This article is concerned with the numerical investigation of one-dimensional population balance models for batch crystallization process with fines dissolution.In batch crystallization,dissolution of smaller unwanted...This article is concerned with the numerical investigation of one-dimensional population balance models for batch crystallization process with fines dissolution.In batch crystallization,dissolution of smaller unwanted nuclei below some critical size is of vital importance as it improves the quality of product.The crystal growth rates for both size-independent and size-dependent cases are considered.A delay in recycle pipe is also included in the model.The space–time conservation element and solution element method,originally derived for non-reacting flows,is used to solve the model.This scheme has already been applied to a range of PDEs,mainly in the area of fluid mechanics.The numerical results are compared with those obtained from the Koren scheme,showing that the proposed scheme is more efficient.展开更多
Adaptive space-time finite element method, continuous in space but discontinuous in time for semi-linear parabolic problems is discussed. The approach is based on a combination of finite element and finite difference ...Adaptive space-time finite element method, continuous in space but discontinuous in time for semi-linear parabolic problems is discussed. The approach is based on a combination of finite element and finite difference techniques. The existence and uniqueness of the weak solution are proved without any assumptions on choice of the spacetime meshes. Basic error estimates in L-infinity (L-2) norm, that is maximum-norm in time, L-2-norm in space are obtained. The numerical results are given in the last part and the analysis between theoretic and experimental results are obtained.展开更多
A mixed time discontinuous space-time finite element scheme for secondorder convection diffusion problems is constructed and analyzed. Order of the equation is lowered by the mixed finite element method. The low order...A mixed time discontinuous space-time finite element scheme for secondorder convection diffusion problems is constructed and analyzed. Order of the equation is lowered by the mixed finite element method. The low order equation is discretized with a space-time finite element method, continuous in space but discontinuous in time. Stability, existence, uniqueness and convergence of the approximate solutions are proved. Numerical results are presented to illustrate efficiency of the proposed method.展开更多
A Krylov space based time domain method for wave propagation problems is introduced. The proposed method uses the Arnoldi algorithm to obtain broad-band frequency domain solutions. This method is especially advantageo...A Krylov space based time domain method for wave propagation problems is introduced. The proposed method uses the Arnoldi algorithm to obtain broad-band frequency domain solutions. This method is especially advantageous in cases where slow convergence is observed when using traditional time domain methods. The efficiency of the method is examined in several test cases to show its fast convergence in such problems.展开更多
A new high-order accurate staggered semi-implicit space-time discontinuous Galerkin(DG)method is presented for the simulation of viscous incompressible flows on unstructured triangular grids in two space dimensions.Th...A new high-order accurate staggered semi-implicit space-time discontinuous Galerkin(DG)method is presented for the simulation of viscous incompressible flows on unstructured triangular grids in two space dimensions.The staggered DG scheme defines the discrete pressure on the primal triangular mesh,while the discrete velocity is defined on a staggered edge-based dual quadrilateral mesh.In this paper,a new pair of equal-order-interpolation velocity-pressure finite elements is proposed.On the primary triangular mesh(the pressure elements),the basis functions are piecewise polynomials of degree N and are allowed to jump on the boundaries of each triangle.On the dual mesh instead(the velocity elements),the basis functions consist in the union of piecewise polynomials of degree N on the two subtriangles that compose each quadrilateral and are allowed to jump only on the dual element boundaries,while they are continuous inside.In other words,the basis functions on the dual mesh arc built by continuous finite elements on the subtriangles.This choice allows the construction of an efficient,quadrature-free and memory saving algorithm.In our coupled space-time pressure correction formulation for the incompressible Navier-Stokes equations,the arbitrary high order of accuracy in time is achieved through tire use of time-dependent test and basis functions,in combination with simple and efficient Picard iterations.Several numerical tests on classical benchmarks confirm that the proposed method outperforms existing staggered semi-implicit space-time DG schemes,not only from a computer memory point of view,but also concerning the computational time.展开更多
