The idea behind this work is developing an adaptive method for the environmental assessment of buildings, to configure different versions according to the variables affecting them (spatial, temporal and associated wit...The idea behind this work is developing an adaptive method for the environmental assessment of buildings, to configure different versions according to the variables affecting them (spatial, temporal and associated with building characteristics) to suit different evaluated projects. This method may be applied using an electronic tool, which is in a development stage. Amending different assessment versions of the adaptive method is done by including the variables effect, according to set of steps, such as modifying the formulation of the assessment items, adjusting their estimation weights, and amending their achievement evaluation levels and their returned scores. When using the adaptive method, the assessment result of a building using a certain version differs from the results using other versions, even in the same country, so configuring an appropriate version due to the variables affecting the assessment helps getting more accurate results than the ones currently provided. The main goal of that research is to introduce the adaptive method that is proposed to ensure a fairer assessment results from the perspective of Green Architecture, and allow a more credible and accuracy of results comparison according to the environmental performance of buildings. The researcher analyzed the different main features she used in developing the adaptive method, the Comparative aspects between it and the current assessment methods, and the expected reached advantages from its usage. The paper arrived to the importance of adapting the environmental assessment of buildings according to the different affecting variables, and recommended developing the adaptive method and its tool to the stage of application to benefit its advantages.展开更多
The electrical performance of radomes on high-speed aircraft can be influenced by the thermal and mechanical loads produced during high-speed flight,which can affect the detection dis-tance and accuracy of the guidanc...The electrical performance of radomes on high-speed aircraft can be influenced by the thermal and mechanical loads produced during high-speed flight,which can affect the detection dis-tance and accuracy of the guidance system.This paper presents a new method that uses the Finite Difference Time Domain(FDTD)method to calculate the electrical performance of radomes under Thermo-Mechanical-Electrical(TME)coupling.This method can accurately characterize the effects of material dielectric temperature drift and structural deformation on the electrical performance of the radome under flight conditions,enabling high-precision full-wave calculations of the broadband electrical performance of the radome.The method initiates by utilizing a Finite Element Grid Model(FE-GM)of the radome to sequentially acquire the radome's response temperature field and structural deformation field through thermal and mechanical simulations.Subsequently,spatial mapping techniques are developed to accurately incorporate the dielectric temperature drift and structural deformation of the radome into its Yee grid Electromagnetic(EM)simulation model.A verification case was designed to test the proposed method,and the results confirmed its high computational accuracy.Additionally,the effectiveness and necessity of the method were further demonstrated by analyzing the electrical performance of a fused silica ceramic radome used on a high-speed aircraft.展开更多
An online hybrid test was carried out on a 40-story 120-m high concrete shear wall structure. The structure was divided into two substructures whereby a physical model of the bottom three stories was tested in the lab...An online hybrid test was carried out on a 40-story 120-m high concrete shear wall structure. The structure was divided into two substructures whereby a physical model of the bottom three stories was tested in the laboratory and the upper 37 stories were simulated numerically using ABAQUS. An overlapping domain method was employed for the bottom three stories to ensure the validity of the boundary conditions of the superstructure. Mixed control was adopted in the test. Displacement control was used to apply the horizontal displacement, while two controlled force actuators were applied to simulate the overturning moment, which is very large and cannot be ignored in the substructure hybrid test of high-rise buildings. A series of tests with earthquake sources of sequentially increasing intensities were carried out. The test results indicate that the proposed hybrid test method is a solution to reproduce the seismic response of high-rise concrete shear wall buildings. The seismic performance of the tested precast high-rise building satisfies the requirements of the Chinese seismic design code.展开更多
