A new efficient meshless method based on the element-free Galerkin method is proposed to analyze the static deformation of thin and thick plate structures in this paper. Using the new 3D shell-like kinematics in analo...A new efficient meshless method based on the element-free Galerkin method is proposed to analyze the static deformation of thin and thick plate structures in this paper. Using the new 3D shell-like kinematics in analogy to the solid-shell concept of the finite element method, discretization is carried out by the nodes located on the upper and lower surfaces of the structures. The approximation of all unknown field variables is carried out by using the moving least squares (MLS) approximation scheme in the in-plane directions, while the linear interpolation is applied through the thickness direction. Thus, different boundary conditions are defined only using displacements and penalty method is used to enforce the essential boundary conditions. The constrained Galerkin weak form, which incorporates only dis- placement degrees of freedom (d.o.f.s), is derived. A modified 3D constitutive relationship is adopted in order to avoid or eliminate some self-locking effects. The numeric efficiency of the proposed meshless formulation is illustrated by the numeric examples.展开更多
Objectives To study the effects of applying locking compression plates in the treatment of patients with limb fractures on postoperative fracture healing.Methods:115 patients with limb fractures who were treated in ou...Objectives To study the effects of applying locking compression plates in the treatment of patients with limb fractures on postoperative fracture healing.Methods:115 patients with limb fractures who were treated in our hospital from November 2019 to November 2020 were selected.In order to study the effective treatment method,the random-number table method was used in this study to divide the patients into two groups,namely the experimental group and the control group,and the locking compression plate treatment method and the pure plate and screw internal fixation treatment method were administered respectively to study their clinical application effects.Results:Compared with the control group,patients in the experimental group had a lower incidence of complications,shorter hospitalizations and shorter recovery time.Meanwhile,the experimental group had a better quality of recovery,and all data were significantly different from those of the control group,P<0.05,the intervention effect of the experimental group was better.Conclusion:The application of the locking compression plate in the treatment of patients with limb fractures is more conducive to promoting the postoperative healing of the patients'fractures,reducing the incidence of postoperative complications,and promoting the rapid recovery of patients,which has positive significance for clinical development.展开更多
A force-based quadrilateral plate element( 4NQP13) for the analysis of the plate bending problems using large increment method( LIM) was proposed. The LIM, a force-based finite element method( FEM),has been successful...A force-based quadrilateral plate element( 4NQP13) for the analysis of the plate bending problems using large increment method( LIM) was proposed. The LIM, a force-based finite element method( FEM),has been successfully developed for the analysis of truss,beam,frame,and 2D continua problems. In these analyses,LIMcan provide more precise stress results and less computational time consumption compared with displacement-based FEM. The plate element was based on the Mindlin-Reissner plate theory which took into account the transverse shear effects.Numerical examples were presented to study its performance including accuracy and convergence behavior,and the results were compared with the results have been obtained from the displacementbased quadrilateral plate elements and the analytical solutions. The4NQP13 element can analyze the moderately thick plates and the thin plates using LIMand is free from spurious zero energy modes and free from shear locking for thin plate analysis.展开更多
Many displacement-based quadrilateral plate elements based on Mindlin-Reissner plate theory have been proposed to analyze the thin and moderately thick plate problems. However, numerical inaccuracies of some elements ...Many displacement-based quadrilateral plate elements based on Mindlin-Reissner plate theory have been proposed to analyze the thin and moderately thick plate problems. However, numerical inaccuracies of some elements appear since the presence of shear locking and spurious zero energy modes for thin plate problems. To overcome these shortcomings, we employ the large increment method(LIM) for the analyses of the plate bending problems, and propose a force-based 8-node quadrilateral plate(8NQP) element which is based on MindlinReissner plate theory and has no extra spurious zero energy mode. Several benchmark plate bending problems are presented to illustrate the accuracy and convergence of the plate element by comparing with the analytical solutions and displacement-based plate elements. The results show that the 8-node plate element produces fast convergence and accurate stress distributions in both the moderately thick and thin plate bending problems. The plate element is insensitive to mesh distortion and it can avoid the shear locking for thin plate analysis.展开更多