An H1 space-time discontinuous Galerkin (STDG) scheme for convection- diffusion equations in one spatial dimension is constructed and analyzed. This method is formulated by combining the H1 Galerkin method and the s...An H1 space-time discontinuous Galerkin (STDG) scheme for convection- diffusion equations in one spatial dimension is constructed and analyzed. This method is formulated by combining the H1 Galerkin method and the space-time discontinuous finite element method that is discontinuous in time and continuous in space. The existence and the uniqueness of the approximate solution are proved. The convergence of the scheme is analyzed by using the techniques in the finite difference and finite element methods. An optimal a-priori error estimate in the L∞ (H1) norm is derived. The numerical exper- iments are presented to verify the theoretical results.展开更多
Energy conservation of nonlinear Schrodinger ordinary differential equation was proved through using continuous finite element methods of ordinary differential equation; Energy integration conservation was proved thro...Energy conservation of nonlinear Schrodinger ordinary differential equation was proved through using continuous finite element methods of ordinary differential equation; Energy integration conservation was proved through using space-time continuous fully discrete finite element methods and the electron nearly conservation with higher order error was obtained through using time discontinuous only space continuous finite element methods of nonlinear Schrodinger partial equation. The numerical results are in accordance with the theory.展开更多
In this paper, a unified model for time-dependent Maxwell equations in dispersive media is considered. The space-time DG method developed in [29] is applied to solve the un-derlying problem. Unconditional L2-stability...In this paper, a unified model for time-dependent Maxwell equations in dispersive media is considered. The space-time DG method developed in [29] is applied to solve the un-derlying problem. Unconditional L2-stability and error estimate of order O?τr+1+hk+1/2? are obtained when polynomials of degree at most r and k are used for the temporal dis-cretization and spatial discretization respectively. 2-D and 3-D numerical examples are given to validate the theoretical results. Moreover, numerical results show an ultra-convergence of order 2r+1 in temporal variable t.展开更多
Experimental and theoretical studies of the mechanisms of vibration stimulation of oil recovery in watered fields lead to the conclusion that resonance oscillations develop in fractured-block formations. These oscilla...Experimental and theoretical studies of the mechanisms of vibration stimulation of oil recovery in watered fields lead to the conclusion that resonance oscillations develop in fractured-block formations. These oscillations, caused by weak but long-lasting and frequency-stable influences, create the conditions for ultrasonic wave’s generation in the layers, which are capable of destroying thickened oil membranes in reservoir cracks. For fractured-porous reservoirs in the process of exploitation by the method of water high-pressure oil displacement, the possibility of intensifying ultrasonic vibrations can have an important technological significance. Even a very weak ultrasound can destroy, over a long period of time, the viscous oil membranes formed in the cracks between the blocks, which can be the reason for lowering the permeability of the layers and increasing the oil recovery. To describe these effects, it is necessary to consider the wave process in a hierarchically blocky environment and theoretically simulate the mechanism of the appearance of self-oscillations under the action of relaxation shear stresses. For the analysis of seism acoustic response in time on fixed intervals along the borehole an algorithm of phase diagrams of the state of many-phase medium is suggested.展开更多
This article analyzes the shift factors of the descending node local time for sun-synchronous satellites and proposes a shift control method to keep the local time shift within an allowance range. It is found that the...This article analyzes the shift factors of the descending node local time for sun-synchronous satellites and proposes a shift control method to keep the local time shift within an allowance range. It is found that the satellite orbit design and the orbit injection deviation are the causes for the initial shift velocity, whereas the atmospheric drag and the sun gravitational perturbation produce the shift acceleration. To deal with these shift factors, a shift control method is put forward, through such methods as orbit variation design, orbit altitude, and inclination keeping control. The simulation experiment and practical application have proved the effectiveness of this control method.展开更多
In the last 30 years,the scientific community has developed and proposed different models and numerical approaches for the study of vibrations induced by railway traffic.Most of them are formulated in the frequency/wa...In the last 30 years,the scientific community has developed and proposed different models and numerical approaches for the study of vibrations induced by railway traffic.Most of them are formulated in the frequency/wave number domain and with a 2.5D approach.Three-dimensional numerical models formulated in the time/space domain are less frequently used,mainly due to their high computational cost.Notwithstanding,these models present very attractive characteristics,such as the possibility of considering nonlinear behaviors or the modelling of excess pore pressure and non-homogeneous and non-periodic geometries in the longitudinal direction of the track.In this study,two 3D numerical approaches formulated in the time/space domain are compared and experimentally validated.The first one consists of a finite element approach and the second one of a finite difference approach.The experimental validation in an actual case situated in Carregado(Portugal)shows an acceptable fitting between the numerical results and the actual measurements for both models.However,there are some differences among them.This study therefore includes some recommendations for their use in practical soil dynamics and geotechnical engineering.展开更多