Continuum plate model in the form of a cantilever anisotropic plate developed in the framework of the bimoment theory of plates describing seismic oscillations of buildings is proposed in this paper as a dynamic model...Continuum plate model in the form of a cantilever anisotropic plate developed in the framework of the bimoment theory of plates describing seismic oscillations of buildings is proposed in this paper as a dynamic model of a building. Formulas for the reduced moduli of elasticity, shear and density of the plate model of a building are given. Longitudinal oscillations of a building are studied using the continuum plate and box-like models of the building with Finite Element Model. Numerical results are obtained in the form of graphs, followed by their analysis.展开更多
The electromagnetic properties of wire medium are studied by analyzing its transmission coefficient, and a homogeneous uniaxial effective permittivity tensor with one spatially dispersive component is obtained. In ord...The electromagnetic properties of wire medium are studied by analyzing its transmission coefficient, and a homogeneous uniaxial effective permittivity tensor with one spatially dispersive component is obtained. In order to evaluate the validity of the equivalent model for scattering problems, the bistatic and monostatic radar cross sections (RCS) of a block of wire medium are investigated with the finite-difference time-domain (FDTD) method. The difference of RCS from the physical wire medium and the corresponding equivalent model has been compared and analyzed under va- rious parameters of wire medium, which clearly demonstrates the accuracy of the equivalent model of wire medium.展开更多
We developed an efficient analysis the current induced in the wire structure. The analysis based on the time-Domain Integral Equation, in which a thin wire approximation is used. The time-domain electric field integra...We developed an efficient analysis the current induced in the wire structure. The analysis based on the time-Domain Integral Equation, in which a thin wire approximation is used. The time-domain electric field integral equation is used with the moment method to develop a numerical procedure for treating problems of scattering by arbitrary shaped bodies. We present an efficient numerical method for calculating the electromagnetic scattering from arbitrary shaped conducting bodies in the time domain with a comprehensive treatment of a single, straight thin wire. A time domain electric field integral equation is formulated for the problem of an arbitrary shape. The solution method is based on the moment method to solve the straight thin-wire problem.展开更多
为实现能源多梯度利用并减少环境污染,气-电耦合的综合能源系统(integrated energy system,IES)逐渐占据全球能源结构的重要部分。为明晰系统运行特性并充分挖掘能源子网调度潜力,综合能源系统动态仿真研究逐渐深入。天然气网中,管道传...为实现能源多梯度利用并减少环境污染,气-电耦合的综合能源系统(integrated energy system,IES)逐渐占据全球能源结构的重要部分。为明晰系统运行特性并充分挖掘能源子网调度潜力,综合能源系统动态仿真研究逐渐深入。天然气网中,管道传输过程深刻影响着其动态过程。然而现有管道传输过程时域仿真算法存在着精度与效率的两难。为解决上述问题,提出一种基于时域二端口模型的综合能源系统气网动态仿真算法。首先基于特征线法,构建气网源荷节点关系矩阵,进一步给出时域二端口模型;随后参考特征线法数值格式,构建状态量空间分布矩阵,用于获取气网状态量分布,并提出基于时域二端口模型和分布矩阵的气网动态仿真算法。算例结果表明,所提出的方法具有高效率和高精度两大优势,适合于气-电耦合的综合能源系统的较长时间仿真。展开更多
针对目前极化敏感面阵空域-极化域联合谱估计运算量大、耗时长的问题,提出一种降维求根MUSIC(Multiple Signal Classification)优化算法。通过对接收信号进行降维处理,提出新的求解模型将传统四维MUSIC转化为两个一维求根MUSIC求解空域...针对目前极化敏感面阵空域-极化域联合谱估计运算量大、耗时长的问题,提出一种降维求根MUSIC(Multiple Signal Classification)优化算法。通过对接收信号进行降维处理,提出新的求解模型将传统四维MUSIC转化为两个一维求根MUSIC求解空域波达方向和引用已求解出的空域信息结合拉格朗日乘子法解决来波信号极化信息估计问题。相比传统的4D-MUSIC和秩亏MUSIC,所提算法在不损失估计精度的前提下提高了运算速度,降低了运算复杂度,无需谱峰搜索过程,消除了因搜索步长而导致的量化误差。对日后大规模阵列计算及MIMO(Multiple Input Multiple Output)雷达引入提供快速求解方法。仿真实验表明,所提算法在低信噪比0 dB下空域误差约为0.85°,速度相比秩亏MUSIC提升了约64.7%,验证了该算法的有效性和高精度性。展开更多
Based on the dipole source method, all components of the Green's functions in spectral domain are restructured concisely by four basis functions, and in terms of the two-level discrete complex image method (DCIM) w...Based on the dipole source method, all components of the Green's functions in spectral domain are restructured concisely by four basis functions, and in terms of the two-level discrete complex image method (DCIM) with the high order Sommerfeld identities, an efficient algorithm for closed-form Green's functions in spatial domain in multilayered media is presented. This new work enjoys the advantages of the surface wave pole extraction directly carried out by the generalized integral path without troubles of that all components of Green's function in spectral domain should be reformed respectively in transmission line network analogy, and then the Green's functions for mixed-potential integral equation (MPIE) analysis in both near-field and far-field in multilayered media are obtained. In addition, the curl operator for coupled field in MPIE is avoided conveniently. It is especially applicable and useful to characterize the electromagnetic scattering by, and radiation in the presence of, the electrically large 3-D objects in multilayered media. The numerical results of the S-parameters of a microstrip periodic bandgap (PBG) filter, the radar cross section (RCS) of a large microstrip antenna array, the characteristics of scattering, and radiation from the three-dimensional (3-D) targets in multilayered media are obtained, to demonstrate better effectiveness and accuracy of this technique.展开更多