基金supported by the National Natural Science Foundation of China (11172192)the College Postgraduate Research and Innovation Project of Jiangsu province (CXZZ12 0803)
文摘A new efficient meshless method based on the element-free Galerkin method is proposed to analyze the static deformation of thin and thick plate structures in this paper. Using the new 3D shell-like kinematics in analogy to the solid-shell concept of the finite element method, discretization is carried out by the nodes located on the upper and lower surfaces of the structures. The approximation of all unknown field variables is carried out by using the moving least squares (MLS) approximation scheme in the in-plane directions, while the linear interpolation is applied through the thickness direction. Thus, different boundary conditions are defined only using displacements and penalty method is used to enforce the essential boundary conditions. The constrained Galerkin weak form, which incorporates only dis- placement degrees of freedom (d.o.f.s), is derived. A modified 3D constitutive relationship is adopted in order to avoid or eliminate some self-locking effects. The numeric efficiency of the proposed meshless formulation is illustrated by the numeric examples.
文摘Objectives To study the effects of applying locking compression plates in the treatment of patients with limb fractures on postoperative fracture healing.Methods:115 patients with limb fractures who were treated in our hospital from November 2019 to November 2020 were selected.In order to study the effective treatment method,the random-number table method was used in this study to divide the patients into two groups,namely the experimental group and the control group,and the locking compression plate treatment method and the pure plate and screw internal fixation treatment method were administered respectively to study their clinical application effects.Results:Compared with the control group,patients in the experimental group had a lower incidence of complications,shorter hospitalizations and shorter recovery time.Meanwhile,the experimental group had a better quality of recovery,and all data were significantly different from those of the control group,P<0.05,the intervention effect of the experimental group was better.Conclusion:The application of the locking compression plate in the treatment of patients with limb fractures is more conducive to promoting the postoperative healing of the patients'fractures,reducing the incidence of postoperative complications,and promoting the rapid recovery of patients,which has positive significance for clinical development.
基金National Natural Science Foundation of China(No.10872128)
文摘A force-based quadrilateral plate element( 4NQP13) for the analysis of the plate bending problems using large increment method( LIM) was proposed. The LIM, a force-based finite element method( FEM),has been successfully developed for the analysis of truss,beam,frame,and 2D continua problems. In these analyses,LIMcan provide more precise stress results and less computational time consumption compared with displacement-based FEM. The plate element was based on the Mindlin-Reissner plate theory which took into account the transverse shear effects.Numerical examples were presented to study its performance including accuracy and convergence behavior,and the results were compared with the results have been obtained from the displacementbased quadrilateral plate elements and the analytical solutions. The4NQP13 element can analyze the moderately thick plates and the thin plates using LIMand is free from spurious zero energy modes and free from shear locking for thin plate analysis.
基金the National Natural Science Foundation of China(No.10872128)
文摘Many displacement-based quadrilateral plate elements based on Mindlin-Reissner plate theory have been proposed to analyze the thin and moderately thick plate problems. However, numerical inaccuracies of some elements appear since the presence of shear locking and spurious zero energy modes for thin plate problems. To overcome these shortcomings, we employ the large increment method(LIM) for the analyses of the plate bending problems, and propose a force-based 8-node quadrilateral plate(8NQP) element which is based on MindlinReissner plate theory and has no extra spurious zero energy mode. Several benchmark plate bending problems are presented to illustrate the accuracy and convergence of the plate element by comparing with the analytical solutions and displacement-based plate elements. The results show that the 8-node plate element produces fast convergence and accurate stress distributions in both the moderately thick and thin plate bending problems. The plate element is insensitive to mesh distortion and it can avoid the shear locking for thin plate analysis.