This paper is concerned with the initial-boundary value problem for damped wave equations with a nonlinear convection term in the multi-dimensional half space R n + : u tt u + u t + divf (u) = 0, t 〉 0, x = (x...This paper is concerned with the initial-boundary value problem for damped wave equations with a nonlinear convection term in the multi-dimensional half space R n + : u tt u + u t + divf (u) = 0, t 〉 0, x = (x 1 , x ′ ) ∈ R n + := R + × R n 1 , u(0, x) = u 0 (x) → u + , as x 1 → + ∞ , u t (0, x) = u 1 (x), u(t, 0, x ′ ) = u b , x ′ = (x 2 , x 3 , ··· , x n ) ∈ R n 1 . (I) For the non-degenerate case f ′ 1 (u + ) 〈 0, it was shown in [10] that the above initialboundary value problem (I) admits a unique global solution u(t, x) which converges to the corresponding planar stationary wave φ(x 1 ) uniformly in x 1 ∈ R + as time tends to infinity provided that the initial perturbation and/or the strength of the stationary wave are sufficiently small. And in [10] Ueda, Nakamura, and Kawashima proved the algebraic decay estimates of the tangential derivatives of the solution u(t, x) for t → + ∞ by using the space-time weighted energy method initiated by Kawashima and Matsumura [5] and improved by Nishihkawa [7]. Moreover, by using the same weighted energy method, an additional algebraic convergence rate in the normal direction was obtained by assuming that the initial perturbation decays algebraically. We note, however, that the analysis in [10] relies heavily on the assumption that f ′ (u) 〈 0. The main purpose of this paper isdevoted to discussing the case of f ′ 1 (u b ) ≥ 0 and we show that similar results still hold for such a case. Our analysis is based on some delicate energy estimates.展开更多
The KdV-Burgers equation for dust acoustic waves in unmagnetized plasma having electrons, singly charged non- thermal ions, and hot and cold dust species is derived using the reductive perturbation method. The Boltzma...The KdV-Burgers equation for dust acoustic waves in unmagnetized plasma having electrons, singly charged non- thermal ions, and hot and cold dust species is derived using the reductive perturbation method. The Boltzmann distribution is used for electrons in the presence of the cold (hot) dust viscosity coefficients. The semi-inverse method and Agrawal variational technique are applied to formulate the space-time fractional KdV-Burgers equation which is solved using the fractional sub-equation method. The effect of the fractional parameter on the behavior of the dust acoustic shock waves in the dusty plasma is investigated.展开更多
Time and Space Thinking that is composed of time and space thinking is brought up in civil engineering. This paper makes a detailed analysis on application and role of time and space thinking in knowledge system and l...Time and Space Thinking that is composed of time and space thinking is brought up in civil engineering. This paper makes a detailed analysis on application and role of time and space thinking in knowledge system and learning method of civil engineering and put forward time and space thinking to be similar with philosophical view of time and space. Time and space thinking is a scientific method, therefore, it is suggested to make students active in having such idea and strengthen students' understanding on time and space thinking, which will helping students recognize knowledge system and stimulate innovative abilities.展开更多
In this article, we study the large time behavior of the 3-D isentropic compressible Navier-Stokes equation in the partial space-periodic domains, and simultaneously show that the related profile systems can be descri...In this article, we study the large time behavior of the 3-D isentropic compressible Navier-Stokes equation in the partial space-periodic domains, and simultaneously show that the related profile systems can be described by like Navier-Stokes equations with suitable "pressure" functions in lower dimensions. Our proofs are based on the energy methods together with some delicate analysis on the corresponding linearized problems.展开更多
The fractional derivatives in the sense of Caputo and the homotopy analysis method are used to construct an approximate solution for the nonlinear space-time fractional derivatives Klein-Gordon equation. The numerical...The fractional derivatives in the sense of Caputo and the homotopy analysis method are used to construct an approximate solution for the nonlinear space-time fractional derivatives Klein-Gordon equation. The numerical results show that the approaches are easy to implement and accurate when applied to the nonlinear space-time fractional derivatives Klein- Gordon equation. This method introduces a promising tool for solving many space-time fractional partial differential equations. This method is efficient and powerful in solving wide classes of nonlinear evolution fractional order equations.展开更多