文摘The idea behind this work is developing an adaptive method for the environmental assessment of buildings, to configure different versions according to the variables affecting them (spatial, temporal and associated with building characteristics) to suit different evaluated projects. This method may be applied using an electronic tool, which is in a development stage. Amending different assessment versions of the adaptive method is done by including the variables effect, according to set of steps, such as modifying the formulation of the assessment items, adjusting their estimation weights, and amending their achievement evaluation levels and their returned scores. When using the adaptive method, the assessment result of a building using a certain version differs from the results using other versions, even in the same country, so configuring an appropriate version due to the variables affecting the assessment helps getting more accurate results than the ones currently provided. The main goal of that research is to introduce the adaptive method that is proposed to ensure a fairer assessment results from the perspective of Green Architecture, and allow a more credible and accuracy of results comparison according to the environmental performance of buildings. The researcher analyzed the different main features she used in developing the adaptive method, the Comparative aspects between it and the current assessment methods, and the expected reached advantages from its usage. The paper arrived to the importance of adapting the environmental assessment of buildings according to the different affecting variables, and recommended developing the adaptive method and its tool to the stage of application to benefit its advantages.
文摘The electrical performance of radomes on high-speed aircraft can be influenced by the thermal and mechanical loads produced during high-speed flight,which can affect the detection dis-tance and accuracy of the guidance system.This paper presents a new method that uses the Finite Difference Time Domain(FDTD)method to calculate the electrical performance of radomes under Thermo-Mechanical-Electrical(TME)coupling.This method can accurately characterize the effects of material dielectric temperature drift and structural deformation on the electrical performance of the radome under flight conditions,enabling high-precision full-wave calculations of the broadband electrical performance of the radome.The method initiates by utilizing a Finite Element Grid Model(FE-GM)of the radome to sequentially acquire the radome's response temperature field and structural deformation field through thermal and mechanical simulations.Subsequently,spatial mapping techniques are developed to accurately incorporate the dielectric temperature drift and structural deformation of the radome into its Yee grid Electromagnetic(EM)simulation model.A verification case was designed to test the proposed method,and the results confirmed its high computational accuracy.Additionally,the effectiveness and necessity of the method were further demonstrated by analyzing the electrical performance of a fused silica ceramic radome used on a high-speed aircraft.
基金State Key Research Project in 13th Five-Year under Grant No.2016YFC0701901the Beijing Science and Technology Program under Grant No.Z161100001216015the Natural Science Foundation of China under Grants Nos.51422809 and 51778342
文摘An online hybrid test was carried out on a 40-story 120-m high concrete shear wall structure. The structure was divided into two substructures whereby a physical model of the bottom three stories was tested in the laboratory and the upper 37 stories were simulated numerically using ABAQUS. An overlapping domain method was employed for the bottom three stories to ensure the validity of the boundary conditions of the superstructure. Mixed control was adopted in the test. Displacement control was used to apply the horizontal displacement, while two controlled force actuators were applied to simulate the overturning moment, which is very large and cannot be ignored in the substructure hybrid test of high-rise buildings. A series of tests with earthquake sources of sequentially increasing intensities were carried out. The test results indicate that the proposed hybrid test method is a solution to reproduce the seismic response of high-rise concrete shear wall buildings. The seismic performance of the tested precast high-rise building satisfies the requirements of the Chinese seismic design code.
