditions are applied to characterize the superstructure of damaged prestressed concrete girder bridges, this method can evaluate the prestressed structure in detail, and the evaluation results agree with the Code for Maintenance of Highway Bridges and Culvers (JTG Hll--2004 ). Finally, a bridge in Jilin province is taken as an example, using the method developed to evaluate its damage conditions, which gives an effective way for bridge engineering.展开更多
In military service joint operations, when there are more operational forces, more multifarious materials are consumed, the support is more complex and fuzzy, the deployment of personnel is more rapid, and the support...In military service joint operations, when there are more operational forces, more multifarious materials are consumed, the support is more complex and fuzzy, the deployment of personnel is more rapid, and the support provided by wartime military material support powers can be more effective. When the principles,requirements, influencing factors and goals of military material support forces are deployed in wartime, an evaluation indicator system is established. Thus, a new combined empowerment method based on an analytic hierarchy process(AHP) is developed to calculate the subjective weights, and the rough entropy method is used to calculate the objective weights. Combination weights can be obtained by calculating the weight preference coefficient error, which is determined by combining the cooperative game method and the minimum deviation into objectives. This approach can determine the grey relation projection coefficient and synthesize the measure scheme superiority to finally optimize the deployment plan using the grey relation projection decision-making method. The results show that the method is feasible and effective;it can provide a more scientific and practical decision-making basis for the military material support power deployment in wartime.展开更多
In the process of designing self-elevating drilling unit, it is important, yet complicated, to use comparison and filtering to select the optimum scheme from the feasible ones. In this research, an index system and me...In the process of designing self-elevating drilling unit, it is important, yet complicated, to use comparison and filtering to select the optimum scheme from the feasible ones. In this research, an index system and methodology for the evaluation of self-elevating drilling unit was proposed. Based on this, a multi-objective combinatorial optimization model was developed, using the improved grey relation Analysis (GRA), in which the analytic hierarchy process (AHP) was used to determine the weights of the evaluating indices. It considered the connections within the indices, reflecting the objective nature of things, and also considered the subjective interests of ship owners and the needs of designers. The evaluation index system and evaluation method can be used in the selection of an optimal scheme and advanced assessment. A case study shows the index system and evaluation method are scientific, reasonable, and easy to put into practice. At the same time, such an evaluation index system and evaluation method will be helpful for making decisions for other mobile platforms.展开更多
In this study,comprehensive evaluation of the technologies on waste heat recovery technologies for maritime applications has been carried out.We have focused our research on exhaust gas turbine system(EGT),thermodynam...In this study,comprehensive evaluation of the technologies on waste heat recovery technologies for maritime applications has been carried out.We have focused our research on exhaust gas turbine system(EGT),thermodynamic organic rankine cycle(RC),Kalina cycle(KC)and thermoelectric generators(TG),which are the most appropriate and most up-to-date techniques for recovering power from marine engines.Each technology has its own advantages and disadvantages,so the comprehensive evaluation of these technologies is essential to accurately determine which technology will be applied to which target.This belongs to the multi-criteria decision(MCDM)process.The combined assessment methodology,consisting of gray correlation and analysis hierarchy processes,has been applied to evaluate four waste heat recovery techniques in terms of technical,economic,social and environmental aspects.According to the comparison results,the exhaust gas turbine system has been evaluated as the most promising technology among the various WHR technologies that can be applied to marine engines.Sensitivity analysis suggests that if investment cost of TG falls to about the same level as the one of EGT,TG could be the best method among these technologies.Reduction of investment cost of TG technology could be realized by development of low cost thermoelectric material.We have analyzed the correlation between each cost through DOE analysis and investigate the effect of individual costs on the total cost.This work helps in identifying the most suitable heat recovery technologies for marine engine.展开更多
文摘A multi-level evaluation model for the superstructure of a damaged prestressed concrete girder or beam bridge is established, and the evaluation indices of the model as well as the rating standards are defined. A normal relative function about the evaluation indices of each element is developed to calculate the relative degree, and for each element there are no sub-level elements. When evaluating the elements in the sub-item level or the index level of the model, the weights of elements pertain to one adopted element, taking into account their degrees of deterioration. Since the relative degrees and structure evaluation scales on the damage conditions are applied to characterize the superstructure of damaged prestressed concrete girder bridges, this method can evaluate the prestressed structure in detail, and the evaluation results agree with the Code for Maintenance of Highway Bridges and Culvers (JTG Hll--2004 ). Finally, a bridge in Jilin province is taken as an example, using the method developed to evaluate its damage conditions, which gives an effective way for bridge engineering.
基金supported by the Education Science Fund of the Military Science Institute of Beijing,China(2015JY320)
文摘In military service joint operations, when there are more operational forces, more multifarious materials are consumed, the support is more complex and fuzzy, the deployment of personnel is more rapid, and the support provided by wartime military material support powers can be more effective. When the principles,requirements, influencing factors and goals of military material support forces are deployed in wartime, an evaluation indicator system is established. Thus, a new combined empowerment method based on an analytic hierarchy process(AHP) is developed to calculate the subjective weights, and the rough entropy method is used to calculate the objective weights. Combination weights can be obtained by calculating the weight preference coefficient error, which is determined by combining the cooperative game method and the minimum deviation into objectives. This approach can determine the grey relation projection coefficient and synthesize the measure scheme superiority to finally optimize the deployment plan using the grey relation projection decision-making method. The results show that the method is feasible and effective;it can provide a more scientific and practical decision-making basis for the military material support power deployment in wartime.
基金Supported by the National 863 Plan Foundation under Grant No.2003AA414060
文摘In the process of designing self-elevating drilling unit, it is important, yet complicated, to use comparison and filtering to select the optimum scheme from the feasible ones. In this research, an index system and methodology for the evaluation of self-elevating drilling unit was proposed. Based on this, a multi-objective combinatorial optimization model was developed, using the improved grey relation Analysis (GRA), in which the analytic hierarchy process (AHP) was used to determine the weights of the evaluating indices. It considered the connections within the indices, reflecting the objective nature of things, and also considered the subjective interests of ship owners and the needs of designers. The evaluation index system and evaluation method can be used in the selection of an optimal scheme and advanced assessment. A case study shows the index system and evaluation method are scientific, reasonable, and easy to put into practice. At the same time, such an evaluation index system and evaluation method will be helpful for making decisions for other mobile platforms.
文摘In this study,comprehensive evaluation of the technologies on waste heat recovery technologies for maritime applications has been carried out.We have focused our research on exhaust gas turbine system(EGT),thermodynamic organic rankine cycle(RC),Kalina cycle(KC)and thermoelectric generators(TG),which are the most appropriate and most up-to-date techniques for recovering power from marine engines.Each technology has its own advantages and disadvantages,so the comprehensive evaluation of these technologies is essential to accurately determine which technology will be applied to which target.This belongs to the multi-criteria decision(MCDM)process.The combined assessment methodology,consisting of gray correlation and analysis hierarchy processes,has been applied to evaluate four waste heat recovery techniques in terms of technical,economic,social and environmental aspects.According to the comparison results,the exhaust gas turbine system has been evaluated as the most promising technology among the various WHR technologies that can be applied to marine engines.Sensitivity analysis suggests that if investment cost of TG falls to about the same level as the one of EGT,TG could be the best method among these technologies.Reduction of investment cost of TG technology could be realized by development of low cost thermoelectric material.We have analyzed the correlation between each cost through DOE analysis and investigate the effect of individual costs on the total cost.This work helps in identifying the most suitable heat recovery technologies for marine engine.