For tracking spacecraft and performing radio science, the transformation between the proper time (τ) given by a clock carried onboard a spacecraft and the barycentric coordinate time (TCB) is investigated under I...For tracking spacecraft and performing radio science, the transformation between the proper time (τ) given by a clock carried onboard a spacecraft and the barycentric coordinate time (TCB) is investigated under IAU resolutions. In order to more clearly demonstrate manifestations of a physical model and improve computa- tional efficiency, an analytic approach is adopted. After numerical verification, it is confirmed that this method is adequate to describe a Mars orbiter during one year, and is particularly good at describing the influence from perturbing bodies. Further analyses demonstrate that there are two main effects in the transformation: the gravi- tational field of the Sun and the velocity of the spacecraft in the barycentric coordinate reference system. The combined contribution of these effects is at the level of a few sub-seconds.展开更多
In the context of the fact that Einstein's general relativity has become an inevitable part of deep space missions, we will extend previous works on relativistic transformation between the proper time ^- of a clock o...In the context of the fact that Einstein's general relativity has become an inevitable part of deep space missions, we will extend previous works on relativistic transformation between the proper time ^- of a clock onboard a spacecraft orbiting Mars and the Barycentric Coordinate Time (TCB) by taking the clock offset into ac- count and investigate its accessibility by Fourier analysis on the residuals after fitting the ^--TCB curve in terms of n-th order polynomials. We find that if the accuracy of a clock can achieve better than ~ 10-5 s or ~ 10-6 s (depending on the type of clock offset) in one year after calibration, the relativistic effects on the difference between 7- and TCB will need to be carefully considered.展开更多
With tremendous advances in modem techniques, Einstein's general rela- tivity has become an inevitable part of deep space missions. We investigate the rela- tivistic algorithm for time transfer between the proper tim...With tremendous advances in modem techniques, Einstein's general rela- tivity has become an inevitable part of deep space missions. We investigate the rela- tivistic algorithm for time transfer between the proper time - of the onboard clock and the Geocentric Coordinate Time, which extends some previous works by including the effects of propagation of electromagnetic signals. In order to evaluate the implicit algebraic equations and integrals in the model, we take an analytic approach to work out their approximate values. This analytic model might be used in an onboard com- puter because of its limited capability to perform calculations. Taking an orbiter like Yinghuo-1 as an example, we find that the contributions of the Sun, the ground station and the spacecraft dominate the outcomes of the relativistic corrections to the model.展开更多
In this paper, we use the fractional complex transform and the (G'/G)-expansion method to study the nonlinear fractional differential equations and find the exact solutions. The fractional complex transform is prop...In this paper, we use the fractional complex transform and the (G'/G)-expansion method to study the nonlinear fractional differential equations and find the exact solutions. The fractional complex transform is proposed to convert a partial fractional differential equation with Jumarie's modified Riemann-Liouville derivative into its ordinary differential equation. It is shown that the considered transform and method are very efficient and powerful in solving wide classes of nonlinear fractional order equations.展开更多
文摘This article is concerned with the numerical investigation of one-dimensional population balance models for batch crystallization process with fines dissolution.In batch crystallization,dissolution of smaller unwanted nuclei below some critical size is of vital importance as it improves the quality of product.The crystal growth rates for both size-independent and size-dependent cases are considered.A delay in recycle pipe is also included in the model.The space–time conservation element and solution element method,originally derived for non-reacting flows,is used to solve the model.This scheme has already been applied to a range of PDEs,mainly in the area of fluid mechanics.The numerical results are compared with those obtained from the Koren scheme,showing that the proposed scheme is more efficient.
文摘Adaptive space-time finite element method, continuous in space but discontinuous in time for semi-linear parabolic problems is discussed. The approach is based on a combination of finite element and finite difference techniques. The existence and uniqueness of the weak solution are proved without any assumptions on choice of the spacetime meshes. Basic error estimates in L-infinity (L-2) norm, that is maximum-norm in time, L-2-norm in space are obtained. The numerical results are given in the last part and the analysis between theoretic and experimental results are obtained.