文摘Continuum plate model in the form of a cantilever anisotropic plate developed in the framework of the bimoment theory of plates describing seismic oscillations of buildings is proposed in this paper as a dynamic model of a building. Formulas for the reduced moduli of elasticity, shear and density of the plate model of a building are given. Longitudinal oscillations of a building are studied using the continuum plate and box-like models of the building with Finite Element Model. Numerical results are obtained in the form of graphs, followed by their analysis.
基金Supported by the National Natural Science Foundation of China(61102022)the Fundamental Research Foundation of Beijing Institute of Technology of China(20120542014)
文摘The electromagnetic properties of wire medium are studied by analyzing its transmission coefficient, and a homogeneous uniaxial effective permittivity tensor with one spatially dispersive component is obtained. In order to evaluate the validity of the equivalent model for scattering problems, the bistatic and monostatic radar cross sections (RCS) of a block of wire medium are investigated with the finite-difference time-domain (FDTD) method. The difference of RCS from the physical wire medium and the corresponding equivalent model has been compared and analyzed under va- rious parameters of wire medium, which clearly demonstrates the accuracy of the equivalent model of wire medium.
基金This paper is supported by two projects(2006),Philosophicaland Social Science Project of Guangdong Province (06E18)theEleventh Five-Year-Programming Project of Philosophical andSocial Science Development of Guangzhou(06- Z4-6).
文摘We developed an efficient analysis the current induced in the wire structure. The analysis based on the time-Domain Integral Equation, in which a thin wire approximation is used. The time-domain electric field integral equation is used with the moment method to develop a numerical procedure for treating problems of scattering by arbitrary shaped bodies. We present an efficient numerical method for calculating the electromagnetic scattering from arbitrary shaped conducting bodies in the time domain with a comprehensive treatment of a single, straight thin wire. A time domain electric field integral equation is formulated for the problem of an arbitrary shape. The solution method is based on the moment method to solve the straight thin-wire problem.
文摘为实现能源多梯度利用并减少环境污染,气-电耦合的综合能源系统(integrated energy system,IES)逐渐占据全球能源结构的重要部分。为明晰系统运行特性并充分挖掘能源子网调度潜力,综合能源系统动态仿真研究逐渐深入。天然气网中,管道传输过程深刻影响着其动态过程。然而现有管道传输过程时域仿真算法存在着精度与效率的两难。为解决上述问题,提出一种基于时域二端口模型的综合能源系统气网动态仿真算法。首先基于特征线法,构建气网源荷节点关系矩阵,进一步给出时域二端口模型;随后参考特征线法数值格式,构建状态量空间分布矩阵,用于获取气网状态量分布,并提出基于时域二端口模型和分布矩阵的气网动态仿真算法。算例结果表明,所提出的方法具有高效率和高精度两大优势,适合于气-电耦合的综合能源系统的较长时间仿真。
基金the National Natural Science Foundation of China (Grant No. 60371020)National Defense Pre-research Foundation of China (Grant No. 9140a03020206dz0112)
文摘Based on the dipole source method, all components of the Green's functions in spectral domain are restructured concisely by four basis functions, and in terms of the two-level discrete complex image method (DCIM) with the high order Sommerfeld identities, an efficient algorithm for closed-form Green's functions in spatial domain in multilayered media is presented. This new work enjoys the advantages of the surface wave pole extraction directly carried out by the generalized integral path without troubles of that all components of Green's function in spectral domain should be reformed respectively in transmission line network analogy, and then the Green's functions for mixed-potential integral equation (MPIE) analysis in both near-field and far-field in multilayered media are obtained. In addition, the curl operator for coupled field in MPIE is avoided conveniently. It is especially applicable and useful to characterize the electromagnetic scattering by, and radiation in the presence of, the electrically large 3-D objects in multilayered media. The numerical results of the S-parameters of a microstrip periodic bandgap (PBG) filter, the radar cross section (RCS) of a large microstrip antenna array, the characteristics of scattering, and radiation from the three-dimensional (3-D) targets in multilayered media are obtained, to demonstrate better effectiveness and accuracy of this technique.