基金supported by the National Natural Science Foundation of China (No. 10601022)NSF ofInner Mongolia Autonomous Region of China (No. 200607010106)513 and Science Fund of InnerMongolia University for Distinguished Young Scholars (No. ND0702)
文摘A mixed time discontinuous space-time finite element scheme for secondorder convection diffusion problems is constructed and analyzed. Order of the equation is lowered by the mixed finite element method. The low order equation is discretized with a space-time finite element method, continuous in space but discontinuous in time. Stability, existence, uniqueness and convergence of the approximate solutions are proved. Numerical results are presented to illustrate efficiency of the proposed method.
文摘A Krylov space based time domain method for wave propagation problems is introduced. The proposed method uses the Arnoldi algorithm to obtain broad-band frequency domain solutions. This method is especially advantageous in cases where slow convergence is observed when using traditional time domain methods. The efficiency of the method is examined in several test cases to show its fast convergence in such problems.
基金funded by the research project STiMulUs,ERC Grant agreement no.278267Financial support has also been provided by the Italian Ministry of Education,University and Research(MIUR)in the frame of the Departments of Excellence Initiative 2018-2022 attributed to DICAM of the University of Trento(Grant L.232/2016)the PRIN2017 project.The authors have also received funding from the University of Trento via the Strategic Initiative Modeling and Simulation.
文摘A new high-order accurate staggered semi-implicit space-time discontinuous Galerkin(DG)method is presented for the simulation of viscous incompressible flows on unstructured triangular grids in two space dimensions.The staggered DG scheme defines the discrete pressure on the primal triangular mesh,while the discrete velocity is defined on a staggered edge-based dual quadrilateral mesh.In this paper,a new pair of equal-order-interpolation velocity-pressure finite elements is proposed.On the primary triangular mesh(the pressure elements),the basis functions are piecewise polynomials of degree N and are allowed to jump on the boundaries of each triangle.On the dual mesh instead(the velocity elements),the basis functions consist in the union of piecewise polynomials of degree N on the two subtriangles that compose each quadrilateral and are allowed to jump only on the dual element boundaries,while they are continuous inside.In other words,the basis functions on the dual mesh arc built by continuous finite elements on the subtriangles.This choice allows the construction of an efficient,quadrature-free and memory saving algorithm.In our coupled space-time pressure correction formulation for the incompressible Navier-Stokes equations,the arbitrary high order of accuracy in time is achieved through tire use of time-dependent test and basis functions,in combination with simple and efficient Picard iterations.Several numerical tests on classical benchmarks confirm that the proposed method outperforms existing staggered semi-implicit space-time DG schemes,not only from a computer memory point of view,but also concerning the computational time.
基金Project supported by the National Natural Science Foundation of China (No. 11061021)the Inner Mongolia College Research Project (No. NJ10006)the Natural Science Foundation of Inner Mongolia of China (No. 2012MS0106)
文摘An H1 space-time discontinuous Galerkin (STDG) scheme for convection- diffusion equations in one spatial dimension is constructed and analyzed. This method is formulated by combining the H1 Galerkin method and the space-time discontinuous finite element method that is discontinuous in time and continuous in space. The existence and the uniqueness of the approximate solution are proved. The convergence of the scheme is analyzed by using the techniques in the finite difference and finite element methods. An optimal a-priori error estimate in the L∞ (H1) norm is derived. The numerical exper- iments are presented to verify the theoretical results.
基金Project supported by the National Basic Research Program of China (973 program) (No.G1999032804)
文摘Energy conservation of nonlinear Schrodinger ordinary differential equation was proved through using continuous finite element methods of ordinary differential equation; Energy integration conservation was proved through using space-time continuous fully discrete finite element methods and the electron nearly conservation with higher order error was obtained through using time discontinuous only space continuous finite element methods of nonlinear Schrodinger partial equation. The numerical results are in accordance with the theory.
基金supported by NSFC(11341002)NSFC(11171104,10871066)+1 种基金the Construct Program of the Key Discipline in Hunansupported in part by US National Science Foundation under Grant DMS-1115530
文摘In this paper, a unified model for time-dependent Maxwell equations in dispersive media is considered. The space-time DG method developed in [29] is applied to solve the un-derlying problem. Unconditional L2-stability and error estimate of order O?τr+1+hk+1/2? are obtained when polynomials of degree at most r and k are used for the temporal dis-cretization and spatial discretization respectively. 2-D and 3-D numerical examples are given to validate the theoretical results. Moreover, numerical results show an ultra-convergence of order 2r+1 in temporal variable t.
文摘Experimental and theoretical studies of the mechanisms of vibration stimulation of oil recovery in watered fields lead to the conclusion that resonance oscillations develop in fractured-block formations. These oscillations, caused by weak but long-lasting and frequency-stable influences, create the conditions for ultrasonic wave’s generation in the layers, which are capable of destroying thickened oil membranes in reservoir cracks. For fractured-porous reservoirs in the process of exploitation by the method of water high-pressure oil displacement, the possibility of intensifying ultrasonic vibrations can have an important technological significance. Even a very weak ultrasound can destroy, over a long period of time, the viscous oil membranes formed in the cracks between the blocks, which can be the reason for lowering the permeability of the layers and increasing the oil recovery. To describe these effects, it is necessary to consider the wave process in a hierarchically blocky environment and theoretically simulate the mechanism of the appearance of self-oscillations under the action of relaxation shear stresses. For the analysis of seism acoustic response in time on fixed intervals along the borehole an algorithm of phase diagrams of the state of many-phase medium is suggested.
基金supported by the China Postdotoral Science Foundation(20060401004)
文摘This article analyzes the shift factors of the descending node local time for sun-synchronous satellites and proposes a shift control method to keep the local time shift within an allowance range. It is found that the satellite orbit design and the orbit injection deviation are the causes for the initial shift velocity, whereas the atmospheric drag and the sun gravitational perturbation produce the shift acceleration. To deal with these shift factors, a shift control method is put forward, through such methods as orbit variation design, orbit altitude, and inclination keeping control. The simulation experiment and practical application have proved the effectiveness of this control method.
文摘In the last 30 years,the scientific community has developed and proposed different models and numerical approaches for the study of vibrations induced by railway traffic.Most of them are formulated in the frequency/wave number domain and with a 2.5D approach.Three-dimensional numerical models formulated in the time/space domain are less frequently used,mainly due to their high computational cost.Notwithstanding,these models present very attractive characteristics,such as the possibility of considering nonlinear behaviors or the modelling of excess pore pressure and non-homogeneous and non-periodic geometries in the longitudinal direction of the track.In this study,two 3D numerical approaches formulated in the time/space domain are compared and experimentally validated.The first one consists of a finite element approach and the second one of a finite difference approach.The experimental validation in an actual case situated in Carregado(Portugal)shows an acceptable fitting between the numerical results and the actual measurements for both models.However,there are some differences among them.This study therefore includes some recommendations for their use in practical soil dynamics and geotechnical engineering.
基金The research of Fan Lili was supported by two grants from the National Natural Science Foundation of China (10871151 10925103)+1 种基金the research of Liu Hongxia was supported by National Natural Science Foundation of China (10871082)the research of Yin Hui was supported by National Natural Sciences Foundation of China (10901064)
文摘This paper is concerned with the initial-boundary value problem for damped wave equations with a nonlinear convection term in the multi-dimensional half space R n + : u tt u + u t + divf (u) = 0, t 〉 0, x = (x 1 , x ′ ) ∈ R n + := R + × R n 1 , u(0, x) = u 0 (x) → u + , as x 1 → + ∞ , u t (0, x) = u 1 (x), u(t, 0, x ′ ) = u b , x ′ = (x 2 , x 3 , ··· , x n ) ∈ R n 1 . (I) For the non-degenerate case f ′ 1 (u + ) 〈 0, it was shown in [10] that the above initialboundary value problem (I) admits a unique global solution u(t, x) which converges to the corresponding planar stationary wave φ(x 1 ) uniformly in x 1 ∈ R + as time tends to infinity provided that the initial perturbation and/or the strength of the stationary wave are sufficiently small. And in [10] Ueda, Nakamura, and Kawashima proved the algebraic decay estimates of the tangential derivatives of the solution u(t, x) for t → + ∞ by using the space-time weighted energy method initiated by Kawashima and Matsumura [5] and improved by Nishihkawa [7]. Moreover, by using the same weighted energy method, an additional algebraic convergence rate in the normal direction was obtained by assuming that the initial perturbation decays algebraically. We note, however, that the analysis in [10] relies heavily on the assumption that f ′ (u) 〈 0. The main purpose of this paper isdevoted to discussing the case of f ′ 1 (u b ) ≥ 0 and we show that similar results still hold for such a case. Our analysis is based on some delicate energy estimates.
文摘The KdV-Burgers equation for dust acoustic waves in unmagnetized plasma having electrons, singly charged non- thermal ions, and hot and cold dust species is derived using the reductive perturbation method. The Boltzmann distribution is used for electrons in the presence of the cold (hot) dust viscosity coefficients. The semi-inverse method and Agrawal variational technique are applied to formulate the space-time fractional KdV-Burgers equation which is solved using the fractional sub-equation method. The effect of the fractional parameter on the behavior of the dust acoustic shock waves in the dusty plasma is investigated.
文摘Time and Space Thinking that is composed of time and space thinking is brought up in civil engineering. This paper makes a detailed analysis on application and role of time and space thinking in knowledge system and learning method of civil engineering and put forward time and space thinking to be similar with philosophical view of time and space. Time and space thinking is a scientific method, therefore, it is suggested to make students active in having such idea and strengthen students' understanding on time and space thinking, which will helping students recognize knowledge system and stimulate innovative abilities.
基金supported by the NSFC(11571177)the Priority Academic Program Development of Jiangsu Higher Education Institutionssupported by the Fundamental Research Funds for the Central Universities(2014B14014)
文摘In this article, we study the large time behavior of the 3-D isentropic compressible Navier-Stokes equation in the partial space-periodic domains, and simultaneously show that the related profile systems can be described by like Navier-Stokes equations with suitable "pressure" functions in lower dimensions. Our proofs are based on the energy methods together with some delicate analysis on the corresponding linearized problems.
文摘The fractional derivatives in the sense of Caputo and the homotopy analysis method are used to construct an approximate solution for the nonlinear space-time fractional derivatives Klein-Gordon equation. The numerical results show that the approaches are easy to implement and accurate when applied to the nonlinear space-time fractional derivatives Klein- Gordon equation. This method introduces a promising tool for solving many space-time fractional partial differential equations. This method is efficient and powerful in solving wide classes of nonlinear evolution fractional order equations.
基金funded by the National Natural Science Foundation of China (Grant Nos. 11103085 and 11178006)
文摘For tracking spacecraft and performing radio science, the transformation between the proper time (τ) given by a clock carried onboard a spacecraft and the barycentric coordinate time (TCB) is investigated under IAU resolutions. In order to more clearly demonstrate manifestations of a physical model and improve computa- tional efficiency, an analytic approach is adopted. After numerical verification, it is confirmed that this method is adequate to describe a Mars orbiter during one year, and is particularly good at describing the influence from perturbing bodies. Further analyses demonstrate that there are two main effects in the transformation: the gravi- tational field of the Sun and the velocity of the spacecraft in the barycentric coordinate reference system. The combined contribution of these effects is at the level of a few sub-seconds.
基金Supported by the National Natural Science Foundation of China
文摘In the context of the fact that Einstein's general relativity has become an inevitable part of deep space missions, we will extend previous works on relativistic transformation between the proper time ^- of a clock onboard a spacecraft orbiting Mars and the Barycentric Coordinate Time (TCB) by taking the clock offset into ac- count and investigate its accessibility by Fourier analysis on the residuals after fitting the ^--TCB curve in terms of n-th order polynomials. We find that if the accuracy of a clock can achieve better than ~ 10-5 s or ~ 10-6 s (depending on the type of clock offset) in one year after calibration, the relativistic effects on the difference between 7- and TCB will need to be carefully considered.
基金Supported by the National Natural Science Foundation of China
文摘With tremendous advances in modem techniques, Einstein's general rela- tivity has become an inevitable part of deep space missions. We investigate the rela- tivistic algorithm for time transfer between the proper time - of the onboard clock and the Geocentric Coordinate Time, which extends some previous works by including the effects of propagation of electromagnetic signals. In order to evaluate the implicit algebraic equations and integrals in the model, we take an analytic approach to work out their approximate values. This analytic model might be used in an onboard com- puter because of its limited capability to perform calculations. Taking an orbiter like Yinghuo-1 as an example, we find that the contributions of the Sun, the ground station and the spacecraft dominate the outcomes of the relativistic corrections to the model.
文摘In this paper, we use the fractional complex transform and the (G'/G)-expansion method to study the nonlinear fractional differential equations and find the exact solutions. The fractional complex transform is proposed to convert a partial fractional differential equation with Jumarie's modified Riemann-Liouville derivative into its ordinary differential equation. It is shown that the considered transform and method are very efficient and powerful in solving wide classes of nonlinear fractional order equations.